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Abstract
The machined surface in the industrial cutting environment is often covered by some interference factors, such as chips 
or coolant residuals, which make the existing methods have large detection errors. Therefore, the interference factors in 
the cutting environment seriously affect the sustainability detection and evaluation of the processed surface quality. This 
paper discusses the relationship between interference factors and roughness to study the sustainability detection of rough-
ness. Firstly, a multidimensional feature parameter matrix with strong correlation with surface roughness is extracted and 
constructed based on the gray level co-occurrence matrix. On this basis, the adverse effects of interference factors (chips) 
on image feature parameters are quantitatively analyzed. According to the relationship between chip area and error change 
rate of feature parameters, an error correction model is constructed to optimize the feature parameters that change due to 
interference factors. The error correction model greatly reduces the negative influence of chip interference. This is the core 
of this paper. Further, the BP neural network model and support vector machine (SVM) model are used to predict the surface 
roughness with the optimized multi-dimensional feature parameters matrix as input, respectively. The above process realizes 
the sustainable detection of machined surface roughness. At the same time, in order to facilitate industrial applications, this 
paper uses LabVIEW software and MATLAB software to package the above research into a software system. Finally, the 
practicability and effectiveness of the sustainable detection research are verified by practical application in the industrial 
scene. This study promotes the sustainable development between product safety and environmental impact in the industrial 
manufacturing process.

Keywords  Interference factors · Sustainability roughness detection · Error correction model · Feature parameter 
optimization

1  Introduction

With the development of industrial automation and intel-
ligence [1, 2], the research on sustainability detection of 
machined surface quality is getting more and more atten-
tion in the industrial manufacturing process. It is closely 
related to the safety of the workpiece during use. Surface 
roughness, as one of the evaluation indicators of the qual-
ity of the machined surface, affects the future performance 
and service life of the product [3, 4], and it is also an indis-
pensable part of sustainable detection research. In addition, 
the sustainable detection of surface roughness during the 
industrial manufacturing process can also take remedial 
measures in advance for the damage caused by the out-of-
control machining process [5]. This can increase the safety 
and economy of the product after manufacture.
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Although existing detection methods have good accuracy, 
their better accuracy depends on the ideal laboratory envi-
ronment. In the actual industrial environment, interference 
factors, such as chips, on the industrial site will cover the 
defects, bringing great adverse effects on the sustainability 
detection of surface roughness [6]. Therefore, the sustain-
ability detection of surface roughness under the influence 
of interference factors is considered one of the major chal-
lenges in the field of detection. The main contribution of 
this paper is to make it possible to sustainability detection 
of machined surface roughness under the influence of inter-
ference factors. The research process is more robust than 
existing research.

In this paper, the influence of interference factors that 
often occur in the cutting environment on the feature param-
eters is quantitatively analyzed. The error correction model 
was constructed by studying the relationship between chip 
area and error rate of feature parameters. The error correc-
tion model can optimize the feature parameters changed by 
the influence of interference factors. The error correction 
model greatly reduces the negative impact of chip interfer-
ence. This is the core of this paper. Further, the BP neural 
network model and support vector machine (SVM) model 
are used to predict surface roughness with the optimized 
multi-dimensional feature parameters matrix as input, 
respectively. The above process realizes the sustainable 
detection of machined surface roughness.

This paper is organized as follows. In Section 2, some 
advanced research contents of surface roughness measure-
ment are briefly reviewed. In Section 3, the surface image 
acquisition process under the influence of the industrial 
cutting environment is described. In Section 4, a multi-
dimensional feature parameter matrix with strong correla-
tion with roughness is constructed. In Section 5, the influ-
ence degree of interference factors on feature parameters is 
quantitatively analyzed, and the error correction model is 
innovatively proposed. In Section 6, two surface roughness 
prediction models are constructed. In Section 7, the research 
on the sustainability detection of surface roughness is sys-
tematically integrated. Finally, the conclusions are provided 
in Section 8.

2 � Related works

The existing research on surface roughness detection focuses 
on non-contact detection. Such methods may include ultra-
sonic method, capacitance measurement method, and 
optical technology method (laser triangulation method, 
speckle method, scattering method, and machine vision). 
Balasundaram and Ratnam [7] proposed an online meas-
urement system for turning surface roughness. The system 
is equipped with a SLR camera to collect surface images. 

He uses a SLR camera to take a picture of the surface and 
extracts the contour of the cutting surface through the gray 
matrix edge threshold algorithm to obtain the contour curve. 
Then, the roughness is calculated according to the roughness 
parameter calculation formula. Tootooni et al. [8] proposes 
an on-line detection method of surface roughness based on 
machine vision. During the study, images of different regions 
of the rotation axis are obtained online using the camera. 
Then, changes in surface roughness are tracked online using 
algebraic graph theory image processing. The error of the 
proposed method in the actual detection process can be guar-
anteed within 15%. Liu et al. [9] developed a DSP-based 
surface roughness online detection system, which solved the 
problem of slow speed and low accuracy in online surface 
roughness detection of grinding workpieces. The system col-
lects surface scattering images by industrial camera and pre-
processing and feature parameter extraction using DSP chip. 
Finally, the surface roughness is predicted using the support 
vector machine model. Yi and Zhang [10] proposes a detec-
tion method for surface roughness based on machine vision 
techniques and image processing techniques. Computing 
pixel intensity of online collected images using MATLAB 
software. Then, the correlation between pixel intensity and 
surface roughness is explored. In addition, other scholars 
have done some research on data fusion [11, 12].

With the increasing complexity of industrial automa-
tion application scenarios, the actual application effect 
of the above research is decreasing. How to maintain the 
sustainable detection of surface roughness in complex 
environments is an important research direction. Some 
scholars have studied robust surface roughness detection. 
Deng et al. [13] studied the detection of surface quality 
of concrete bridges affected by interference. In this study, 
an ad hoc YOLO v2 network is proposed to detect con-
crete cracks and handwriting interference on the surface 
of concrete bridges. The handwriting interference is added 
to the collected defect image. Then, the network is trained 
to detect real flaws in complex contexts and interference. 
The results of this study show that the YOLO v2 could 
automatically locate cracks and measure roughness with 
bounding boxes from raw images, even with handwrit-
ten scripts. At the same time, the network’s mAP is 77%. 
Although YOLO v2 has proved to be robust in concrete 
surface quality detection with relatively fast speed, the 
algorithm still needs further improvement to achieve real-
time evaluation of concrete surface quality, and the detec-
tion accuracy is poor. Pashmforoush and Bagherinia [14] 
studied the effect of environmentally friendly water-based 
copper nanofluids on the grinding performance of Inconel 
738 superalloy. To evaluate the effectiveness of this nano-
fluid, the wheel load ratio and surface roughness values 
were compared with dry grinding and conventional fluid 
grinding using image processing techniques. The results 



4699The International Journal of Advanced Manufacturing Technology (2023) 127:4697–4711	

1 3

showed that the application of copper nanofluids could 
improve wheel loading and surface roughness by amount 
of 59.19% and 62.16% compared to dry grinding and by 
amount of 35.13% and 36.36% respectively compared to 
conventional fluid grinding.

Liu et al. [15] solved the problem that environmental 
vibration has a great impact on traditional phase-shifting 
interferometry (PSI) for roughness measurement. Based on 
the iterative algorithm that is tolerant to phase-shifting error 
caused by vibration, the authors developed two interferom-
eters to measure the optical surface figure and roughness 
respectively. The actual test shows that the error of rough-
ness (Sq) measured in the vibration, 0.4 micron-amplitude, 
and over 0–20Hz frequency range is less than 0.5 nm. 
The developed method and instruments could be applied 
to optical surface measurement in vibration. However, the 
robustness of this method is not good. An anti-interference 
roughness detection method based on image repair and con-
volutional neural network model was proposed by Yang et al. 
[16]. This method combines the CNN model, CBAM Res 
Net semantic segmentation model, and PConv Net image 
painting model. The experimental results show that the sur-
face roughness detection accuracy of this method is 90.0% 
under the influence of interference factors. This method 
depends on the regular texture structure, with poor detec-
tion accuracy.

In addition, some scholars have also explored and found 
the feature parameters with strong correlation with rough-
ness and anti-interference. Yi et al. [17] proposed a method 
to predict surface roughness by using average color differ-
ence feature parameters based on the overlapping structure 
of red and green colors through mechanism analysis of color 
image features. The robustness of this color feature param-
eter in disturbed and polluted environments is investigated. 
Although polluted, the authors found that the correlation 
between this feature parameter and surface roughness is 
much higher than those of other traditional feature param-
eters. The regression model based on the support vector 
machine is used to verify the effectiveness of the proposed 
method. However, this method needs to build a more com-
plex red and green environment and is affected by mono-
chromatic interference, which is not suitable for industrial 
promotion and application. Yi et al. [18] explored the influ-
ence of color information on metal surface roughness. The 
authors constructed the color distribution statistical matrix 
based on the multi-dimensional and red-green color alias-
ing structure of color image information. Based on the color 
distribution statistical matrix, the aliasing area index and the 
pure color area energy index which have a great relationship 
with roughness are extracted. Then, the performance of the 
two indexes in accuracy, stability, and anti-interference is 
comprehensively evaluated.

On the one hand, robust surface defect detection investi-
gations require further research on detection accuracy and 
stability. On the other hand, the key to research is to con-
sider the factors that negatively affect sustainability detec-
tion. The results obtained from the study separated from 
the actual interference factors cannot help to maintain the 
sustainability of surface roughness detection research. In 
this paper, it is found that chip interference often occurs 
in industrial cutting environments. Therefore, the contri-
bution of this paper is to consider the actual interference 
factors in the industrial field. The error correction is made 
to feature parameters that are changed due to interference 
factors. The error correction fundamentally solves the 
adverse effect of interference factors on surface roughness 
measurement.

3 � Acquisition and preprocessing 
of the sample image dataset

The basis of the measurement research is a lot of cutting 
surface images. This section obtained a sufficient number 
of sample blocks through milling experiments. The mate-
rial used in the milling experiments is superalloy (GH4169). 
This process selects the clean cutting mode of high-speed 
dry milling. Machine tool is the CNC machining center of 
DMG company in Germany. It is found that the cutting pro-
cess of per tooth feed and cutting speed are the most impor-
tant influences on the surface roughness. Referring to the 
tool manual, 60 m/min and 90 m/min are selected as cutting 
speed, and 5 groups of parameters are selected as feed per 
tooth between 0.05 and 0.25 mm/z.

When the milling work is finished, the different regions of 
the finished surface image are obtained by laser microscope 
as the sample surfaces. The magnification of the laser micro-
scope is 200 times. At the same time, the roughness of the 
sample surfaces was measured by VK microscope analysis 
software. Finally, each sample surface has a corresponding 
roughness value. This forms the original sample surface 
dataset. The surface roughness of the dataset is distributed 
in the range of 0.5 μm and 2.0 μm. The surface image size 
is 1980 × 960 pixels. The visual view of the actual image 
is 1.413 mm×1.060 mm. The dataset is divided into two 
parts: the non-interference sample surface image dataset 
and sample surface image dataset group. Among them, a 
non-interference surface image and its corresponding sur-
face image having chip interference are a group. The chips 
on the surface are randomly assumed. Some of the larger 
chips produced during the milling process will leave the 
machined surface with the tool rotating. The experimental 
scheme process is shown in Fig. 1. The experimental site and 
the process of obtaining surface data are shown in Fig. 2.
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Because the image acquisition and transmission pro-
cess is easily affected by light, machine tool vibration 
and other factors, the collected original image can not be 
directly used for analysis. Therefore, the collected sur-
face image must be preprocessed to eliminate interference 

information. The image preprocessing includes three parts: 
gray scale conversion, image filtering, and gray scale 
enhancement. The image preprocessing process is imple-
mented based on LabVIEW software. The image preproc-
essing process is shown in Fig. 3.

Fig. 1   Experimental scheme 
process Start

Select workpiece 
material

Milling experiment

Roughness 
measurement

Clean surfaces Surfaces with 
chips

Sample surface image dataset group

Surface images
acquisition

Non-interference 
sample surface dataset

Roughness 
measurement

Surface images
acquisition

Chips interference Get the sample 
surface again

same 

position

Laser 
microscope

Gray scale 
conversion

Dataset image preprocessing
Gray scale 

enhancement
Image 

filtering 

Fig. 2   Work site and the 
acquisition process of the 
surface images
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4 � Construction process 
of multi‑dimensional feature parameters 
matrix

4.1 � Feature parameters extraction of surface 
images based on the gray level co‑occurrence 
matrix

The prediction of surface roughness depends on the effec-
tive surface characteristics. The basic features of the surface 
include texture features, shape features, and color features. 
Textured features are widely used because they are a more 
complete reflection of surface information. Extraction of 
texture features usually uses the gray level co-occurrence 
matrix. Gray level co-occurrence matrix is a typical statisti-
cal method used to describe the distribution law of image 
gray scale values. The gray level co-occurrence matrix was 
proposed by Haralic et al. [19].

Based on the research of existing scholars, the surface 
texture is characterized by the six statistics commonly used 
in the gray level co-occurrence matrix. The six statistics 
are energy, contrast, entropy, homogeneity, differences, 
and correlations. During the study, six feature parameters 
of the gray level co-occurrence matrix in the 0 ° direction 
are extracted for each image. The grayscale is 32 and the 
growth step is 1. The above process is implemented by Lab-
VIEW software.

4.2 � Construction of a multi‑dimensional feature 
parameters matrix

Six feature parameters of 110 non-interference sample 
surfaces in the dataset are extracted by the gray level co-
occurrence matrix. To investigate whether there is a good 

correlation between feature parameters and roughness, the 
six feature parameters and surface roughness are curve fit-
ted by the least square method. The criterion for fitting is 
to meet the monotonicity between surface roughness and 
feature parameters.

The fitting results (R2) of six feature parameters, dif-
ference, contrast, entropy, homogeneity, correlations, and 
energy with roughness, are 0.8089, 0.8613, 0.8557, 0.2771, 
0.06171, and 0.8990 respectively. The closer R2 is to 1, the 
better the fitting result of the model. It can be seen that the 
fitting results of difference, contrast, entropy, and energy 
exhibit better. Therefore, the multi-dimensional feature 
parameters matrix X should be constructed from the above 
four parameters to characterize the surface texture feature 
information.

where λdif is the difference feature parameter, λcon is the 
contrast feature parameter, λent is the entropy feature param-
eter, and λene is the energy feature parameter.

4.3 � Quantitative analysis of the influence 
of interference factors (chips) on feature 
parameters

When detecting in the machine tool cutting phase of the 
industrial manufacturing process, the surface will be cov-
ered by some interference factors, such as chips and cool-
ant residuals. These will have adverse effects in the process 
of extracting multi-dimensional feature parameters matrix. 
This section provides a quantitative analysis of the adverse 
effects of interference factors on feature parameters. Figure 4 
is a set of preprocessed images selected from the dataset. 

(1)X =
[
�dif , �con, �ent, �ene

]T

Fig. 3   Image preprocessing process
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Among them, Fig. 4a is an image without chip interference, 
and Fig. 4b–d are a set of images after adding chip interfer-
ence of different sizes. Table 1 shows the multi-dimensional 
feature parameters of this set of images extracted using a 
gray level co-occurrence matrix. It can be seen from the 
relative error in the table that the feature parameters of the 
image have changed to varying degrees when disturbed by 
chips. Therefore, if the surface roughness cannot be detected 
for sustainability under interference factors, it will have a 
great safety hazard for the performance of the products after 
manufacturing.

5 � Optimization process of feature 
parameters based on the error correction 
model

5.1 � The construction process of the error correction 
model

Through the results in Section 4.3, the chip causes errors 
in the extracted feature parameters. Therefore, this sec-
tion will construct an error correction model to eliminate 

the adverse effects of interference factors. Specifically, the 
quantitative calculation of the image chip area is taken as 
the entry point. Then, the functional relationship between 
the error change rate of each feature parameter and the 
chip area can be obtained. Furthermore, the error correc-
tion model of feature parameters is established based on 
the functional relationship.

The chip area calculation process is as follows. Firstly, 
the images were binarized. After binarization, the image 
includes three parts: the “large” particle part, the “small” 
particle, and the background part. The above three parts 
are all composed of individual pixels. The “particles” are 
areas with gray values belonging to a class and connected 
with each other in the binarized image. The chip region 
can be regarded as “big” particles, and the influence 
region of other original texture structures can be regarded 
as “small” particles. The particles are shown in Fig. 5. 
Then, the chip area can be represented by calculating the 
area sum of all “large” particles in the binarized image. 
The area of “large” particles is the total number of pixels 
contained within them. Among them, the pixel number of 
“large” particles is counted by the four-connected region 
method. The distinction line between “large” particles and 
“small” particles is 1000 pixels, meaning that greater than 

Fig. 4   Images of different chip 
sizes

Table 1   Feature parameters of 
images with different chips sizes

Number Difference Contrast Entropy Energy (10−3)

a 2.0434 11.2814 5.3450 9.5417
b 1.8870 (−7.65%) 10.2641 (−9.02%) 5.2583 (−1.62%) 11.9414 (+25.15%)
c 1.7536 (−14.18%) 9.6425 (−14.53%) 5.0472 (−5.57%) 32.5471 (+241.1%)
d 1.6278 (−20.34%) 9.0206 (−20.04%) 4.8457 (−9.34%) 45.4154 (+376.0%)



4703The International Journal of Advanced Manufacturing Technology (2023) 127:4697–4711	

1 3

1000 pixels are “large” particles, and otherwise “small” 
particles.

The error change rate of the feature parameters α is 
calculated according to the Equation (2).

where λ is the feature parameter of the non-interference 
image and λchip is the feature parameter of its corresponding 
image with chip interference.

Figure 6 shows the relationship between the chip area 
and the error change rate of each feature parameter, which 
is obtained from 80 images with chips interference. Accord-
ing to Fig. 6, it is known that the error change rate of the 
feature parameters is controlled within 10% when the chip 

(2)� =

|||�chip − �
|||

�

area of the image is less than 50,000 pixels. Therefore, 
this case does not require an error correction to the feature 
parameters. The error change rate of feature parameters is 
more than 10% when the chip area of the image is between 
50,000 and 700,000 pixels. This shows that the error in the 
feature parameters must be corrected. The error change rate 
of feature parameters is extremely large when the chip area 
of the image is greater than 700,000 pixels. This shows 
that it is necessary to reselect a new surface for roughness 
measurement.

The least squares method is used to fit the error change 
rate of the four feature parameters of 70 images with chip 
interference (the chip area is between 50,000 and 700,000 
pixels) and the chips area. Fitting results (R2) of the error 
change rate of feature parameters difference, contrast, 
entropy, and energy with roughness are 0.9769, 0.9423, 

Fig. 5   Binarization of surface 
image

Fig. 6   Relation curve between 
the chip area and the error 
change rate of the feature 
parameters
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0.9927, and 0.9508, respectively. According to the fitting 
results, the functional relationship between the error rate 
of change of each feature parameter and the chip area can 
be obtained. The functional relationships are shown in 
Equation (3).

The above relations are all monotonic functions, and 
the independent variable and the dependent variable have 
a unique corresponding relationship. Therefore, the error 
correction model of the feature parameters is expressed in 
Equations (4) and (5).

(3)

⎧
⎪⎨⎪⎩

�dif = fdif (S) = 2.874 × 10
−3S2 + 0.5386S + 2.775

�con = fcon(S) = 4.53 × 10
−3S2 + 0.3808S + 5.45

�ent = fent(S) = 5.376 × 10
−3S2 + 0.2111S + 0.2305

�ene = fene(S) = 0.9603S2 − 17.19S + 165.9

(4)

⎧⎪⎨⎪⎩

�optimized−dif ,con,ent,ene =
�chip−dif ,con,ent,ene

1±�dif ,con,ent,ene

�dif ,con,ent,ene = fdif ,com,ent,ene(S)

S =
∑

N0pixel

(5)
{
�optimized−dif =

�chip−dif

1 − �dif

, �optimized−con =
�chip−con

1 − �con

, �optimized−ent =
�chip−ent

1 − �ent

, �optimized−ene =
�chip−ene

1 + �ene

where S is the chip area and N0pixel is the sum of particle 
areas above 10,000 pixels after image binarization process-
ing. λchip − dif, λchip − con, λchip − ent, λchip − ene are the four feature 
parameters of the image with chip interference, respectively. 
λoptimized − dif, λoptimized − con, λoptimized − ent, λoptimized − ene are the opti-
mized four feature parameters, respectively. Then, because the 
difference, contrast, and entropy decrease with chip area, the 
denominator of λoptimized − dif, λoptimized − con, λoptimized − ent in Equa-
tion (5) is negative. Because the energy increases with chip 
area, the denominator of λoptimized − enein Equation (5) is positive.

In conclusion, the error correction of image with chip inter-
ference (chip area between 50,000 and 700,000 pixels) requires 
the following process: (1) calculate the chip area of the image; 
(2) the error correction is performed using the chip area and the 
feature parameters of images with chip interference.

5.2 � Validation process of the error corrected model

The 10 groups of images in the dataset are randomly 
selected to verify the error correction model. The ver-
ification results are shown in Table 2. Compared with 

the pre-optimized feature parameters, the average error 
of contrast is 4.04%, difference average error is 5.18%, 
entropy average error is 2.51%, and energy average error 
is 8.86%. These results show that the error correction 
model has a good effect on the optimization of feature 
parameters and proves the effectiveness of the error cor-
rection model. According to the results, the proposed 
error correction model can effectively optimize the 
changed feature parameters. The error correction model 
realizes the necessary premise for the sustainable detec-
tion of surface roughness.

6 � Surface roughness prediction based 
on machine learning methods

According to the above research, the feature parameters 
changed due to interference factors being optimized by the 
error correction model, which makes it possible to suc-
cessfully use machine learning methods to predict surface 
roughness. The prediction models based on machine learn-
ing methods mainly include BP neural network model, SVM 
model, and deep convolution neural network model.

On the one hand, although the deep convolution neural 
network model can automatically extract features, it needs a 

lot of training data and high-performance computing units. 
This increases algorithm training time and hardware costs, 
which is very disadvantageous for industrial applications 
[20]. On the other hand, the deep convolution neural net-
work is suitable for feature extraction of the whole image. 
When the image surface is covered by interference factors, 
the extracted features will be invalid. Therefore, considering 
the practical application of industrial manufacturing pro-
cess, this paper takes the BP neural network model and SVM 
model as the main research object. Then, the two prediction 
models are used to predict surface roughness using the opti-
mized multi-dimensional feature parameter matrix as input. 
At the same time, the results of the two prediction models 
are compared and analyzed. Because the BP neural network 
and SVM model are widely used, their basic concepts will 
not be repeated.

6.1 � Establishment of two prediction models

6.1.1 � Establishment of BP neural network prediction 
model

The input layer of the BP neural network is the four fea-
ture parameters in the multi-dimensional feature param-
eters matrix, namely, difference, contrast, entropy, and 
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energy. The output layer is the surface roughness. The BP 
neural network selects a single hidden layer. According 
to empirical Equation (6) and experimental method, the 
optimal number of hidden layer nodes in the BP neural 
network model is 5. At the same time, the particle swarm 
optimization (PSO) algorithm is used to optimize the two 
main parameters w and m of the BP neural network (w and 
m refer to the initial weight and threshold of the optimal 
neural network respectively) [21, 22]. The optimization 
process follows two principles: one is high precision, but 
not over learning. The other is that regression data have a 
monotonic relationship with roughness.

where m is the number of input layer nodes, n is the 
number of output layer nodes, and a is the coefficient.

(6)s =
√
m + n + a, a ∈ [1, 10]

The hidden layer transfer function of BP neural net-
work is the tansig and the purelin of the output layer 
transfer function. The training function of BP neural net-
work is trainlm. The training times is set at 5000, the 
learning rate is set at 0.0005, and the minimum error of 
the training target is set at 0.00001.

6.1.2 � Establishment of the SVM model

The SVM proposed by Vapnik takes the training error as 
the constraint condition of the optimization problem and 
the minimization of the confidence range as the optimiza-
tion objective [23, 24]. At the same time, the PSO algo-
rithm is used to optimize the two main parameters c and 
g of SVM (c and g refer to penalty factor and Gaussian 
kernel function respectively). The optimization principle 
is consistent with the BP neural network process.

Table 2   Analysis of results 
after optimization of feature 
parameters

Number Chip area (pixels) Type Differences Contrast Entropy Energy (10−3)

1 122,487 Original image 2.3725 14.2208 5.7397 5.6221
Before optimization 2.1884 13.3460 5.5699 12.4654
After optimization 2.5263 14.9609 5.7793 6.2605

2 162,845 Original image 2.3162 13.5032 5.5984 7.0946
Before optimization 2.0674 12.3750 5.4114 19.8898
After optimization 2.3576 14.2000 5.7018 8.2659

3 398,087 Original image 2.4363 14.6549 5.4956 8.0806
Before optimization 1.7080 10.4351 4.4820 96.5523
After optimization 2.3979 14.4507 5.4100 8.7504

4 260,822 Original image 2.3290 14.5346 5.5002 9.5909
Before optimization 1.8319 11.1605 4.8742 42.3949
After optimization 2.2554 13.6878 5.3795 9.0045

5 410,506 Original image 2.4749 15.9826 5.4038 9.2713
Before optimization 1.6557 10.5386 4.3571 102.7221
After optimization 2.3561 14.7839 5.3106 8.7164

6 461,828 Original image 2.3748 14.7976 5.5917 7.9856
Before optimization 1.5346 9.5669 4.1915 139.3269
After optimization 2.3174 14.2149 5.3359 9.1651

7 228,417 Original image 2.3776 13.6179 5.6925 7.5654
Before optimization 1.8569 10.6458 5.0899 27.7084
After optimization 2.2259 12.7512 5.5240 7.4031

8 363,225 Original image 2.3662 14.4276 5.5263 8.0261
Before optimization 1.6937 10.4073 4.6123 81.5039
After optimization 2.2928 13.9243 5.4256 8.9716

9 575,573 Original image 2.3628 15.4192 5.2490 8.7296
Before optimization 1.2977 8.4354 3.7959 200.5781
After optimization 2.2886 14.6385 5.4376 8.1608

10 653,982 Original image 2.5769 18.5996 5.6055 7.8377
Before optimization 1.1842 8.6142 3.3826 267.7158
After optimization 2.3823 17.1353 5.3717 8.2404
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6.2 � Surface roughness prediction based on two 
prediction models

This paper conducts error correction for feature parameters 
that change due to interference factors. Therefore, both 
models were trained using the non-interference surface 
image. The multi-dimensional feature parameter matrix 
of the non-interference surface image and its roughness 
values are used as input and output for model training. 
When encountering surface images with chip interference, 
the extracted multi-dimensional feature parameter matri-
ces are optimized using the error correction model. The 
optimized multidimensional feature parameter matrices 
are separately input to the two trained prediction models 
for roughness prediction. The training of the two models 
is based on 200 non-interference sample surface images 
in the dataset. The validation of the two models is to use 
25 surface images with chip interference in the dataset.

The detection results of BP neural network model and 
SVM model are shown in Fig. 7. The relative error of the 
prediction results of BP neural network model and SVM 
model does not exceed 15%, the average relative error is 
7.91% and 8.64% respectively, and the average single detec-
tion time is 0.52 s and 0.73 s, respectively. The relative 

prediction error and time of the BP neural network model 
are better than that of the SVM model by analyzing the pre-
diction results. These results not only show that the multi-
dimensional feature parameters matrix has a good prediction 
ability for surface roughness but also prove the effective-
ness of the proposed error correction model and sustainable 
detection research from two aspects. The surface roughness 
sustainability detection process is shown in Fig. 8.

7 � System integration of surface roughness 
sustainability measurement

7.1 � Sustainability detection system

Sections 5 and 6 introduce the research process for the research 
on the sustainability detection of machined surface roughness 
under the influence of the industrial cutting environment. This 
section uses LabVIEW and MATLAB software to implement 
the system integration of this research process. The sustain-
ability detection system includes both hardware and software. 
The hardware part is the built-in image acquisition device. The 
reason for constructing the image acquisition device is that the 
laser microscope cannot be applied directly to collect surface 

Fig. 7   Prediction results of the two prediction model. a The roughness prediction results of the images with chip interference based on the BP 
neural network model. b The roughness prediction results of the images with chip interference based on the SVM model

Fig. 8   The sustainability 
detection process of surface 
roughness
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images in the actual cutting environment. The software part is 
the sustainability measurement method proposed in this paper. 
The hardware part can drive the camera to collect the image on 
the surface to be detected. The acquired images were transferred 

to the software section. The roughness detection of the image is 
performed by the software part. Among them, the quality and 
texture structure of surface images collected by laser micro-
scopes and image acquisition devices are basically the same.

Fig. 9   Image acquisition device. a Three-dimensional model of image acquisition device. b Work site of the image acquisition device

Fig. 10   The main interface of 
the software system
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7.1.1 � Image acquisition device

In order to obtain the surface image effectively in the actual 
industrial cutting environment, this section has built an 
image acquisition device. The three-dimensional model 
of the image acquisition device is shown in Fig. 9a. The 
image acquisition device is on the working site of the 
industrial manufacturing process, as shown in Fig. 9b. The 
image acquisition device is placed on the workbench of the 
machine tool without affecting the operation of the cut-
ting tool. This ensures that the device can timely obtain the 
machined surface image after completion of the process-
ing. The image acquisition device consists of a mechanical 

motion mechanism, a camera, a lens, a light source, and a 
light source controller. The main advantage of this camera 
is the automatic focusing system. The camera can automati-
cally focus and shoot even if the height of the target object 
changes. This ensures that the acquired surface will not be 
blurred due to the change in focal length. Its magnification is 
30 to 200 times. The image acquisition function of the cam-
eras is controlled by the computer. The camera is mounted 
on a mechanical motion mechanism. When the machine tool 
is working, the mechanical motion mechanism drives the 
image acquisition device away from the cutting area. When 
the spindle of the machine tool completes the work and 
leaves the cutting area, the mechanical motion mechanism 

Fig. 11   Sustainability detection 
system
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drives the image acquisition device to the surface of the 
workpiece for image acquisition.

7.1.2 � The software part

The software part is to form the proposed research method 
into a system. It is not necessary to optimize the feature 
parameters to predict surface roughness for non-interference 
surface images, but it is necessary for surface images with 
chip interference. The interface of the software system is 
shown in Fig. 10.

7.2 � Validation of the sustainability detection 
system

This part is aimed at verifying the performance of sustainabil-
ity detection systems in industrial cutting environments. The 
sustainability detection system is controlled by the computer 
to collect the surface image after the cutting of the machine 
tool is completed. In this process, 20 surface images are col-
lected and detected (10 non-interference surfaces and 10 sur-
faces with chip interference). The operation process of the 
sustainability detection system is shown in Fig. 11.

The detection results of the sustainability detection sys-
tem are shown in Fig. 12a, b. The average relative error of 
the detection results for non-interference surface images and 
surface images with chip interference is 7.00% and 8.06%, 
and the average single detection time is 0.75s and 0.96s. This 
time is the process from camera shooting to the emergence 
of roughness results. This result satisfies the error and time 
requirements of fast roughness prediction. It has been shown 
that the sustainability detection system has good practical 
performance in cutting environment. This sustainability 
detection system provides technical support for the efficient 
automatic operation of industrial manufacturing processes.

8 � Conclusion

Industrial manufacturing parts are moving towards com-
plexity, small batching, and customization, and their 
economy and safety are increasingly valued. However, the 
detection of the surface quality of the machined surface is 
increasingly faced with the influence of interference fac-
tors (chips or coolant residue) in the complex environment. 
The existing detection methods have a large error due to 
interference factors. Therefore, in order to test the normal 
surface roughness under the influence of interference fac-
tors, this paper has carried out a study on the sustainability 
detection of surface roughness.

Sustainability detection research: based on the gray level 
co-occurrence matrix, a multi-dimensional feature param-
eter matrix with strong correlation with surface roughness 
is extracted and constructed. Then, the adverse changes 
of image feature parameters caused by interference fac-
tors (chips) are quantitatively analyzed. Further, the error 
correction model is constructed by using the relation-
ship between chip area and error change rate of feature 
parameters, which realizes the optimization of the changed 
characteristic parameters. Finally, the BP neural network 
model and the SVM model are respectively used to predict 
surface roughness with the optimized multi-dimensional 
feature parameters matrix as the input, which verifies the 
effectiveness of the proposed error correction model and 
sustainability detection method.

Integration of sustainability detection system: LabVIEW 
software and MATLAB software are used for software sys-
tem integration of sustainability detection research. The 
sustainability detection system is verified by using non-
interference surface images and surface images with chip 
interference in the environment of the actual cutting pro-
cess. The average relative error of validation results for 
non-interference surface images and surface images with 

Fig. 12   Detection results of sustainable detection system. a Roughness detection results for non-interference surface images. b Roughness detec-
tion results for surface images with chip interference
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chip interference is 7.00% and 8.06%, and the average sin-
gle detection time is 0.75s and 0.96s. These results prove 
the effectiveness and practicability of the sustainability 
detection system. This sustainability detection system real-
izes the rapid, anti-interference, and accurate detection of 
surface roughness in the industrial cutting process.
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