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Abstract
Although many efforts have been made on off-line tool wear prediction, the on-line intelligent prediction of tool wear pre-
diction based on indeterminate factor relationship has not been addressed. In this paper, a tool wear prediction model is 
built based on bidirectional long short-term memory neural network (BiLSTM) to deal with these challenges. The acoustic 
emission (AE) signal and tool wear image are selected as indicators to characterize the wear behavior of micro-grinding tool. 
The BiLSTM model is constructed with the input of 4-dimensional feature vector, which is composed of medium frequency 
energy ratio of the AE signal, initial tool cross-sectional area, micro-grinding depth and micro-grinding length, and the 
output of the loss of tool cross-sectional area. Two derived models of genetic algorithm-optimized BiLSTM (GA-BiLSTM) 
and long short-term memory neural network (LSTM) are developed to compare the accuracy of the BiLSTM model. Two 
machine learning models of back propagation neural network (BP) and algorithm optimized BP neural network (GA-BP) are 
developed to compare the stability and superiority of the BiLSTM model. The micro-grinding experiment is conducted by the 
electroplated diamond micro-grinding tool to verify the feasibility using the proposed methods and the results show that the 
average prediction accuracy of the BiLSTM model reached 92.08% while the accuracies of other models from GA-BiLSTM 
to GA-BP are separately 87.2%, 88.6%, 84.4%, and 85.8%. The BiLSTM model provides a novel wear characterization and 
prediction method that combines AE signals and visual images using small-sample and multi-sourced heterogeneous data. 
It undoubtedly promotes sustainable manufacturing and provide theoretical basis for independent decision-making in preci-
sion intelligent manufacturing.

Keywords  Micro-grinding · Tool wear prediction · Neural network · BiLSTM · Small sample · Multi-sourced 
heterogeneous data

1  Introduction

The wear of micro-grinding tool is a crucial factor that 
affects the processing efficiency, quality, and dimensional 
accuracy of micro-structure workpieces [1]. The tool wear 
prediction can effectively evaluate the tool service life and 
then guide tool replacement strategies to reduce cost and 
control quality [2, 3]. According to previous reports, the 

state signals generated during the machining process, such 
as cutting force signals, vibration signals, acoustic emis-
sion (AE) signals, and so on, or tool static geometry and 
morphology characteristic such as tool diameter and radius 
of cutting edge can be used to predict the tool wear by theo-
retical physical model or empirical model based on determi-
nate factor relationship [4]. However, it appears challenging 
to achieve the micro-grinding tool wear prediction online 
integrating the processing state signals and tool static char-
acteristic based on indeterminate factors relationship. These 
processing state signals and tool static characteristics exhibit 
multi-source heterogeneous data type. And collecting signal 
data during the machining process requires a large amount 
of cost [5, 6]. Therefore, it is more significant to predict 
the tool wear online using small-sample and multi-sourced 
heterogeneous data with the development of artificial intel-
ligence technology.
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The characterization of tool wear is essentially a problem 
of pattern state recognition, including acquiring the feature 
signals during the machining process, transforming the sig-
nals into dimensionality reduction, extracting the feature 
information that has a certain mapping relationship with the 
tool wear state, and forming feature vectors [7]. The char-
acterization of tool wear can be mainly divided into direct 
and indirect ways. The direct way is to directly measure and 
observe the geometric shape, size, and morphological char-
acteristics of the tool using machine vision or optical sensors. 
Banda et al. [8] illustrated the application and the signifi-
cance of machine vision systems in tool wear monitoring and 
tool performance optimization. Zhang et al. [9] established 
an in-situ monitoring system based on machine vision to 
detect tool wear behavior. The indirect way is to detect the 
status information generated in the machining process, such 
as force, acceleration, and AE signals [10]. Zhou et al. [11] 
demonstrated the basic principles and key technologies of AE 
signal used for monitoring in sawing. Wang et al. [12] pro-
posed an effectively AE signal processing method to monitor 
the damage mechanisms of monocrystalline silicon in ultra-
precision grinding. Zhou et al. [13] presented a monitoring 
method to predict the tool wear using force and acceleration 
signals and it is effective in tool wear prediction with maxi-
mum error around 8 μm.

The prediction methods of tool wear proposed can be 
divided into two categories, which are physical model driven 
methods and data-driven methods [14, 15]. The physical-
model-driven method is to build an explicit mathematical 
model for tool wear prediction through physical laws or 
mathematical models [16]. Li et al. [17] presented a new 
physics-informed meta-learning framework to predict tool 
wear under varying wear rates and validated the effectiveness 
of the method presented through a milling machining experi-
ment. Qiang et al. [18] proposed a physics-informed transfer 
learning (PITL) framework to predict tool wear under vari-
able working conditions and the experiment results showed 
highly prediction accuracy under variable conditions. The 
data-driven method is to collect tool wear status information 
through a variety of sensors and then use machine learning 
or deep learning methods to build a prediction model using 
the data after information processing and recognition [19]. 
Tool wear prediction is an important research field in intel-
ligent manufacturing. Data-driven method is recognized as 
an effective means to achieve accurate prediction of tool 
wear, which provides a significant research direction for on-
line tool wear monitoring problems [20, 21]. Wei et al. [22] 
established a genetic algorithm (GA-BP) neural network 
prediction model to predict the tool wear condition during 
high-speed milling and the relative error is within 5%. Chen 
et al. [23] proposed a tool wear prediction method based on 
back propagation neural network and compared the results 
with a long short-term memory (LSTM) model. The results 

show that the error was reduced by 29% and 25% as the input 
eigenvalues increased, respectively.

Bidirectional long short-term memory neural network 
(BiLSTM) is one of the data-driven tool wear prediction 
methods. As a derivative model of recurrent neural network 
(RNN), it inherits the advantages of RNN that can effec-
tively represent the characteristics of time series data and 
avoids the problem that RNN is prone to produce gradient 
disappearance [24]. Tool wear is accumulated with the pro-
cessing time, so it is necessary to mine the deep time series 
characteristics of data for tool wear prediction. Wu et al. [25] 
proposed a tool wear prediction model based on singular 
value decomposition and BiLSTM with cutting force signal. 
Ma et al. [26] established a wear prediction model based 
on convolutional BiLSTM and convolutional bidirectional 
gated recurrent unit using cutting force signals.

It is challenging to integrate multi-source heterogene-
ous data to characterize wear characteristics and predict 
micro-grinding wear, such as multi-source heterogeneous 
data fusion, mixed prediction model construction, and small 
sample cost prediction. To deal with the challenge, a novel 
prediction method based on BiLSTM is proposed to charac-
terize and predict the wear combining AE signals and visual 
images using such data. The micro-channel grinding experi-
ments are conducted by the electroplated diamond micro-
grinding tool. The prediction results of BiLSTM model are 
compared with the experimental test results to verify the 
feasibility of BiSLTM model. Two derived models of GA-
BiLSTM and LSTM are compared to verify the accuracy of 
BiLSTM model. Two machine learning models of BP and 
GA-BP are compared to verify the stability and superiority 
of BiLSTM model. Several abbreviations and notations are 
used in the paper and are described separately in Table 1.

2 � Tool wear prediction model

2.1 � Principle of signal characterization

The state of cutting tools in actual machining process is 
influenced by various factors. The machine vision technol-
ogy is widely used to observe the morphology and features 
of micro-grinding tool nowadays, which has the character-
istics of high accuracy and convenience [27]. Moreover, 
the morphology of micro-grinding tool is shown in Fig. 1a. 
According to the wear form of micro-grinding tools and the 
changes in morphology, the wear situation can be directly 
characterized by the loss of the cross-sectional area of the 
micro-grinding head. The loss of the cross-sectional area 
of the micro-grinding head refers to the difference in the 
cross-sectional area of the grinding head before and after 
grinding, as shown in Fig. 1b. The calculation formula is as 
shown in Eq. (1).
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where the C0 represents the edge contour before micro-
grinding. The Ci represents the edge contour after machin-
ing i channel micro-grooves. The φi represents the cross-
sectional area loss of the grinding head after machining i 
channel micro-grooves. The coordinate unit is μm2.

Another way to characterize the wear of micro-grinding 
tool is AE signal. The AE signals during the grinding pro-
cess originate from the interaction between abrasive parti-
cles and materials and the crystal structure during material 

(1)�i = C0 − Ci
removal, which rapidly release energy, generating transient 
elastic waves that manifest as AE signals [28]. Due to the 
differences in AE sources, signal time and frequency domain 
analysis can be used to distinguish different material removal 
behaviors. The process of AE detection is shown in Fig. 2. 
Firstly, the AE sensor is attached to the unmachined surface, 
which is used to convert the AE signal generated during the 
processing into a voltage signal. Secondly, the voltage sig-
nal can be amplified, filtered, and A/D converted through a 
preamplifier. Therefore, the AE signal can be quantitatively 
analyzed by the data acquisition system to derive the actual 

Table 1   List of used 
abbreviations and notations

Abbreviation/notation Meaning of abbreviation/notation

BiLSTM Bidirectional long short-term memory neural network
LSTM Long short-term memory neural network
GA-BiLSTM Genetic algorithm optimized bidirectional long short-term 

memory neural network
BP Back propagation neural network
GA-BP Genetic algorithm optimized back propagation neural network
AE Acoustic emission
PITL Physics-informed transfer learning framework
RNN Recurrent neural network
C0 The edge contour before micro grinding
Ci The edge contour after machining
i The number of machining channel micro grooves
φi The cross-sectional area loss of the grinding head
h(t) The output of the network at time t
X(t) The input of the network at time t
ω The corresponding parameters of network nodes
g(t) The output network calculated at time t
Wf, Wi, WC, WO
bf, bi, bC, bO

The parameters in LSTM structure

n The number of hidden neurons
T The length of real-time sequential data
N The sample size
Xk The input in group k of BiLSTM model
Yk The output in group k of BiLSTM model
l The tool hanging length
v The spindle speed
f The feed rate
L The micro groove length
d The micro groove depth

Fig. 1   Wear characterization 
method for micro-grinding tool. 
a The morphology of micro-
grinding tool. b The measuring 
method for the loss of the cross-
sectional area
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processing status based on the relevant feature parameters. 
It was found that there is a certain mapping relationship 
between the characteristics of AE signals and the external 
processing environment and the inherent properties of the 
workpiece itself [29]. However, the AE signals collected are 
influenced by external environment and the inherent charac-
teristics of the machine tool, and the signal energy fluctuates 
up and down through spectrum analysis [30]. Therefore, it 
is more reasonable for characterizing the wear of micro-
grinding tool using energy ratio instead of energy value.

The experimental group with a micro-groove depth of 
200 μm was taken as an example. The signal time domain 
characteristics are extracted by root mean square method and 
the frequency bands are divided by 4-layer wavelet packet 
decomposition and fast Fourier transform. The signal in the 
sampling interval is reconstructed through these signal pro-
cessing methods, and the energy proportion diagram was 
drawn for each frequency band through energy proportion 
calculation, as shown in Fig. 3a. It can be seen that the signal 
energy in the sampling interval mainly comes from the low 

and medium frequency bands and they show a negative cor-
relation relationship. With the grinding length accumulating, 
the total amount of material removal increases, the propor-
tion of medium frequency band energy continuously increases 
and tends to stabilize, and the energy of low frequency band 
continuously decreases and tends to stabilize. Compare the 
proportion of medium frequency band energy with the cor-
responding radial wear of the micro-grinding tool, as shown 
in Fig. 3b. There is a positive correlation between the propor-
tion of medium frequency band energy and the corresponding 
radial wear of the micro-grinding tool. Therefore, the propor-
tion of medium frequency band energy is the most suitable 
characterization of micro-grinding tool wear.

2.2 � Model design

Long short-term memory neural network (LSTM) is an 
improved model of RNN, which has the same input and out-
put as RNN [31]. LSTM has the ability to extract temporal 
features and expand them according to time dimensions [32], 
as shown in Eq. (2).

where the h(t) represents the output of the network at time t, 
which corresponds to the signal features extracted at time t. 
The X(t) represents the input of the network at time t, which 
corresponds to the signal data collected at the time t. The ω 
Represents the corresponding parameters of network nodes. 
The function g(t) represents the output network calculated at 
time t based on all historical time series signals.

As shown in Fig. 4, the structure of a single LSTM 
unit body includes a forgetting gate, an input gate, and an 

(2)
h(t) = f

(

h(t−1),X(t)
;�
)

= f
(

f
(

h(t−2),X(t−1);�
)

,X(t)
;�
)

= ⋯ = g(t)
(

X(t)
,X(t−1),X(t−2),⋯ ,X(2)

,X(1)
)

Fig. 2   The process of AE signal detection [30]

Fig. 3   Signal energy analysis in the sampling interval. a The energy proportion diagram for each frequency band. b The proportion of medium 
frequency band energy with the corresponding radial wear of the micro-grinding tool
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output gate. The input of the unit body includes the input 
of the current time and the output of the previous time unit 
body and the output of the unit body serves as the input 
of the next unit body. The specific calculation process is 
as shown in Eq. (3).

where the state of the unit C(t) is obtained by updating the 
forgetting gate ft, input gate i, output gate Ot, the previous 
hidden layer state h(t − 1), and the previous unit state C(t − 1) 
at the moment of t. The hidden layer state in the unit h(t) is 
updated based on the signal data input at the moment of t 
and the unit state C(t). The parameters Wf, Wi, WC, WO and 
bf, bi, bC, bO are obtained through model training and shared 
at all times. The n represents the number of hidden neurons. 
The T represents the time step, which is the length of real-
time sequential data. The “⊙” represents the accumulation 
by element. The σ represents sigmoid activation function and 
the tanh represents the tanh activation function.

In response to the problem of insufficient early feature 
memory ability and difficulty in deep mining the temporal 
features of the entire network in LSTM when learning tem-
poral features, BiLSTM is proposed to enhance the repre-
sentation ability of data features and improve the accuracy 
of wear prediction. BiLSTM consists of two independent 
LSTM layers, which input temporal feature data in for-
ward and reverse directions for feature extraction. The two 

(3)
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output feature vectors are concatenated as the final output 
to achieve feature representation. The parameters of the 
two LSTM layers are independent of each other and the 
specific network structure is as shown in Fig. 5. In the pre-
diction model, N = 90, which represents the sample size. 
Xk represents that the input in group k is a 4-dimensional 
feature vector composed of processing variables includ-
ing micro-groove depth (μm) and micro-groove length 
(mm), AE signals including the proportion of medium 
frequency band energy (%) and visual images including 
the cross-sectional area of the micro-grinding head (μm2). 
Yk represents that the output in group k is the loss of cross-
sectional area of the micro-grinding head (μm2).

In order to reduce the interference of singular sample data 
on training, accelerate the training and convergence speed 
of the model, and improve the accuracy of the model, nor-
malization process is required to limit the data to the range 
of [0,1]. The prediction model uses Adam algorithm to mini-
mize the loss function, as shown in Eq. (4).

In Eq. (4), ypre
k

 represents the predicted wear value, yk 
represents the actual wear value, n represents the data vol-
ume of training samples, and Eloss represents the loss of 
function. Evaluate the performance of the model by cal-
culating the root mean squared error (RMSE) and deter-
mination coefficient R2, as shown in Eqs. (5) and (6). The 
hyperparameters are selected according to the RMSE after 
training and the final optimal hyperparameters are shown 
in Table 2.

(4)Eloss =
1

n

n
∑

k−1

(

y
pre

k
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)2

(5)RMSE =

√

√

√

√

1

n

n
∑

k=1

(y
pre

k
− yk)

2

Fig. 4   Schematic diagram of LSTM unit structure

Fig. 5   Schematic diagram of BiLSTM unit structure
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2.3 � Comparative model

The prediction performance of the micro-grinding wear pre-
diction model is related to the fitness between the depth of 
the model architecture and the sample data volume [33]. To 
prove the accuracy of the BiLSTM model by comparing the 
prediction accuracy of different models with different depth 
of model architecture, two derived models of GA-BiLSTM 
and LSTM are constructed. To increase the ability of fea-
ture signal extraction and representation, GA-BiLSTM intro-
duces more algorithm structures to deepen the model archi-
tecture. To adapt to feature extraction and representation 
of smaller sample data, LSTM applies shallower network 
structures to simplify the model architecture. The prediction 
results are compared with the BiLSTM model.

In data-driven tool wear prediction methods, traditional 
machine learning methods often show better results in small 
sample data prediction than deep learning methods [34]. In 
traditional machine learning algorithms, BP has good adap-
tive feature extraction ability and nonlinear mapping ability 
[35]. Therefore, two wear prediction models based on BP 
and GA-BP were constructed for prediction and comparison. 
The BP structure is as shown in Fig. 6. The ωij is the weight 
value of the connection between the input layer unit and the 

(6)R2 =

n
∑

k−1

(

y
pre

k
− y

)2
∕

n
∑

k−1

(

yk − y
pre

k

)2

hidden layer unit. The νj is the weight value of the connec-
tion between the hidden layer unit and the output layer unit. 
The specific calculation process is as shown in Eq. (7).

where the aj is the threshold between input layer and hidden 
layer units and the b is the threshold between hidden layer 
and output layer units. The xi(k) represents the input of the 
model. The Y(k) represents the predicted output value. The 
T(k) represents the expected output value.

(7)
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�j(k) = Y(k) (1 − Y(k)) �(k)vj

Table 2   The final optimal 
hyperparameters of BiLSTM

Hyperparameters Value

NumHiddenUnits 110
MaxEpochs 2750
InputSize 4
FullyConnectedLayer 1
LearnRate 0.01

Fig. 6   Schematic diagram of BP 
structure

Fig. 7   Schematic flowchart of GA-BP structure
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The schematic flowchart of GA-BP structure is as shown in 
Fig. 7. After assigning the initial weight value of the connec-
tion to the model, genetic algorithm is used for fitness calcu-
lation, selection, and variation. When the iteratively updated 
weight value reaches feasible, the optimal weight value is 
reversely assigned to the model to achieve model optimization.

3 � Experiment verification

3.1 � Design of micro‑grinding experiment

The micro-grinding experiment is conducted by the electro-
plated diamond micro-grinding tool to verify the feasibility and 
accuracy of the models proposed. The micro-grinding platform 
used in the experiment is modified from the MK2945C CNC 
coordinate grinder, equipped with a micro-grinding tool online 
detection system and AE detection system, as shown in Fig. 8. 
The micro-grinding tool online detection system includes 
camera with a resolution of 20 million pixels named Dahua 
A3B00MG000 CMOS, fixed magnification fixed focal distance 
telephoto lens named WWK40-100-111 and LED backlight 
board with model named CF-200-W. The AE detection system 
includes high sensitivity resonant AE sensor with model named 
R6α, preamplifier model named 2/4/6 with an amplification 
gain of 40 dB, and PCI-2 AE acquisition system.

Reasonable processing parameters can effectively reduce 
the risk of the processing process, which is conducive to 

detect feature signals and study their characterization rela-
tionships. The parameters used in the micro-grinding experi-
ment are shown in Table 3. A total of six micro-grooves are 
processed with three sampling intervals set at the beginning, 
middle, and end of each micro groove, as shown in Fig. 9. 
The lengths corresponding to the head of the micro-groove 
are, respectively, 2 mm, 4 mm, and 6 mm. The experimental 
group with the same micro-groove depth corresponds to 18 
sampling intervals, which is 18 sample data groups and five 
experimental groups contain a total of 90 sampling intervals, 
which is 90 sample data groups. The first 80% of the 90 data 
groups are divided as training sets to train the model and 
the last 20% are divided as test sets to test the predictive 
performance of the model.

3.2 � Results of prediction models

The test data is loaded into the BiLSTM, GA-BiLSTM, 
LSTM, BP, and GA-BP models and the test results of pre-
diction models are shown in Fig. 10a–e, respectively. In 

Fig. 8   The micro-grinding 
platform

Table 3   The parameters in experiment

Parameters Value

Tool hanging length (l, mm) 15
Spindle speed (v, r/min) 60,000
Feed rate (f, mm/min) 1
Micro-groove length (L, mm) 8
Micro-groove depth (d, μm) 50, 80, 

100, 
150, 200

Fig. 9   The schematic diagram of sampling intervals for AE signals
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Fig. 10a, the predicted value of BiLSTM model is basically 
consistent with the real wear value. Most data groups show 
high prediction accuracy. Nearly half of the data prediction 
relative error is within 5% and only relative error of group 14 
is about 20%. By averaging the relative errors of all groups, 
the relative error predicted by the model is 7.92%, indicat-
ing the prediction accuracy of BiLSTM model is 92.08%. 
In Fig. 10b, the prediction trend of GA-BiLSTM prediction 
model is in good agreement with the actual change trend. 
However, prediction results in some data groups have sig-
nificant deviations, such as the relative errors of the 1st, 5th, 

10th, 11th, and 15th groups exceeding 20%. By averaging the 
relative errors of all groups, the relative error predicted by 
the model is 12.8%, which means the prediction accuracy of 
the model is 87.2%. In Fig. 10c, the relative error predicted 
of LSTM model is 11.42% by averaging the relative errors 
of all groups, which means the prediction accuracy of the 
model is 88.58%.

In Fig. 10d, the prediction trend of BP prediction model 
is in good agreement with the actual change trend. The pre-
dicted values of the model and the actual wear value are in 
good agreement when the actual wear value is large, but there 

Fig. 10   The test results of prediction models. a BiLSTM; b GA-BiLSTM; c LSTM; d BP; e GA-BP
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is a significant error when the actual wear value is low. For 
example, the deviation between the predicted value and the 
actual value of the 4th, 5th, 10th, and 12th groups exceeds 
30%, and even the relative prediction error of the 10th group 
is as high as 60.25%. By averaging the relative errors of all 
sample data, the relative error predicted by the model is 
15.63%, which means the prediction accuracy of the model 
is 84.37%. In Fig. 10e, the prediction trend of the GA-BP 
neural network micro-grinding tool wear prediction model 
is in good agreement with the actual change trend. However, 
some data prediction results have significant deviations, such 
as the relative errors of the 4th, 10th, and 12th groups exceed-
ing 30%, and the prediction result of the 10th group of data is 
even as high as 74.03%, which is consistent with the sample 
data group corresponding to the large error of the BP neural 
network. The relative error of the model prediction is 14.2%, 
which means the prediction accuracy of the model is 85.8%.

3.3 � Comparison and analysis

In order to more intuitively compare the differences in pre-
dictive performance between models, the comparison fig-
ures of relative error for prediction models (BiLSTM, GA-
BiLSTM, LSTM, BP, and GA-BP models) are plotted to 
compare the prediction accuracy of different models with 
different depths of model architecture. In order to compare 
differences of the prediction accuracy among five models 
more intuitively, the prediction results were plotted every 
four groups as a rank and a total of four relative error com-
parison figures (Fig. 11a–d) were drawn.

BiLSTM model has a lower relative error in the pre-
dicted values corresponding to most samples and the rela-
tive error fluctuation is smaller than the other two models. 
GA BiLSTM and LSTM models have relatively high rela-
tive errors in 1st, 5th, 10th, 11th, 12th, and 15th groups, 
while the BiLSTM model has relatively high relative error 
in 14th group. The relatively large prediction error in the 
1st group of samples is due to the special memory struc-
ture of the model (Fig. 11a). As the output of the current 
unit will affect the output of the next unit, while the 1st 
group of samples is not affected by this, which means that 
they do not have memory ability and cannot mine tempo-
ral features of the data, there is a certain error. The large 
prediction errors of the remaining samples are caused by 
the randomness of the deep learning model. In addition, 
it can be seen that the prediction errors of BP neural net-
work and GA-BP neural network fluctuate greatly, show-
ing extremely high prediction accuracy in some samples 
and significant mismeasurement errors in some samples, 
especially the relative error in 10th group (Fig. 11c) is 
close to 80%.

Although, the BiLSTM model do not achieve extremely 
high prediction accuracy in individual samples, the overall 
relative error fluctuation is small and stable and the aver-
age prediction accuracy is higher than other four models. 
In conclusion, the BiLSTM model has the highest fitness 
with the small sample multi-source heterogeneous data 
and the results prove the accuracy, stability, and superior-
ity of the wear prediction model of micro-grinding tool 
based on the BiLSTM.

Fig. 11   The comparison figures 
of relative error for prediction 
models. a 1st–4th groups; b 
5th–8th groups; c 9th–12th 
groups; d 13th–16th groups
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4 � Conclusions

In this work, the BiLSTM prediction model was constructed to 
integrate small-sample and multi-source heterogeneous data. 
The micro-grinding tool wear is characterized and predicted.

The calculated and experimental results show that the pre-
diction accuracy of BiLSTM model is 92.08%, which proves 
the feasibility of the prediction model. In comparison among 
the GA-BiLSTM, LSTM, and BiLSTM models, the BiLSTM 
model has the highest prediction accuracy, which indicates that 
the model has the strongest fitness of architectural depth of 
model and sample data. In comparison among the BP, GA-BP, 
and BiLSTM models, the BiLSTM model has the highest pre-
diction accuracy and the smallest relative error fluctuation, 
which proves the stability and superiority of the BiLSTM 
model compared with the machine learning methods.

The BiLSTM model proposed in this paper has important 
scientific significance for the wear characterization and pre-
diction of micro-grinding tools. On the one hand, it is able to 
guide the replacement strategy so that the processing quality 
will be ensured and the waste will be reduced. On the other 
hand, it can provide more solutions for sustainable manufac-
turing and provide theoretical basis for independent decision-
making in precision intelligent manufacturing.
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