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Abstract
In this study, a novel AI-based modeling approach is introduced to estimate high-fidelity heat transfer calculations and predict 
thermal distortion in metal additive manufacturing, specifically for the multi-laser powder bed fusion (ML-PBF) process. The 
effects of start position and printing orientation on deformation and stress distribution in parts produced using the ML-PBF 
additive manufacturing process are investigated. A total of 512 simulations are executed, and the maximum and minimum 
deformation values are recorded and compared. A significant reduction, e.g., 53% in deformation, is observed between the 
best and worst printing cases. A low-fidelity modeling framework, based on a feedforward neural network, is developed for 
the rapid prediction of thermal displacement with high accuracy. The model with unknown test cases demonstrates a strong 
positive correlation (R = 0.88) between the high-fidelity and network-predicted low-fidelity outputs. The simplicity, compu-
tational efficiency, and ease of use of the developed model make it a valuable tool for preliminary evaluation and optimization 
in the early stages of the design process. By adjusting controlling factors and identifying trends in thermal history, the model 
can be scaled to a high-fidelity model for increased accuracy, significantly reducing development time and cost. The findings 
of this study provide valuable insights for designers and engineers working in the field of additive manufacturing, offering 
a better understanding of deformation/thermal displacement control and optimization in the ML-PBF process.

Keywords Additive manufacturing · Multi-laser powder bed fusion (ML-PBF) · Thermal displacement · Feedforward 
neural network · Low-fidelity modeling · Optimization · Thermal gradient

1 Introduction

Laser powder bed fusion (L-PBF) is a highly advanced 
additive manufacturing (AM) process that utilizes a 
focused scanning laser beam to selectively melt pow-
dered materials and create a solid mass. This technique 
adheres to the ISO/ASTM 52900:2015 standards, which 
provide a standardized set of terms and definitions for 
additive manufacturing concepts, processes, and materi-
als [1]. Both single-laser powder bed fusion (SL-PBF) 
and multi-laser powder bed fusion (ML-PBF) can be 
used to fabricate metallic components. ML-PBF uses 
multiple lasers to melt metal powders and build parts 
layer-by-layer. Compared to SL-PBF, ML-PBF has sev-
eral advantages such as higher build rates, improved part 

quality, and greater design flexibility [2, 3]. ML-PBF 
has several important process characteristics, including 
surface roughness, residual thermal stress, and deforma-
tion [4–7]. Process parameters such as the laser power, 
scan speed, layer thickness, hatch spacing, and powder 
bed temperature play a crucial role in determining the 
quality and properties of ML-PBF parts. Higher laser 
power and scan speed can lead to higher build rates but 
can also result in higher residual stresses and thermal 
gradients, leading to distortion and cracking [8, 9]. The 
layer thickness and hatch spacing affect the build rate 
and part quality. Thicker layers and wider hatch spacings 
can reduce build times but result in poor surface qual-
ity and mechanical properties. Due to its low productiv-
ity, which limits its business cases and market uptake, 
L-PBF may not be suitable for cost-sensitive industries. 
Herzog et al. [10] suggested combining L-PBF with hot 
isostatic pressing to improve part density. Experimen-
tal investigations showed that optimizing the process for 
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speed while maintaining density above 95% resulted in 
a 67% increase in scan speed and a 26% saving in build 
time in a demonstrator build job. Slodczyk et al. [11] 
discussed the modulation of laser radiation to increase 
the processing speed in L-PBF while ensuring product 
quality in terms of reduced spatter generation. The inves-
tigation found that multi-laser distributions preserved the 
number of spatters per track at higher applied power and 
reduced the total number of spatters in a representative 
part. High-speed video recordings (with recording rate 
of 4000 Hz) showed that melt pools with high volume 
have a higher stability against impurities of the powder 
bed and spatters. One way to reduce processing time is 
to increase scan speed and laser power while maintain-
ing comparable energy densities [12]. This approach is 
constrained by two limiting factors: the maximum scan 
speed of galvanometric scanners and the spattering of 
metal powder due to high laser power [13]. To overcome 
these challenges, multi-laser and multi-scanner L-PBF 
processes were developed. Multiple heat sources are 
employed in these processes in parallel to improve pro-
ductivity, with independent utilization of multiple beams 
to melt separate scan fields with slight overlap [14]. 
In order to increase the part quality, a complementary 
approach is to use novel scan strategies. Scan patterns 
play a crucial role in reducing deformation and residual 
stress by dispersing thermal stress. Common scan strate-
gies include area patching and the use of different scan 
vectors [15–17].

Experimental investigation of scan strategies can be 
expensive and time consuming. Hence, computational 
modeling can be used to reduce the time and cost. In 
the context of additive manufacturing, a high-fidelity 
model refers to a computational model that accurately 
represents the physical behavior and characteristics of 
the system being modeled. A high-fidelity model is 
expected to accurately predict the behavior of the system 
over a wide range of conditions, including variations in 
input parameters, material properties, and part geom-
etry. It is also expected to capture the complex inter-
actions and dependencies that exist between different 
components of the system.  In L-PBF additive manufac-
turing, a high-fidelity model would accurately predict 
the thermal behavior, such as temperature gradients and 
thermal stresses, during the printing process. It would 
consider various factors that affect the thermal behavior, 
such as the thermal properties of the materials involved, 
the geometry and size of the part being printed, and 
the printing parameters, such as the  laser power and 
scan speed. In L-PBF, the use of a high-fidelity model 
is important for optimizing the printing process and 
improving the quality and reliability of the printed parts. 

By accurately predicting the behavior of the system, a 
high-fidelity model can identify potential challenges and 
suggest modifications to the printing process that can 
lead to improved part quality with minimal defects.

The behavior of the printed part during and after the 
printing process can be predicted by high-fidelity mod-
els. This includes the prediction of distortion or warpage, 
residual stresses that may exist after the printing process, 
and the mechanical behavior of the part under differ-
ent loading conditions. By using simulation models, the 
number of experimental trials required to optimize the 
printing process can be reduced, saving time and cost. 
Several comprehensive studies on the high-fidelity ther-
momechanical modeling in AM have been published 
recently [18–26]. The finite element (FE) method, which 
is widely used to predict thermal-induced deformation 
in L-PBF, is one of the approaches discussed in these 
articles. However, high-fidelity physics-based models 
are computationally very expensive in terms of required 
time and memory space. In L-PBF, material transforma-
tions take place in the length scale of 10 to 100 μm, and 
occur rapidly over a time frame of 10 ms. However, the 
parts being produced are considerably larger and require 
a significantly longer time frame of several hours to days 
to complete. To tackle this challenge, various modeling 
approaches have been proposed [27–30].

In this study, a low-fidelity predictive model is devel-
oped to replace the expensive high-fidelity physics-based 
model. The low-fidelity data-driven model utilizes the 
thermal history of the high-fidelity ML-PBF method as 
a learning curve. Once developed, the model can predict 
thermal distortion quickly based on the thermal history of 
the printed part and reduce the required simulation time 
and cost significantly. Thus, the developed low-fidelity 
model uses only the thermal history as an input, and the 
entire mechanical simulation of the high-fidelity model 
can be avoided. In addition, this study also investigates 
the impact of start position and printing orientation on 
the deformation and stress distribution in parts produced 
using multiple lasers. A comprehensive analysis of the 
effects of these parameters on the maximum and mini-
mum deformation in the printed parts is conducted, and 
the best and worst-performing printing cases are identi-
fied. The feedforward neural network-based low-fidelity 
modeling framework rapidly predicts thermal displace-
ment with high accuracy, providing a computationally 
efficient and accessible tool for preliminary evaluation 
and optimization of the ML-PBF process. The rest of the 
manuscript is organized as follows: Section 2 presents the 
simulation framework, including a physics-based high-
fidelity model, and the mathematical governing equa-
tions. Section 3 describes the methodology for designing  
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a data-driven low-fidelity model. Section 4 discusses the 
results, and finally, Section 5 offers concluding remarks.

2  Physics‑based high‑fidelity model

A high-fidelity model is a detailed and accurate representation 
of the process, aimed at precisely predicting and simulating 
the behavior of materials and process parameters involved. 
Material properties, such as particle size distribution, shape, 
and density, along with melting and solidification behav-
ior, are accurately characterized. The interaction between 
the energy source and the powder bed is modeled in detail, 
considering energy absorption and reflection, as well as heat 
conduction and convection. Process parameters, includ-
ing the laser power, scan speed, layer thickness, and hatch 
spacing, are thoroughly considered in high-fidelity models. 
Thermal history, temperature gradients, and the resulting 
mechanical stresses and strains induced during the L-PBF 
process are modeled,  characterizing part distortion, residual 
stresses, and microstructural evolution. Detailed simula-
tions of microstructural changes occurring during the L-PBF 
process, such as grain growth, phase transformations, and 
porosity development, are incorporated. By providing a bet-
ter understanding of the underlying physics involved in the 
L-PBF process, high-fidelity models contribute to the opti-
mization of process parameters, identification of potential 
defects or issues, improvement of overall part quality, and 
development of new materials and processes. In this context 
Netfabb can be used to develop high-fidelity model for ML-
PBF method. Netfabb is a powerful software that employs 
adaptive meshing-based finite element modeling (FEM) tech-
niques to perform complex simulations accurately. This paper 
utilizes Netfabb to evaluate the thermal distribution, stress 
values, and displacement magnitudes for the ML-PBF pro-
cess. The nonlinear Newton-Raphson-based solver of Netfabb 
accurately forecasts the transient behavior of crucial parame-
ters. Exceptional accuracy in predicting temperature, stresses, 
and distortion has been demonstrated by the software and the 
model has been validated in the open literature in the recent 
past [26, 31–34]. Netfabb’s modeling methodology assumes 
decoupled or weakly coupled behavior between thermal and 
mechanical factors [31]. This means that mechanical behavior 
is influenced by thermal history, but the reverse is not true. 
The Netfabb model accounts for various physical phenomena, 
such as the Marangoni convection, natural convection, radia-
tion heat losses, and temperature-dependent thermophysical 
properties, that affect the ML-PBF process.

The shape and quality of the printed part can be sig-
nificantly impacted by fluid flow due to the gradient in 
surface tension of a liquid, which is known as Marangoni 
convection. Similarly, natural convection, which is caused 

by temperature variations and density differences, can also 
affect the final part’s shape and quality. Radiation heat losses 
occur due to the transfer of heat from the heated metal to the 
environment through electromagnetic radiation, which can 
affect the overall temperature and heat transfer during the 
printing process. The physical properties of the printed mate-
rial, such as density, viscosity, and thermal conductivity, 
may change with temperature due to temperature-dependent 
thermophysical properties, affecting the material’s flow and 
behavior during printing. Accurate predictions of the final 
part’s shape, quality, and microstructure during the metal 
3D printing process can be provided through the Netfabb 
software by incorporating these physical phenomena into the 
model. The governing equations of heat transfer and solid 
mechanics are solved through a robust numerical approach 
to achieve this. Additionally, various process parameters, 
such as the laser power, scan speed, and layer thickness can 
be optimized to achieve the desired part quality with the Net-
fabb software. Therefore, Netfabb’s modeling methodology 
can be used to optimize the process parameters and ensure 
high-quality simulation accuracy of the printed parts.

2.1  Governing equations

The energy balance equation is a key equation in ther-
mal investigations. To solve this equation, the Galerkin 
approach [35] is commonly utilized to convert it into a 
weak formulation. This method involves selecting a suit-
able set of basis functions that can accurately represent the 
solution of the partial differential equation. Then, coeffi-
cients of a linear combination of these basis functions are 
calculated to minimize the residual, which is the differ-
ence between the actual equation and the approximation. 
The transient heat condition for a component with material 
density of ρ and specific heat of CP, subject to a location 
and time-dependent heat source Q(x, t) and conductive heat 
flux q, can be derived as

The Fourier heat flux, which describes the flow of heat 
across a solid body with temperature-dependent thermal 
conductivity of k, can be calculated as

The heat loss through thermal radiation is modeled using 
the Stefan-Boltzmann law:

Here, ε, σSB, Ts, and T∞ are surface emissivity, Stefan-
Boltzmann constant, surface temperature of the workpiece, 

�CP

dT

dt
= Q(x, t) − ∇.q(x, t)

q = −k∇T

qrad = ��SB
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and ambient temperature, respectively. The convective heat 
loss is defined according to Newton’s law of cooling as 
follows:

Here, heff is defined as the convective heat transfer coef-
ficient. The quasi-static mechanical analysis records the 
mechanical response, where the thermal analysis results are 
imported as a thermal load at the beginning of the study. 
The governing mechanical stress equilibrium form can be 
written as follows [36]:

Here, σ describes the stress, and the mechanical constitu-
tive law can be derived as follows:

Here, C is the isotropic material stiffness tensor of fourth 
order. The total strain can be obtained by taking the sum of 
the entire thermal (εT), second-order elastic (εe), and plastic 
(εP) strain tensor components.

To obtain the thermal strain, the following equation is 
used:

��
T
= �

(

T − T refTemp
)

 and j = [1 1 1 0 0  0]T. The variables, 
α, TrefTemp define the thermal expansion coefficient and 
reference temperature, respectively. The plastic strain is 
calculated through the von Mises yield criterion, together 
with the Prandtl-Reuss flow forms, with the yield function 
represented by the following [37]:

The plastic strain is given by

Here,

and σm, σy, and a are the von Mises’ stress, yield stress, 
and flow vector, respectively. Interested readers are referred 
to [31] for more details on the formulation.

2.2  Simulation domain and boundary conditions

In this study, a substrate block measuring 2 mm × 2 mm × 
0.2 mm is used. On top of this substrate, a single layer of 

qconvct = heff
(

Ts − T∞
)
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Inconel 625 is printed. The entire print area is divided into 
three equal parts, and specific lasers are used to print each 
part of the area. There are four corner positions for each of 
the lasers to start with: south-west, south-east, north-west, 
and north-east as shown in Fig. 1a. A total of (4 × 4 × 4) 
= 64 different combinations of corner start positions are 
possible for filling the entire block. The space is filled using 
a zigzag printing pattern, which could be either vertical or 
horizontal. This led to a full factorial design-of-experiments 
(DOE) method involving a total of (2 × 2 × 2 × 64) = 512 
simulations. Figure 1b, c shows the vertical and horizontal 
space filling patterns for the three different lasers with dif-
ferent start positions, respectively.

The laser power, scan speed, laser spot diameter, layer 
thickness, platform temperature, and laser start time are held 
constant, while the printing patterns of the three lasers are var-
ied for each simulation. The overall distortion of the printed 
part is considered as the output of the model. An initial room 
temperature of 25 °C is assumed, and the heat sources along 
with thermal convection and radiation losses, are used as 
boundary conditions. A uniform convective loss approxima-
tion is employed for the conduction into the loose powder [38]. 
An initial temperature of 80 °C is imposed at the bottom of the 
substrate. To simulate the effect of a cantilever substrate, it is 
used as the mechanical boundary condition. An infill density 
of ~90% is used. The Netfabb software provides the temper-
ature-dependent thermo-physical properties of IN625. The 
specifications for IN625 are as follows: the density is 0.00844 
g/mm3, the liquidus temperature is 1475 °C, the solidus tem-
perature is 1195 °C, and the latent heat of fusion stands at 287 
J/g. Regarding laser parameters, the laser radius is maintained 
at 0.05 mm, and its absorptivity is 0.4. The set value for the 
effective heat transfer coefficient is 25 W/m2·C. The process 
parameters and their associated values used in this study are 
summarized in Table 1.

2.3  Grid convergence study

Autodesk Pan Solver (version 2020) is used to conduct all 
the thermo-mechanical simulations, which can be accessed 
through either Netfabb Ultimate or Netfabb Simulation prod-
ucts. To view the results, an open-source, multi-platform 
data analysis and visualization application called ParaView 
[39] is utilized. The adaptive meshing features in Netfabb 
are controlled by the number of fine layers under the heat 
source, the number of fine elements in the radius of each 
heat source, and the mesh adaptivity level, which reduce 
computational time and memory usage by reducing the size 
of matrices [40]. According to Berger and Oliger [41], adap-
tive sub-grid can produce more accurate results than fine 
static meshing with minimal computational cost. Before per-
forming the DOE simulations, a mesh convergence study is 
conducted, and the results are presented in Fig. 2.
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At the start of the simulation, Netfabb generates a 
finite number of mesh elements based on user inputs to 
determine the geometry and mesh density. Figure 2(b) 
displays the mesh utilized in this analysis. The maximum 
deformation is systematically recorded by gradually 
increasing the mesh density, starting from a fewer number 
of elements to a reasonably higher number of elements 
while ensuring that the aspect ratio of the mesh elements 
remains as low as possible. The aspect ratio of the surface 
mesh is the ratio of the longest edge of an element to its 
shortest element, and for a high-quality mesh, its value 
should be less than 5 [42]. For this study, a maximum ele-
ment aspect ratio value of 1.818 is utilized, demonstrating 
monotonic convergence of distortion with a peak differ-
ence of less than 0.5%. However, this slightly increases 
computation time but ensures much better results. In the 
subsequent phase of the study, all simulations are carried 
out using the finalized mesh, and the maximum deforma-
tion is recorded for each individual case.

3  Data‑driven low‑fidelity model

Although physics-based models are essential for a thor-
ough understanding of the underlying physics involved 
in ML-PBF, their development is often hindered by 
the computational cost. To overcome this challenge, 

researchers have turned to data-driven methods that 
directly model how process parameters affect the qual-
ity of the final parts. These methods include artificial 
intelligence, design-of-experiments, and others, all of 
which use high-fidelity model data or experimental data 
to empirically relate process parameters and part fea-
tures. Since these methods are not solely dependent on 
domain-specific knowledge, they can be applied to other 
AM processes by redefining process control parameters 
and quality measures.

Low-fidelity data-driven models can provide numer-
ous advantages, such as reduced computational resources, 
which enable faster simulations and quicker design itera-
tions. This facilitates rapid optimization of processes and 
identification of process anomalies  in the development 
stages. The ease of implementation of low-fidelity models 
makes them accessible to a wider audience, including those 
with limited expertise in additive manufacturing or simu-
lation. The simplicity of low-fidelity models contributes 
to their robustness, as they are less susceptible to errors 
caused by incomplete or inaccurate input data. Additionally, 
their scalability allows for seamless adaptation to larger or 
more complex systems. Overall, low-fidelity models can 
serve as invaluable resources for preliminary evaluations, 
trend analysis, and early-stage design exploration in the 
additive manufacturing field.

In case of ML-PBF, statistical DOE can be used to 
systematically plan future simulations based on previ-
ous high-fidelity simulation data, while also allowing for 
empirical learning of the simplified relations between part 
features and process control parameters. Overall, data-
driven methods offer a promising approach for improving 
the quality of the ML-PBF parts and reducing the com-
putational cost of simulations. In this study, the thermal 
history is monitored at the point of maximum deforma-
tion. The maximum thermal gradient, G (rate of change 
of temperature), between any time t and t + 1 is obtained 
by the following rule [43]:

Fig. 1  a The print area is 
divided into three equal parts: 
block-1, block-2, and block-3 
with each having four possible 
corner start positions for the 
lasers. The 2 mm × 2 mm space 
is filled with b vertical zigzag 
pattern with south-west starting 
point and c horizontal zigzag 
pattern with south-east starting 
point by three lasers. Here, 
green dots represent the start 
position of the laser, and red 
dots represent the end position 
of the lasers

Table 1  Process parameters and their corresponding values used in 
this study

Process parameter Value Unit

Laser power 195 W
Laser scan speed 1200 mm/s
Layer thickness 0.02 mm
Laser spot radius 0.05 mm
Platform temperature 80 °C
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Here,

Figure 3a shows the steps by which G is extracted from 
the high-fidelity simulations. The maximum negative gra-
dient of the cooling rate is considered, as it has a direct 
correlation with the maximum deformation [44–46]. The 
temperature and time stamp at the point of the maximum 
negative gradient, as well as the previous temperature and 
time stamp, are supplied to the low-fidelity model. Minimiz-
ing the deformation at this specific point is essential, as it 
represents the maximum deformation and reducing it would 
also lead to a reduction in deformation at other parts of the 
given geometry.

A feedforward neural network is a type of artificial neu-
ral network that is widely used for supervised learning in 

G =
ΔT

Δt

Δt = t2 − t1

ΔT = T2 − T1

machine learning and data science applications. It is called 
“feedforward” because information flows through the net-
work in a single direction, from the input layer to the out-
put layer, without any loops or feedback connections. It 
consists of three or more layers of neurons: an input layer, 
one or more hidden layers, and an output layer. The input 
layer receives the input data, which is then passed through 
the hidden layers to produce the output. Each neuron in a 
layer is connected to every neuron in the previous layer, and 
each connection is assigned a weight that determines the 
strength of the signal between the neurons. During training, 
the weights of the connections are adjusted using an opti-
mization algorithm such as backpropagation, which mini-
mizes a loss function that measures the difference between 
the predicted and the true outputs. The goal of training is to 
find the set of weights that minimizes the loss function so 
that the network can accurately predict the output values for 
new input data sets.

One of the advantages of feedforward neural networks 
is that they can approximate any continuous function 
to an arbitrary accuracy, given enough hidden neurons. 

Fig. 2  Results obtained 
from the mesh convergence 
study indicate an optimal size 
of approximately 141,691 ele-
ments and a maximum element 
aspect ratio of 1.818
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However, this also means that they are susceptible to over-
fitting, where the network memorizes the training data 
rather than learning the underlying patterns. To address this 
issue, regularization techniques such as dropout, early stop-
ping, and weight decay can be used. Another advantage of 
feedforward neural networks is that they can handle high-
dimensional and nonlinear data, making them well-suited for 

tasks such as image recognition, speech recognition, natural 
language processing, and financial forecasting [47–53].

In general, a common approach is to split the available data 
into three sets: a training set, a validation set, and a testing set. 
The training set is used to train the network by adjusting the 
weights of the connections between neurons, while the valida-
tion set is used to monitor the network’s performance during 

Fig. 3  Schematic diagram for a data collection from the high-fidelity model and b the development of a low-fidelity data-driven model
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training and prevent overfitting. Finally, the testing set is used to 
evaluate the performance of the trained network on new data. In 
this study, 70% of the total data are used for training purposes, 
and the rest of the 30% of the data are divided equally for vali-
dation and testing purposes. A total of 358 data points are used 
to train the model, and 77 data points are used for validation and 
testing purposes. The network has three hidden layers, consist-
ing of 9, 5, and 1 hidden neuron, respectively. The Levenberg-
Marquardt (LM) algorithm is used as a training method for the 
selected network. LM is a popular optimization algorithm used 
for training artificial neural networks, particularly in regression.  
The LM algorithm is designed to find the set of weights that 
minimizes the sum of squared errors between the network’s pre-
dicted output and the actual target output. Unlike the standard 
gradient descent algorithm, the LM algorithm uses information 
about the curvature of the error surface to adjust the step size of 
the weight update. This means that the algorithm can take larger 
steps in the directions where the error is decreasing rapidly 
and smaller steps in the directions where the error is changing 
slowly. A momentum constant or momentum parameter value 
of 0.001 is used as the initial value in this study. It is also known 
as the damping parameter or the regularization parameter. In the 
LM algorithm, the weight updates are determined by a combi-
nation of the gradient descent method and the Gauss-Newton 
method. The Gauss-Newton method attempts to minimize the 
sum of the squared errors between the network outputs and the 
target outputs. However, this can sometimes lead to instability 
or divergence during training. To address this issue, the LM 
algorithm introduces a damping parameter (momentum param-
eter) to adjust the step size of the weight updates. When the 
value of this parameter is large, the algorithm behaves more like 
the gradient descent method, and when it is small, it behaves 
more like the Gauss-Newton method. In this study, it controls 
the amount of influence that previous weight updates have on 
the current weight update. The maximum number of validation 
failures or maximum epoch numbers is used as a stopping cri-
terion of this network. A small value of momentum parameter 
can make the algorithm converge quickly and accurately, but 
it may also result in overfitting. In contrast, a large value of the 
same can prevent overfitting, but it may result in slower conver-
gence. Figure 3b shows the schematic of the data-driven model.

4  Results and discussion

Out of 512 simulations, the maximum deformation recorded 
is 0.18414 mm, and the minimum deformation is 0.086201 
mm, i.e., this study observes about 53% variations in the 
deformation due the start position (one of four possible 
starting corner position) and printing orientation (vertical 
or horizontal zigzag pattern) of the lasers. Figure 4 shows 
the deformation and stress distribution of four representative 
cases including the two extreme cases.

Figure 4 represents four different scan patterns, their cor-
responding Cauchy stress, and displacement at the end of 
the simulation. Figure 4a–f depicts two random cases (case 
ID 100 and case ID 300, respectively). Figure 4g depicts 
the worst printing path, where the printing process gener-
ates the maximum displacement value (as given in Fig. 4i). 
The start positions of the lasers are represented by the green 
dots, while the stop positions are indicated by the red dots. 
The movement of the lasers is demonstrated by the arrow 
direction. It can be observed from block-1 and block-2 in 
Fig. 4g that both lasers start from the furthest distances at 
the bottom (block-1 from the southwest corner and block-2 
from the southeast corner) and eventually move toward each 
other. As a result, the material experiences excessive heating 
when the two lasers are in close proximity and cools down 
when they are far apart, leading to a non-uniform tempera-
ture distribution at different times throughout the printing 
process, resulting in a non-uniform stress distribution (as 
can be seen in Fig. 4h) and a high magnitude of displace-
ment (as can be seen in Fig. 4i). Conversely, the best per-
formance, in terms of the minimum displacement value, is 
exhibited by Fig. 4j–l. Approximately, an improvement of 
53% is achieved compared to its worst-case counterpart. It 
is noteworthy that the start positions of the lasers exhibit 
uniformity in terms of their Euclidean distances, forming a 
triangular shape (green dotted line) with the corners of the 
respective blocks. A similar pattern can be observed for the 
end positions (red dotted line) as well, with all lasers mov-
ing vertically. The green and red dotted lines together form 
a “W” shape, as shown in Fig. 4j. Since all the lasers employ 
the same velocity and power, this specific pattern results in 
a uniform distribution of the thermal gradient, yielding a 
uniform stress distribution and minimal displacement at the 
end of the printing process.

The distribution of negative thermal gradient character-
izes the cooling cycle of the printing process. In Fig. 5, the 
temperature history at the point of maximum deformation is 
displayed, along with the distribution of negative tempera-
ture gradients for four distinct scenarios: the best and worst 
cases, as well as two intermediate cases. Both the magni-
tude of the negative thermal gradient and its distribution 

Fig. 4  Four different scanning patterns (first column), corresponding 
Cauchy stress (second column), and displacement distribution (third 
column) at the end of the simulation for a–c case ID 100, d–f case ID 
300, g–i worst case ID 464, and j–l best case ID 18. The green dots 
represent the start positions of the lasers, and the red dots indicate 
the stop positions of the lasers in respective three blocks. The dotted 
green triangle is the Euclidean distance of three lasers at the start of 
the printing process, and the dotted red  triangle gives the Euclidean 
distance of three lasers at the end of the printing process for the best 
case

◂
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play an important role in the overall displacement of the 
printed part. It is clearly indicated by the two extreme cases 
in Fig. 5e–f and Fig. 5g–h. The worst case yields higher 
deformation/displacement due to very high negative thermal 
gradient. On the other hand, the best case results in a lower 
displacement value due to the lower magnitude of the nega-
tive thermal gradient. When the distribution of the negative 
temperature gradients is assessed, an empirical snapshot of 
the probability density function, provided by the histogram, 
is given in Fig. 5b, d, f, h. This function indicates the like-
lihood of various gradient ranges observed in the dataset. 
Additionally, a theoretical probability density function of 
a normal distribution is provided by the overlaid line plot 
(black). This normal distribution is based on the calculated 
mean and standard deviation of the gradients. Through these 
two plots, a visual comparison of the observed probability 
density against a theoretical normal distribution is enabled. 
If there is a close alignment between the histogram's prob-
ability density and the line plot, it is implied that the nega-
tive temperature gradients have a probability density that is 
approximately normally distributed.

As illustrated in Fig. 5g, h, the best case demonstrates 
a more favorable distribution of the thermal gradient with 
lower peaks relative to other cases. It is observed that 
for Case ID 18, a temperature drop from 746.31 °C to 
367.55 °C occurs within a timeframe of 5.854e-03 seconds. 
Conversely, for Case ID 464, a decrease from 1684.1 °C to 
1590.1 °C is recorded in just 3.10e-05 seconds. Hence, Case 
ID 464 demonstrates a significantly steeper negative tem-
perature gradient over time.  All other printing patterns fall 
between these two extreme cases. In all cases, it is notewor-
thy that the positive sides of the x-axis are excluded. This 
is due to the fact that the distortion during the cooling cycle 

is linked to a negative thermal gradient, which ultimately 
results in the placement of all bars on the negative side of 
the x-axis.

Figure 6a depicts the plot of maximum negative thermal 
gradient and maximum displacement for all the simulations 
conducted in this investigation. It is evident that there is no 
significant relationship between the negative thermal gradi-
ent and displacement magnitude. This might be due to the 
complex underlying physics between the factors considered. 
Therefore, a simple linear model may not accurately cap-
ture the intrinsic relationship between the negative thermal 
gradient and displacement in this study. Hence, to under-
stand the underlying physics of the system and develop a 
data-driven low-fidelity model, it is crucial to consider not 
only the magnitude but also the distribution of the negative 
thermal gradient. However, in the Kolmogorov-Smirnov test 
[54–57], the null hypothesis assumes that the data follows 
a specified distribution, which, in this case, is a normal dis-
tribution of the negative thermal gradient during the entire 
printing process. The p-value represents the probability of 
observing a test statistic as extreme or more extreme than 
the one computed from the sample data, assuming the null 
hypothesis is true. The confidence level is 95% (α = 0.05). A 
p-value greater than α suggests insufficient evidence to reject 
the null hypothesis, whereas a p-value less than or equal 
to α indicates statistically significant evidence to reject the 
null hypothesis, suggesting that the dataset is not normally 
distributed. Figure 6b displays the p-value for all simula-
tions, where higher p-values signify higher confidence in 
the normal distribution of the negative thermal gradient for 
that specific simulation. In addition to the magnitude of the 
negative thermal gradient, a higher p-value describes the 
printing quality in terms of minimum thermal distortion. 
Notably, in some cases, the p-value is very low, such as in 
case ID 464, indicating non-normal distribution and higher 
thermal distortion. Conversely, a higher p-value alone does 
indicate lower thermal distortion as the magnitude of the 
negative thermal gradient may be higher. Therefore, to accu-
rately predict thermal distortion and capture the complex 
relationship, AI models are required.

Fig. 5  Temperature (red line plot)  vs. displacement  (blue line plot) 
at the point of maximum distortion during the entire printing process 
and distribution of temperature gradients for a, b: case ID 100, c, d: 
case ID 300, e, f: worst case ID 464, and g, h: best case ID 18. The 
probability density distribution of the observed negative temperature 
gradients, represented by the blue histogram, is compared against the 
theoretical normal distribution, represented by the overlaid black line 
plot

◂

Fig. 6  a Maximum negative 
temperature gradient vs. maxi-
mum displacement for all the 
512 simulation and b p-value 
for Kolmogorov-Smirnov test
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In the second phase of this study, the research objec-
tive is to develop a low-fidelity modeling framework using 
a feedforward neural network. This approach is adopted 
due to the potential benefits of low-fidelity models, includ-
ing simplicity, computational efficiency, and ease of use. 
Although high-fidelity models offer more precise results, 
they typically necessitate significantly greater computational 
resources, leading to extended simulation times and higher 
costs. Hence, the current study aims to develop a low-fidelity 
model that can quickly and accurately predict thermal dis-
placement based on thermal history, with comparable accu-
racy to that of a high-fidelity model.

Figure 7 depicts the regression plots for different datasets. 
It clearly shows the relationships between the target high-
fidelity thermal displacement outputs and the low-fidelity 
network outputs for the training, validation, and test sets. 
The correlation coefficient, R, is a statistical measure of the 
strength and direction of the linear relationship between 
target output and network-predicted output. Its value can 
vary between +1 (indicates a perfect positive correlation) 
and −1 (indicates a perfect negative correlation), while 0 
indicates no correlation. In this study, the value of R is 0.88. 

It describes a clear positive correlation between the high-
fidelity output and network-predicted low-fidelity output in 
terms of thermal displacement if thermal history is given. 
Most of the data points are located near the diagonal line 
indicating a strong linear relationship between thermal his-
tory and network-predicted displacement magnitude. Fig-
ure 8 describes the low-fidelity model-predicted displace-
ment and the high-fidelity target displacement for all 77 test 
cases which are kept out of the training set. In most cases, 
the model-predicted displacement magnitudes are very close 
to the high-fidelity target displacement values based on the 
input thermal history at the point of maximum displacement. 
However, the predicted outcomes are far from the actual 
target displacement in certain cases. Figure 8b depicts a 
graphical representation of the distribution of errors via an 
error histogram for training, validation, and test sets. It gives 
a clear sense of how well the model is performing across dif-
ferent ranges of errors and describes the performance of the 
model. It is important to mention that the errors are typically 
calculated as the difference between the high-fidelity target 
displacement values and the low-fidelity model-predicted 
output values. By plotting the frequency of these errors in 

Fig. 7  Regression plots for vari-
ous datasets, including training, 
validation, and test set for the 
low-fidelity model
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different bins, it is clear that it shows a normal distribution 
or Gaussian distribution, as the bell-shaped curve is almost 
symmetrical around the zero mean. Therefore, most of the 
errors fall to near zero, with fewer errors as the distance from 
zero increases. This can be a sign that the low-fidelity model 
accurately captures the underlying patterns in the data and 
is not overfitting or underfitting. Additionally, this normal 
distribution makes it easier to interpret the performance of 
the model. Figure 8c shows that the prediction error of the 
low-fidelity model is less than 10% for 70.1% of the test 
cases, between 10% and 20% for about 24.7% of test cases, 
and more than 20% of error variations for only 5.2% of the 
test cases. It shows that the low-fidelity model is perform-
ing well. A case-wise detailed percentage of errors can be 
seen in Fig. 8d. Only four out of 77 test cases demonstrate 

more than 20% error when using the newly developed low-
fidelity model.

The thermal history, specifically during the cooling cycle 
in ML-PBF AM, plays a crucial role in determining the dis-
placement magnitude that occurs within the printed part. 
During the ML-PBF process, the heat source selectively 
melts a thin layer of powder material according to the given 
path specifications. As the heat source moves, the molten 
material solidifies, and a new layer of powder is deposited. 
This process continues in layers until the entire part is built. 
The thermal history records the temperature changes as the 
heat sources move on the metal powder layer, and it depends 
on the source’s power and scan speed as well as layer thick-
ness and material properties. The deformation or the ther-
mal displacement in the printed part is mainly caused by 

Fig. 8  Comparison between high-fidelity and low-fidelity model in 
terms of a deviation between the actual (high-fidelity model) and pre-
dicted (low-fidelity  model) displacement, b error histogram for the 

entire dataset, c overview of the quality of the model in terms of pre-
diction error, and d details of prediction error for the test dataset
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the non-uniform temperature distribution and the resulting 
thermal stress that develops during the cooling cycle. As the 
part cools, the material contracts and stresses are generated 
due to the constrained shrinkage, resulting in part deforma-
tion, further leading to deviations from the intended geom-
etry. In this context, using multiple lasers allows for more 
even heat distribution, reducing the risk of overheating and 
therefore mitigating the formation of thermal stresses. Mul-
tiple heat sources enable more precise control over the tem-
perature distribution within the built area. The influencing 
factors of the heat sources (such as power and scan speed) 
can be tailored to achieve minimum displacement magnitude 
from the low-fidelity model. After adjusting the controlling 
factors and identifying the trend for thermal displacement 
from the low-fidelity ML-PBF model, a similar pattern can 
be scaled to the high-fidelity model for higher accuracy. In 
this fashion, the approach can significantly reduce the devel-
opment time and cost by replacing the high-fidelity model 
with an inexpensive low-fidelity model. Hence, the devel-
oped model provides sufficient insights into the preliminary 
evaluation of thermal displacement in the ML-PBF process. 
The simplicity of the model makes it a valuable tool in the 
early stages of the design and optimization process, which 
can be easily scaled to accommodate larger systems, incor-
porating other mechanical and thermal constraints.

5  Conclusion

In conclusion, this study successfully investigates the effects 
of start position and printing orientation on the deformation 
of parts produced using multiple lasers in the powder bed 
fusion additive manufacturing process. A significant reduc-
tion of 53% in deformation is demonstrated when comparing 
the best and worst printing cases. Furthermore, a low-fidelity 
modeling framework, based on a feedforward neural net-
work, is developed in this study, which is capable of rapidly 
predicting thermal displacement with a correlation coeffi-
cient (R) of 0.88, indicating a strong positive correlation 
between the high-fidelity and network-predicted low-fidel-
ity outputs. The low-fidelity model developed in this study 
exhibits accurate predictions, with prediction errors of less 
than 10% for 70.1% of test cases and less than 20% error for 
24.7% of test cases. Only 5.2% of the test cases show errors 
greater than 20%. The simplicity, computational efficiency, 
and ease of use of this model make it an accessible and 
valuable tool for preliminary evaluation and optimization 
in the early stages of the ML-PBF process. By identifying 
trends and adjusting controlling factors, the model can be 
scaled to a high-fidelity model for increased accuracy, sig-
nificantly reducing development time and cost. The impor-
tance of controlling the thermal history during the cooling 
cycle in the ML-PBF process to minimize part deformation 

is emphasized in this study. By utilizing multiple lasers and 
adjusting factors such as power and scan speed, more even 
heat distribution and thermal stresses can be achieved. The 
developed low-fidelity model is a useful tool for understand-
ing and predicting thermal displacement in the ML-PBF pro-
cess, offering valuable insights to designers and engineers 
working in the field of additive manufacturing.
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