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Abstract
Singularities in five-axismachining are a series of positionswhere the exactmotion of the rotary axis becomes unpredictable or
incalculable. In the neighborhood of a singular point, machiningmay cause unstablemovements of drive axes and deteriorative
dynamic performance ofmachine tools. In this paper, we proposed a closed-loop inverse kinematicsmethod to solve accurately
the five-axis joints’ parameters around singular points. To achieve this purpose, the damped Jacobian pseudoinverse algorithm
is introduced and the machine joints’ velocities are calculated directly by the velocities of the five-axis cut points. The joints
are then obtained by integrating the corresponding velocities. Furthermore, a feedback control method is applied to reduce the
integrating error. In the end, simulations and experiments’ results demonstrated the effectiveness of the closed-loop inverse
kinematics method.

Keywords Five-axis CNC machining · Singularity points · Inverse kinematics

1 Introduction

Five-axis machining tools have the ability to combine posi-
tion and orientation and complete machining without the
repositioning process and have been widely used in machin-
ing dies, molds, and impellers. Some workpieces with a
complex surface, such as a turbine blade, can only be
manufactured by five-axis machining tools. The primary
function of any five-axis CNC program is to transform cut-
ter location data into machine commands (G-code), and
the essential function is the inverse kinematics function
(Fig. 1). Comparedwith three-axis machining tools, five-axis
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machining tools have two rotation axis, and the inverse kine-
matics of five-axis machining tools is a nonlinear function,
which transforms the CL data (x, y, z, oi , o j , ok)T into the
machine commands of five-axis as (Px , Py, Pz, θA, θC ) or
(Px , Py, Pz, θA, θB) or (Px , Py, Pz, θB, θC ). The notation of
the rotation axes is either (θA, θC ) or (θA, θB) or (θB, θC ) that
depends on the structure of the five-axis machine.

While the orientation of the rotation axis is parallel to the
tool direction, the exact solution of the inverse kinematics
equation does not exist. Then the rotary axis will be unpre-
dictable andmay rotate 180◦ abruptly. These deadly positions
are called singularities. Machining near such singularities
may cause unstable movements of the drive axis and deterio-
rate the dynamic performance ofmachine tools. Furthermore,
an abrupt change of the rotary axis will bring shock to the
servomotor, lower themachining precision and even damage
the machined quality. Therefore, the detection and avoidance
of singularity should be conducted in five-axis machining.

To avoid singularities, there are currently four categories
of methods, the locally deforming method [1–6] the forbid-
den region and acceptable region-based method [7–9], the
workpiece position reorientation method [10–13] and the
kinematics-based method [14–16].

The locally deforming method is based on the deforming
of the tool path to devoid of the singularity. Affouard et al.
[1] presented the concept of “singular cone” and use B-spline
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Fig. 1 Forward and inverse kinematics of five-axis machines

curves to describe tool trajectory. Singularity was detected
and avoided in the studies of Yang and Altintas [2] based on
the general kinematic model with screw theory and singular-
ity was eliminated by modifying the B-spline control points.
Wang et al. [3] projected the three dimension “singular cone”
into two-dimension space, and the singularity phenomenon
is avoided by changing the B-spline control points with an
optimal method. The same method was also used for singu-
larity avoidance of a 5-axis hybrid robot [4]. In this study,
the sudden change of C-type rotation was eliminated and
the tracking error could also be limited. Sun et al. [5] pro-
posed a local gouge-free tool path modification method for
singularity avoidance with consideration of compliant axes
kinematics, and they also considered the singular phenomena
in robotic machining [6].

The forbidden region method is mainly based on trans-
lating orientation polyline to avoid the singularity. Lin et al.
[7] projected the orientation vector into the C-space, and the
singularities are detected by contact checking between the
orientation polyline and the tapper circle. Lin et al. [8, 9] also
considered the surface texture in avoiding singularity, and the
acceptable-texture orientation region concept (ATOR) was
proposed.

The workpiece position reorientation method is based on
resetting the workpiece orientation to make no orientation
vertical and thus avoids the singularity. Cripps et al. [10]
firstly analyzed the cause of singularity, and they proposed
a position reorientation method to avoid the singularity. By
analyzing the forces transmitted to the rotary drives as torque
disturbances, Yang et al. [11] identified the workpiece loca-
tion on the rotary to minimize tracking errors in five-axis
machining. With the analysis of the machine’s kinematic
behavior, Pessoles et al. [12] designed the workpiece reori-
entation method to minimize the overall distance traveled
by the rotary axes and avoided singularity. Recently, Gao et
al. [13] developed a workpiece setup optimization method,
which not only considered the singularity avoidance require-
ment but also considered the five-axis kinematic stability.

Kinematic based method is different from the previous
method and avoids singularity by the optimization of inverse
kinematics. Munlin et al. [14] considered the kinematic error
near singular points, by the optimization of the required rota-
tions on the inverse kinematics equation, the singularity was
avoided. Shen et al. [15] proposed a double solutions-based
optimisation method. The singularity was determined during

inverse kinematics, which chooses the appropriate solution
set within rotary ranges and avoided the disturbance of the
rotary axis near singular points. My and Bohez [16] devel-
oped the five-axis inverse kinematic method near singular
points, with the feedback control method, the rotary axis was
directly evaluated.

There are also some other methods to avoid singularity.
Sørby [17] proposed the kinematics of a five-axis machine
with non-orthogonal rotary axes. Gray [18] proposed a 31

2
1
2

axismachiningmethod. In 31
2
1
2 axismachining, only its three

linear axes were moved and the two rotary axes were locked,
and had the ability to pass the singular region. Grandguil-
laume et al. [19] proposed a tool path patching strategy
method, which avoids the singular by modifying the tool
axes orientation while respecting maximum velocity, accel-
eration, and jerk of the machine tools.

However,most of thementioned solutions are based on the
geometric approximation and regeneration of the tool path
near the singular points. In this paper, a robust algorithm is
designated for computing the tool path across singular points,
and the singularity problems are changed to a matrix ill-
conditioned problem. While the Jacobian matrix of five-axis
kinematics is ill-conditioned, a small disturbance of the ori-
entation vector may cause a huge change in the rotary axes
in a five-axis machine, which means a small cutter point’s
velocity may cause a huge rotary velocity. To overcome the
ill-conditioned problem of the Jacobian matrix, the damp-
ing least-square Jacobian method is used in this paper. Then
the five-axis joints’ positions (three linear joints and two
rotary joints) can be calculated directly by integrating the
joints’ velocities numerically. When integrating the joints’
velocities, a feedback control system is applied to limit the
integration error.

The remainder of this paper is organized as follows. In
Sect. 2, kinematic singularity and inverse kinematics of the
five-axis CNC machine are presented. In Sect. 3, damp-
ing least-square Jacobian and feedback control methods are
described detailed. Simulation and experimental results are
given in Sect. 4. Section5 provides some concluding remarks
and future works.

2 Kinematic singularity of 5-axis CNC
machine

The tool paths generated by CAM software are calculated
basing the input on the part surface models, the surface qual-
ity required, the cutter definition, the tool path pattern, etc.
[16] The output tool paths are defined in a workpiece coordi-
nate system. However, the machine tool is controlled by the
motor in each axes, which is based on the machine tool coor-
dinate. The two coordinates are connected via a kinematic
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chain of transformation. In this paper, an A-C rotary type
five-axis machine tool is used to illustrate the five-axis kine-
matics. The A-C type five-axis has a rotary table that rotates
about the vertical Z-axes (C-rotation) and a tilting table that
turns about the X-axis (A-rotation). Usually, the workpiece
is mounted on the rotary table.

The tool path is defined as a piecewise curve passing CL
points (cutter location points), which are generated by CAM
system, and defined in standardised format (x, y, z, i, j, k),
where (x, y, z) is tool tip position and (i, j, k) is the orienta-
tion vector. The transform function between axes parameters
and CL points coordinates can be found

⎡
⎢⎢⎢⎢⎢⎢⎣

x
y
z
i
j
k

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

CC Px + SCCAPy + SC SAPz + Lx

−SC Px + CCCAPy + CC SAPz + Ly

−SAPy + CAPz + Lz

SC SA
CC SA
CA

⎤
⎥⎥⎥⎥⎥⎥⎦

(1)

In the above equation, (Lx , Ly, Lz) defines the offsets of
the pivot point of the two rotary axes A and C relative to
the workpiece coordinate system origin and it is a constant
vector. (Px , Py, Pz) represents thefive-axis joint coordinates.
A,C are the two rotary coordinates and SA, SC ,CC ,CA rep-
resent sin(A), sin(C), cos(C), cos(A) respectively.

According to equation Eq.1, the rotary axis parameters A
and C can be calculated directly:

A = cos−1(k) (0 ≤ A ≤ π)

C = atan2(i, j) (−π < C ≤ π)
(2)

Combine equation Eq.2 and Eq.1, the prismatic axis param-
eters (Px , Py, Pz) can be calculated as follows:

Px = CC (x − Lx ) − SC (y − Ly)

Py = SCCA(x − Lx ) + CCCA(y − Ly) − SA(z − Lz)

Pz = SC SA(x − Lx ) + CC SA(y − Ly) + CA(z − Lz)

(3)

As k = ±√
1 − i2 − j2, the tool path can be represented

by r = (x, y, z, i, j) ∈ W 5 ⊂ R
5 in work space. We

denote q = [q1, q2, q3, q4, q5]T ∈ Q5 ⊂ R
5 as an axis

variable in joint (axes) space, where q1, q2, q3, q4, q5 rep-
resent Px , Py, Pz, A,C respectively. The forward kinematic
function of five-axis tool machine can be written as follows:

r = f (q) =

⎡
⎢⎢⎢⎢⎣

Cq5q1 + Sq5Cq4q2 + Sq5 Sq4q3 + Lx

−Sq5q1 + Cq5Cq4q2 + Cq5 Sq4q3 + Ly

−Sq4q2 + Cq4q3 + Lz

Sq5 Sq4
Cq5Sq4

⎤
⎥⎥⎥⎥⎦

,

(4)

where f : Q5 → W 5 is a nonlinear map. The kinematic
differential equation can be obtained as follows:

ṙ = J (q)q̇, (5)

where J (q) = ∂ f (q)
∂q ∈ R

5×5 is the Jacobian matrix. Equa-
tion5 represents the relationship between the joint velocities
and the cutter point’s velocities.

According to the equation Eq.4 and Eq.5, we can also
calculate the joint variable q from r and joint velocity q̇
from cutter point velocity ṙ .

q = f −1(r)

q̇ = J−1(q)ṙ
(6)

For both equation Eq.4 and equation Eq.5, the condition of
inverse function consistence is as follows:

Det(J (q)) �= 0,

therefore, the singularity position can be determined by solv-
ing the equation Det(J (q)) = 0. The Jacobian matrix in
equation Eq.5 can be calculated directly from equation Eq.4:

J (q) =

⎡
⎢⎢⎢⎢⎣

Cq5 Sq5Cq4 Sq5 Sq4 q3Cq4 Sq5 − q2Sq4 Sq5 q2Cq4Cq5 − q1Sq5 + q3Cq5 Sq4
−Sq5 Cq4Cq5 Cq5 Sq4 q3Cq4Cq5 − q2Cq5 Sq4 −q1Cq5 − q2Cq4 Sq5 − q3Sq4 Sq5
0 −Sq4 Cq4 −q2Cq4 − q3Sq4 0
0 0 0 Cq4 Sq5 Cq5 Sq4
0 0 0 Cq4Cq5 −Sq4 Sq5

⎤
⎥⎥⎥⎥⎦

(7)

According to the above equationEq.7,weget the determinate
of J (q):

Det(J (q)) = −Cq4 Sq4 . (8)

Usually the angle range of q4, q5 is: q4 ∈ [0, π ], q5 ∈
(−π, π), and the singular points are the points which cor-
responding to q4 = 0. In those points r = (r1, r2, r3, 0, 0),
which corresponds to the CL points (r1, r2, r3, 0, 0, 1) in
CAM system.

3 Singularity avoidancemethod

3.1 Inverse kinematics at singularity

Consider curve r(t) that passes through all of the CL points,
this curve is called the desired trajectory when cutting across
the singular points. While the Det(J (q)) = 0, the analytic
solution for q = f −1(r) is not defined, and joint variable q
cannot be computed according to the given CL points.
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It should be noticed that if the joint velocity q̇ can be cal-
culated, the joint variable q can be calculated by integrating
numerically. If the q̇ can be determined more conveniently
than q(t), then the inverse kinematics could consider q̇(t) as
known, instead of q(t).

To solve the equation Eq.6, an appropriate inverse of the
Jacobian matrix must be applied. The Jacobian Pseudoin-
verse (JP) algorithm [20] is widely used and a generalized
inverse for the Jacobian matrix can be defined as follows:

J+ = J T (J J T )
−1

.

Then the joint velocity vector can be calculated by

q̇ = J+(q)ṙ (9)

However,when afive-axismachine tool reaches a singularity,
the pseudoinverse matrix may have too large condition val-
ues. By computing the Singular Value Composition (SVD)
of Jacobian matrix J :

J = U�V T =
n∑

i=1

σiuivTi , (10)

where σi is the singular value of J+, σ1 ≥ σ2 ≥ · · · ≥ σn ≥
0, ui , vi is the ith column of the matrix U and V . By the
equation Eq.10, the condition number of J is κ(J ) = σ1

σn
. As

U and V are orthogonal matrices, then the pseudoinverse of
J is

J+ = V�+UT =
n∑

i=1

1

σi
viuTi , (11)

And then we can find out that the condition number of the
pseudoinverse matrix J+ is κ(J+) = σ1

σn
, which tends to be

infinity at singularity points.
To avoid the big condition number near singular points,

the Jacobian Damping (JD) pseudoinverse was proposed in
[21–23]:

J+
D = (J T J + λ2 I )

−1
J T =

n∑
i=1

σi

σi 2 + λ2
viuTi , (12)

where λ ≥ 0 is the damping factor, I is the identity matrix.
Then the solution corresponds to the JD is

q̇ = J+
D ṙ = (J T J + λ2 I )

−1
J T ṙ. (13)

Notice that, if λ = 0, then J+
D = J+ and it is ill-

conditioned near the singularity. It is important to point out

that Eq. equationJD satisfies the following equation:

min
q̇

{
‖ṙ − J q̇‖2 + λ2‖q̇‖2

}
(14)

Since the sum in equation Eq. optimal can be written as
follows:

∥∥∥∥
(
J
λI

)
q̇ −

(
ṙ
0

)∥∥∥∥
2

(15)

The unique minimizer q̇ is given by the solution of normal
equation:

(J T J + λ2 I )q̇ = J T ṙ (16)

It can be easily shown that the solution to equation Eq.16
can be formally written as follows:

q̇ = (J T J + λ2 I )
−1

J T ṙ. (17)

For a five-axis machine tool, the velocity of the C-axes
may become very large. In Eq.14, λ is a tradeoff between
least-square condition and the least normcondition. InEq.14,
small values of λ will cause a high accuracy solution but low
robustness in the neighbor of singularity, while high values
of λ will result in low accuracy. It is essential to choose a
suitable value for λ.

It is noticed that while the CL point is not in the singular
region, the normal inverse can be used directly. A singular
region can be defined and the DJ is applied only to the CL
point entering the region. To this purpose, an adapted factor
damped Jacobian method is proposed in [23]:

λ2 =
{
0 σn ≥ ε(
1 − (

σn
ε

)2)
λ2max σn < ε

(18)

where σn is the minimum singular value of the Jacobian
matrix, ε is the width of the singular region, and λmax is
the maximum allowed damping factor.

3.2 Integrator method

If the initial joint value q(0) is known, the joint position could
be computed by integrating velocity over time:

q(t) = q(0) +
∫ t

0
q̇(t)dt (19)

The integration can be calculated in discrete time by resorting
to numerical techniques. The simplest method is based on the
Euler integrator method. If the joint positions and velocities
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at time tk are known, the joint position at time tk+1 = tk +
t
can be computed as follows:

qk+1 = qk + q̇(tk)
t . (20)

However, the q(t) obtained by equation Eq.20 could not
satisfy equation Eq.4 due to the accumulated error and the
integrator error may exceed the preset tolerance. To over-
come the drawback, a feedback correction term [24] can be
introduced by replacing the end-effector velocity by

ṙd + Ke, (21)

where ṙd denotes the desired velocity, K is a positive definite
matrix, usually a diagonal 5 × 5 matrix, and e represents
the error between the desired and the evaluated CL point:
e(t) = rd(t) − f (q(t)). According to the above analysis,
the inverse kinematics of the Five-axis machine tools can be
written by the equation:

{
q (t) = q (0) + ∫ t

0q̇ (t) dt

q̇ (t) = (
J T J + λ2 I

)−1
J T (ṙd + Ke)

(22)

The equation Eq.22 can be converted to discrete form:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

e(ti ) = rd (ti ) − f (q(ti ))

q̇(ti ) = [J T (q(ti ))J (q(ti )) + λ2(q(ti ))I ]−1
J T (q(ti ))[ṙd (ti ) + Ke(ti )]

q(ti+1) = q(ti ) + 
t · q̇(ti )

(ti = i

N
,
t = 1

N
, t0 = 0, i = 0, 1, 2, · · · , N )

(23)

The flowchart of the proposed method is shown in Fig. 2
In the equation Eq.23, e(t) = rd(t) − f (q(t)), which

includes both tool tip position error and tool orientation error.
rd(t) is the desired tool position. Slerp is shorthand for spher-
ical linear interpolation. Let p0 and p1 be the first and last
points of the arc, and let t be the parameter, 0 ≤ t ≤ 1. Let
� is the angle of the arc, and cos(�) = p0 · p1, then the
geometric Slerp of the two vectors is as follows:

Slerp(p0, p1; t) = sin[(1 − t)�]
sin(�)

p0 + sin[t�]
sin(�)

p1 (24)

In fact, a Slerp path is a spherical geodesic. AQuaternion can
be used to represent a vector. If we transform normal vectors
p0, p1 to quaternion q0, q1, then the quaternion Slerp of the
two quaternions is as follows:

Slerp(q0, q1; t) = q0(q
−1
0 q1)

t = (q−1
1 q0)

t q0 (25)

In Fig. 2, the quaternion is used to represent tool orienta-
tion. After quaternion Slerp, we use b-spline to interpolate
those discrete quaternions, and evaluates the desired veloci-
ties ṙd(ti ).

On the assumption that J+
D = (J T J + λ2 I )

−1
J T , so J+

D
is square and nonsingular, while equation

q̇(t) = J+
D (ṙd + Ke) (26)

leads to the equivalent linear system

ė + Ke = 0 (27)

Fig. 2 Procedure of the proposed singularity avoidance method and the block scheme corresponding to the feedback control system
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Fig. 3 Inverse kinematic
algorithm with Jacobian
Damping (JD) pseudoinverse

If K is a positive definite (usually diagonal) matrix, the sys-
tem Eq.27 is asymptotically stable. The error trends to zero
with a convergence rate that depends on the eigenvalues of
K . The larger eigenvalues, the faster convergence. However,
since the system is discrete-time system, there will be a limit
for the maximum eigenvalue of K under which asymptotic
stability of the error system is guaranteed. The block scheme
corresponding to the inverse kinematics algorithm in Eq.27
is illustrated in Fig. 3, where block K represents the diagonal
matrix. The block J+

D represents the JD matrix. The block
scheme shows the presence of a string of integrators on the
forward loop, which depends on the discrete Euler integra-
tion method. Further, the feed forward action provided by ṙd
for a time-varying reference ensures that the error is kept to
zero along the whole trajectory. The discrete form of the feed
back control system is the equation Eq.23. For more details,
please refer to [25].

4 Simulation and experimental results

In the following examples, the workpiece models are con-
structed by Siemens NX 12.0 software, and the CL points
and the G-codes are generated by the CAM module in

the Siemens NX system. Before real cutting, VERICUT
software is used to simulate CNC machining. Finally, the
whole machining process is verified by an A-C type five-
axis machine tool.

The proposed method in this paper is a kinematics-based
method. We compared our method with My and Bohez [16]
theoretically. And the inverse kinematics system in [16] is as
follows:

⎧⎪⎨
⎪⎩
q(t) = q(0) +

∫ t

0
q̇(t)dt

q̇(t) = J+(ṙd + Ke),
(28)

where J+ = (J T J )
−1

J . As it is discussed in Sect. 3.1,
the condition number of the pseudoinverse matrix J+ is
κ(J ) = σ1

σn
, which tends to be infinity at singular points, and

it not suit for our experiments. According to the conclusion
in [26], λ should have a high value to avoid the maximum
1
2σ of the condition number at σn = λ, but on the other hand,
λ must also have a very small value to avoid conditioning
tends to infinity as σn decreases. By those reasons, we choose
the adapted factor damped Jacobian method. The maximum
damped factor λmax = 0.001, and it’s an empirical numbers.

Fig. 4 Machining surface in
Siemens NX
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Fig. 5 a CL points file
generated by Siemens NX CAM
systems; b tool paths created by
the CL points file, the red tool
path corresponds to the circled
CL points in (a) and the blue
points are the singular points,
whose orientation is (0, 0, 1)

4.1 Experiment 1

The workpiece is a cylinder with a height of 80mm and a
diameter of 40mmand the origin of theworkpiece coordinate
system is the center of the upper circle of the cylinder, which
is shown in Fig. 4(a). The model is generated by boolean
operation of two cylinders and it is shown in Fig. 4(b).

In this example, the coordinate of the rotary center of the
A-C axis in a 5-axis tool machine is (0, 0,−108). A ball
nose end cutter R2 (radius 2mm) is selected. The feed rate
is constant and it is 250mm/min.

In the Siemens NX CAM systems, the zigzag tool path
pattern is applied and the tool direction parallels the surface
normal. The singular points can be found in the neighbor
of the middle points in each tool path. The CL points are
outputted by the Siemens NX CAM systems, and the CL
points including singular points are detailed in Fig. 5.

Based on the CL points, the tool tip can be computed using
the inverse kinematic method as usual.

The CL points are used to evaluate the 5-axis joint param-
eters, andG-code is created by the result of the postprocessor.

We find that the postprocessor in Siemens NXCAM systems
is based on the inverse kinematic equation (2) and (3).

In the NX CAM generated G-codes, the C rotary axis
changes from 180◦ to 0◦ and then changes to 180◦ from 0◦
and repeat this process. In the actual machine process, the
sudden changes of C-axes cause the machine error, which is
shown in Fig. 6.

The VERICUT software is used to simulate the G-code,
and we find the cut path includes some circles in Fig. 6. The
five-axis machine tool used in this example doesn’t have
the RTCP (Rotation Tool Center Point) function, those cir-
cles are the overcut part, which is caused by the sudden
changes in the C-axis. In Fig. 5(b), there are 25 points on
the selected tool path. B-spline is used to interpolate the
positions coordinate of the tool path and quaternion is used
to represent the orientations, then quaternion slerp (spheri-
cal linear interpolation) is used to interpolate two adjacent
orientations.

In equation Eq.23, the damping factor λ is evaluated
directly by the equation Eq.18. In this equation, ε and λmax

represent the width of the singular region and maximum

Fig. 6 The simulation and real
cut result of the NX CAM
generated G-codes

123

2243The International Journal of Advanced Manufacturing Technology (2023) 128:2237–2249



Fig. 7 The deviation between
the proposed method and the
original 25 CL points when each
adjacent point is divided into 50
segments. a The maximum tool
tip error is 8.8446 × 10−4mm,
the average tool tip error is
2.0449 × 10−4mm; b the
maximum tool orientation error
is 6.2862 × 10−5rad, the
average tool orientation error is
9.6662 × 10−6rad

Fig. 8 The red line is the angle
of the C rotary axis and the blue
line is the angle of the A rotary
axis. The horizontal coordinate
represents the order of CL
points and the vertical
coordinate represents the degree
of the rotary axis

Fig. 9 The blue line is the initial
velocity of the A-C axis, and the
red line is the velocity of the
A-C axis with the proposed
method. The horizontal
coordinate represents the order
of CL points and the vertical
coordinate represents the
angular velocity
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Fig. 10 The simulation and real
cut results of the proposed
method

Fig. 11 Machining surface in
Siemens NX

Fig. 12 a CL points file
generated by Siemens NX CAM
systems; b tool paths created by
the CL points file, the red tool
path corresponds to the circled
CL points in (a) and the blue
points are the singular points,
whose orientation is (0, 0, 1)

Fig. 13 The deviation between
the proposed method and the
original 21 CL points when each
adjacent point is divided into 50
segments. a The maximum tool
tip error is 4.8516 × 10−4mm,
the average tool tip error is
1.9456 × 10−4mm; b the
maximum tool orientation error
is 1.0908 × 10−5rad, the
average tool orientation error is
1.9214 × 10−6rad
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Fig. 14 The deviation between
the proposed method and the
original 21 CL points when each
adjacent point is divided into
100 segments. a The maximum
tool tip error is
1.8669 × 10−4mm, the average
tool tip error is
9.4322 × 10−5mm; b the
maximum tool orientation error
is 6.5500 × 10−5rad, the
average tool orientation error
is1.1011 × 10−6rad

alloweddamping factor respectively.Basedon the paper [26],
we set ε = λmax = 0.001.

In this example, the diagonal matrix K is set to be 200 ∗
diag[1, 1, 1, 4, 4]. The rd(ti ) and ṙd(ti ) are evaluated by B-
spline interpolation and quaternion Slerp.

The tool tip error and tool orientation error compared with
the original 25CLpoints is shown inFig. 7. In Fig. 7, horizon-
tal ordinate t is the parameter of B-spline. In this experiment,
each adjacent point is divided into 50 segments. In Eq.23,
N = 24 × 50 = 1200, 
t = 1

N = 1
1200 and t ∈ [0, 1].

The maximum tool tip error is 8.8446 × 10−4mm and the
maximum tool orientation error is 6.2862×10−5rad, which
is small enough for the real five-axis machine tool.

In this example, each tool path has one singular point. The
proposed method can also be used for all tool paths, and the
A-C values can be optimized globally.

In Fig. 8(a), the C axis changes suddenly in each singular
point, while in Fig. 8(c), the C axis almost keeps constant. By

comparing Fig. 8(b) and Fig. 8(d), it is easy to find that func-
tion A-C axis changes smoothly when crossing the singular
point.

The velocity of the A-C axis after optimization is shown
in Fig. 9. In original G-codes, the C axis changes abruptly in
singular points.While with the proposedmethod, the angular
velocity of the C axis has decreased significantly.

In Fig. 10(b), there is the real cut result of the proposed
method. Compared with Fig. 6, the real cut result with the
proposed method is better.

4.2 Experiment 2

The machining surface is designed in Siemens NX software
and it is presented in Fig. 11. The model is generated by
Boolean operation between a ball and a cylinder, which is
shown in Fig. 11(b).

Fig. 15 The red line is the C
axis and the blue line is the A
axis. The horizontal coordinate
represents the order of CL
points and the vertical
coordinate represents the degree
of the rotary axis. The number
of the CL points is 841, and the
number of the CL points is 21
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Fig. 16 The blue line is the
initial velocity of the A-C axis,
and the red line is the velocity of
the A-C axis with the proposed
method. The horizontal
coordinate represents the order
of CL points and the vertical
coordinate represents the
angular velocity

The CL points including singular points are shown in
Fig. 12.

In this example, there is only one singular point, however,
the C rotary axis still changes abruptly in each tool path,
which is shown in Fig. 15(a). In this example, we also set
ε = λmax = 0.001, K=100*diag[1,1,1,4,4]. There are 21
points on the selected tool path and each adjacent point is
divided into 50 segments. The tool tip error and tool ori-
entation error compared with the original 21 CL points is
shown in Fig. 13. In Fig. 13, the horizontal ordinate is the
parameter of B-spline, and t ∈ [0, 1]. In this experimental,
N = 20 × 50 = 1000, 
t = 1

N = 1
1000 . The maximum tool

tip error is 4.8516 × 10−4mm and the maximum tool orien-
tation error is 1.0908× 10−5rad, which is small enough for
the real five-axis machine tool.

The accuracy can also be improved by dividing the adja-
cent points intomore segments. In Fig. 14, the adjacent points

are divided into 100 segments, the maximum tool tip error
decreases to 1.8669 × 10−4mm and the maximum tool ori-
entation error decreases to 6.5500 × 10−5rad.

The proposed method can also be used for all of the
841 CL points, and the A-C axis values are optimized. In
Fig. 15(a), the C axis changes abruptly in each tool path,
while in Fig. 15(c), the C axis almost keep constant. By com-
paring Fig. 15(b) and Fig. 15(d), it is easy to find that C axis
changes smoothly when crossing the singular point. The feed
rate is set to be 250mm/min, and the velocity of A-C axis
with the proposed method is shown in Fig. 16.

In Fig. 17(a), the part circled by the red rectangular is
the region with singular points. In Fig. 17(b), there are the
simulation and real cut results of the proposed method.
The result with the proposed method is smoother than the
original result, which verifies the effect of the proposed
method.

Fig. 17 The simulation and real
cut results
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5 Conclusion

The whole machining process is verified by an A-C type
five-axis machine tool. While the orientation of the rota-
tion axis is parallel to the tool direction, the exact solution
of the inverse kinematics equation does not exist. Then
B-C and A-B type machines also have the singular phe-
nomenon. In the singular points, the Jacobi matrix will be
singular or ill-conditioned. This paper proposed a kinematic-
based method to avoid singularity for five-axis machine
tools by using Jacobian Damping (JD) pseudoinverse, which
is suit for all kinds of ill-conditioned problems. And it is
natural that the proposed method can be extended to A-
B and B-C type machines. The main contributions are as
follows:

(1) JacobianDampingpseudoinverse technology is first used
to overcome the ill-condition problem in the five-axis
machine tool.

(2) The method optimizes the joint velocities, which means
it not only avoids singularity but also makes the rotary
axis smoother, and it is shown in the previous two exper-
iments.

(3) Experimental results confirm that the tool tip error
and tool orientation error are small enough and the
real cut results prove the effectiveness of the proposed
method.

This paper provides a general inverse kinematics method for
CL points near singular region and the rotary axis can be
optimized by a discrete integrator. However, the kinemat-
ics method in this paper considers only pose errors. Further
improvement can be achieved by taking the acceleration limit
into consideration, and the feedback integrator method will
be extended to a second-order integrator. In the future,wewill
extend our kinematics method by considering above aspects
to develop better machining strategy.
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