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Abstract
This study aims to elaborate on the production of a nanostructured Fe-Si alloy with varying silicon concentrations and how 
it can enhance the magnetic properties of the alloy. In order to achieve this, the mechanical alloying technique was employed 
to create the nanostructured alloy. After the mechanical ball milling process, the morphological, structural, and magnetic 
properties of the alloy were thoroughly analyzed using advanced techniques such as scanning electron microscopy (SEM) 
coupled with energy-dispersive spectroscopy (EDS), X-ray diffraction (XRD), and vibrating sample magnetometer (VSM). 
The results from these techniques revealed significant changes in the properties of the alloy. One of the major findings of this 
study was the appearance of Fe3Si phase, commonly known as Suessite, after the mechanical milling process. This indicates 
that the milling process caused a transformation in the crystal structure of the alloy. Additionally, an increase in silicon 
concentration led to a reduction in crystallite sizes, which was observed through the XRD analysis. Furthermore, the lattice 
strain and lattice parameters of the alloy were observed to increase with increasing silicon concentration until it reached 3%. 
After this point, the value of the lattice parameter remained constant, indicating that further increases in silicon concentra-
tion did not significantly impact the lattice structure of the alloy. The FTIR analysis revealed the presence of a distinct band 
at 1070 cm−1, indicating the occurrence of stretching vibrations associated with Fe-Si bonds. The milled samples exhibit 
improved magnetic properties, with increased saturation magnetization values observed as the silicon concentration increased.
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1  Introduction

Nanostructured materials have captured the attention of 
researchers due to their remarkable properties, surpass-
ing those of conventional materials [1, 2]. These materi-
als exhibit impressive combinations of strength, toughness, 
and magnetic and mechanical properties [3–5]. Recently, 
there has been an increased interest in producing bulk 

nanocrystalline parts, leading to the development of various 
processes [6, 7]. Of particular significance is the produc-
tion of nanocrystalline materials using mechanical alloy-
ing, which has been the subject of intense research over the 
past decade [8, 9]. Mechanical alloying has proven to be a 
successful technique for producing nanostructured materials 
[10], offering significant potential for magnetic applications. 
The utilization of nanostructured FeSi is justified due to its 
remarkable properties, which encompass high saturation 
magnetization, low coercivity, and exceptional soft mag-
netic behavior; these distinctive characteristics make FeSi 
alloy an ideal choice for various applications [11–13]. These 
characteristics make FeSi a promising candidate for various 
technological applications, such as magnetic sensors, trans-
formers, and motors. Furthermore, the nano-structuring of 
FeSi can further enhance these properties, making it an even 
more attractive material for use in advanced technological 
applications [14, 15].
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The aim of this study is to synthesize nanostructured 
Fe-Si alloys with varying silicon concentrations (ranging 
from 1 to 6%) and investigate their magnetic properties. The 
primary objective is to examine how changes in the sili-
con concentration affect the structural properties and mag-
netic behavior of the alloy when subjected to a mechanical 
alloying process. The study will employ advanced charac-
terization techniques such as scanning electron microscopy 
(SEM), energy-dispersive spectroscopy (EDS), X-ray dif-
fraction (XRD), and vibrating sample magnetometer (VSM) 
to analyze the morphological, structural, and magnetic 
properties of the Fe-Si samples. By exploring the relation-
ship between the silicon concentration, crystal structure, 
and magnetic properties of the alloy, this research aims to 
develop a deeper understanding of how nanostructuring 
and varying silicon content can influence the performance 
of Fe-Si alloys. The ultimate goal is to provide valuable 
insights for the development of Fe-Si alloys with enhanced 
magnetic properties, which hold significant potential for 
applications in magnetic devices and related fields.

2 � Materials and experimental procedures

In this study, Fe-Si nanostructured alloys were fabricated 
using the mechanical alloying process. The preliminary pow-
ders used in this process have a mean particle size of 60 μm 
for both Fe and Si. The powders were then milled in a plane-
tary ball mill PM400 for 20 h under a controlled atmosphere 
using hard chromium balls. The obtained alloy compositions 
were Fe100-xSix (where x = 0, 3, 4, 5, and 6), with a mass 
ratio of 1:20. Chemical bond changes were assessed using 
ATR spectroscopy (Agilent CARY 360 SPECTROMETER) 
over a wavenumber range of 400 to 4000 cm−1, employing 
a resolution of 4 cm−1 and a minimum of 32 scans. To char-
acterize the obtained milled samples, advanced techniques 
were utilized, including Gemini scanning electron micros-
copy (SEM) attached with energy-dispersive X-ray analysis 
unit (EDX), X-ray XPERT PRO diffractometer using Co Kα 
radiation, and micro-sense vibrating sample magnetometer 
with a maximum applied field of 22 kOe. These techniques 
enabled the examination of the morphological, structural, 
and magnetic properties of the alloy.

3 � Results and discussion

3.1 � Powder structural state

The X-ray diffraction analysis of the samples subjected to 
mechanical milling is presented in Fig. 1, which depicts the 
various phases detected during the process. The characteri-
zation results reveal that the peaks corresponding to Si have 

vanished for different silicon concentrations after 20 h of 
milling. Interestingly, the X-ray diagram reveals the pres-
ence of only intermetallic structures Fe3Si peaks. This find-
ing aligns with prior studies that have similarly documented 
the emergence of an Fe3Si phase throughout the mechani-
cal alloying procedure of the FeSi alloy [16–20]. Similarly, 
Grognet et al. found the formation of Fe3Si phase using the 
rapid quenching technique [21, 22]. The consistency of these 
findings underscores the importance of the Fe3Si phase in 
the mechanical milling process and its potential applications 
in the development of new materials.

The crystallite size (D) and lattice strain (ε) were 
determined by analyzing the full width at half maximum 
(FWHM) using the Scherrer equation, as shown in Eqs. 1 
and 2, respectively [23, 24]. These calculations are crucial 
in understanding the physical properties of the materials 
under investigation, as they provide valuable informa-
tion on their microstructural characteristics. The Scherrer 
equation is a widely accepted method for calculating the 
crystallite size and lattice strain, which has been exten-
sively used in various research studies owing to its accu-
racy and reliability. Therefore, by utilizing this equation, 
the researchers were able to obtain vital information on the 
microstructure of the materials, which can help in eluci-
dating their physical and chemical properties.

where D is the average crystallite size, ε is lattice strain, 
λ is the wavelength of X-ray radiation (λ = 1.78901 Å), K 

(1)D =
K�

FWHM tan �

(2)� =
FWHM

4 tan �

Fig. 1   X-ray diffraction analysis of the FeSi alloy as a function of 
varying silicon concentrations
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is the Scherrer constant (K = 0.89), θ is the Bragg diffrac-
tion angle, and FWHM is the full width at half maximum

In the grinding process of nanostructured materials, the 
broadening of peaks observed in X-ray diffraction (XRD) 
results is attributed to two factors: the reduction in crystallite 
size and the increase in lattice strain [25–27].

To determine the lattice parameter (a) of the Fe3Si phases, 
the researchers utilized Eq. 3 [22, 23], which is specifically 
designed for calculating the lattice parameter of the (110) 
plane. This approach is particularly useful in elucidating 
the crystal structure of the material and can provide critical 
insights into its properties. The (110) plane is an essential 
crystallographic orientation, and its lattice parameter is often 
used as a key indicator of the quality and performance of the 
material. By utilizing this equation, the researchers were able 
to obtain precise measurements of the lattice parameter, which 
helped them to better understand the structural characteristics 
of the Fe3Si phases. Furthermore, these findings can aid in 
the development of novel materials with improved properties 
by providing valuable information on their crystal structures.

Figure 2 depicts the evolution of crystallite size and lat-
tice strain for an FeSi alloy subjected to 20 h of milling at 
different silicon concentrations, specifically at the principal 
peak (110). The results indicate a rapid reduction in crystal-
lite size from 0 to 3% Si concentration, followed by a gradual 
decrease from 3 to 6% Si concentration. This trend can be 
attributed to the enhanced crystallized volume fraction with 
increasing silicon content, leading to a smaller average size of 
the crystallites. Conversely, lattice strain experiences a rapid 
increase up to 3% Si concentration, followed by a slower 
increase beyond 3%. The initial spike can be attributed to the 

(3)1
d2

=
h2 + k2 + l2

a2

formation of Fe3Si phase, whereas the subsequent increase 
is due to dislocations in the crystal lattice induced by the 
severe plastic deformation during milling. The high density 
of dislocations triggers lattice distortion, thereby affecting 
the lattice strain [28–30]. Overall, the data in Fig. 2 suggest 
that the crystallite size and lattice strain of FeSi alloy are 
highly dependent on the silicon concentration, as well as on 
the extent of plastic deformation induced by milling.

Figure 3 illustrates the variation of lattice parameters 
as a function of different silicon concentrations. The curve 
can be divided into two parts: the first part ranges from 0 to 
3% Si concentration, where the lattice parameters increase 
rapidly. This trend can be attributed to the insertion of Si 
atoms into the lattice of Fe, leading to a lattice expansion. 
In the second part, there is no significant change in the 
lattice parameters of Fe-Si alloy, which suggests that the 
lattice structure reaches a stable state beyond a certain Si 
concentration. The lattice parameter value obtained from 
the curve is 0.286 nm, which corresponds to a Si concen-
tration in Fe-Si alloy of approximately 3–6 wt% [31, 32].

These findings provide crucial information for design-
ing and optimizing Fe-Si alloys with specific lattice struc-
tures and properties. In summary, the results from Fig. 3 
demonstrate the effect of silicon concentration on the lat-
tice parameters of Fe-Si alloys. The observed trends can 
be attributed to the insertion of Si atoms into the lattice, 
leading to changes in the lattice expansion. These findings 
have implications for a wide range of applications that rely 
on the properties of metallic alloys [33, 34].

3.2 � FTIR analysis

Figure 4 displays the FTIR spectra of Fe and Fe-Si sam-
ples. The spectral analysis of various FeSi samples exhibits 

Fig. 2   Variation of crystallite size and lattice strain as a function of 
different silicon concentrations

Fig. 3   Variation of lattice parameters as a function of different silicon 
concentrations
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remarkable similarity, although minor differences can be 
observed in the details. These differences may be attributed 
to variations in the preparation conditions, Fe/Si ratios, and 
surface structural variances among the Fe-Si oxides. Across 
all the spectra, prominent absorption bands were observed at 
approximately ~3442, ~3026, ~2925 ~2614, ~2323, ~2115, 
~1725, ~1636, ~ 1497, ~1380, ~1245, and ~1070 cm−1.

In the study conducted by Lefki et al. [35], a band at 
1070 cm−1 was identified, corresponding to the stretching 
vibrations of Fe-Si. Niyonshuti et al. [36] demonstrated that 
the peak observed at 1497 cm−1 can be attributed to the 
shearing vibration of N-H bonds. Additionally, the signals 
at approximately 3442 cm−1 and 1636 cm−1 were assigned to 
the stretching vibration absorption of O-H bonds from water 
and ethanol molecules [37, 38]. Nguyen et al. [39] concluded 
that the carbonyl peaks of citric acid shifted to 1725 cm−1 
upon reaction with the silicon nanoparticle surface, indicat-
ing the conversion to silyl esters (-Si-O- C(O)-C-). Poljansek 
et al. [40] observed several characteristic peaks in the infra-
red spectrum, including an unsaturated C-H stretching peak 
at 3026 cm−1 and a phase stretching vibration of CH2-alkane 
at 2925 cm−1. Furthermore, the presence of O-H groups was 
in indicated by a peak at 1380 cm−1, and a peak at 1245 
cm−1 indicated the presence of Si-CH3 groups.

3.3 � Powder morphology

Figure 5 presents the morphological features of the FeSi 
alloy subjected to 20 h of milling at different silicon concen-
trations. After 20 h of milling, the particles of all samples 
exhibited irregular shapes and were flattened with varying 
sizes. This morphology can be attributed to the severe plastic 
deformation induced by milling.

Notably, the silicon particles were welded and fractured 
with iron particles to form a nanostructured FeSi alloy. 

The nanostructure of the Fe-Si alloy can be attributed to 
the reduction in grain size induced by milling. In particu-
lar, the mean grain size of the Fe–Si binary alloy is smaller 
than that of pure iron and pure silicon. The reduced grain 
size and increased grain boundary area of the nanostruc-
tured FeSi alloy could enhance its mechanical properties, 
such as strength and hardness. Overall, the morphological 
analysis presented in Fig. 4 provides further insights into 
the microstructural evolution of FeSi alloys under milling. 
These findings have important implications for the design 
and optimization of metallic alloys with specific morpho-
logical and microstructural features [41–44].

3.4 � EDS analysis

Figure 6 displays the energy-dispersive X-ray spectroscopy 
(EDS) spectrum of FeSi alloys with varying silicon concen-
trations from 0 to 5 wt%. The spectrum features different 
chemical elements with varying concentrations that consti-
tute the mixture in the FeSi alloy. The EDS analysis confirms 
the presence of the main elements in the alloy without any 
significant contamination or impurity. The EDS spectrum 
provides valuable information about the elemental composi-
tion of the FeSi alloys. Specifically, it can identify the pres-
ence of minor elements and impurities that may affect the 
properties of the alloy. Additionally, the EDS spectrum can 
be used to quantify the relative concentrations of different 
elements, which is critical for alloy design and optimization. 
In summary, the EDS analysis presented in Fig. 6 confirms 
the elemental composition of the FeSi alloy and provides 
important information for alloy characterization and optimi-
zation [45, 46]. These findings have important implications 
for the development of metallic alloys with specific chemical 
and elemental features.

3.5 � Magnetic characterization

The magnetization versus magnetic field curves, M(H), for 
the as-milled nanostructured FeSi alloy powders are pre-
sented in Fig. 7. These curves show the characteristic hys-
teresis loops of a ferromagnetic material, indicating that 
the material is ferromagnetic. The curves were obtained by 
measuring the magnetization of the powders at room tem-
perature and varying the applied magnetic field.

The graph in Fig. 8 illustrates that the saturation magneti-
zation of the FeSi alloy decreases as the Si content increases. 
This phenomenon can be explained by the presence of dia-
magnetic Si ions in close proximity to Fe ions, which leads 
to a reduction in the overall magnetic moment of the mate-
rial. The Si ions do not possess any unpaired electrons, 
which makes them diamagnetic and their presence causes 
a disruption in the ferromagnetic ordering of the Fe ions. 
As a result, the magnetic moment of the alloy is weakened, Fig. 4   FTIR spectra of Fe and FeSi milled powder alloy
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leading to a decrease in the saturation magnetization. This 
finding is consistent with the previous literature, which has 
also reported a similar trend between the Si content and the 
saturation magnetization of FeSi alloys [47–49].

Figure 8 illustrates the variation of coercivity as a func-
tion of Si content. It is observed that the coercivity of FeSi is 
significantly higher than that of Fe. However, it is important 
to note that several factors can influence the coercivity of the 
material. The previously discussed lattice strain, as well as 
underestimation of grain size and uniformity, can all affect 
the coercivity. The research by Li et al. demonstrates that the 
grain size, grain size distribution, and grain boundary chem-
istry can all have a significant impact on coercivity [50, 51]. 
The presence of defects such as dislocations, grain bounda-
ries, inclusions, and voids can also contribute to coercivity. 
In polycrystalline materials, the interaction of domain walls 
with grain boundaries is a major factor that influences coer-
civity. As the grain size decreases, the larger volume fraction 

of grain boundaries leads to an increase in coercivity due to 
the impeding effect of boundaries on domain wall (Bloch 
wall) motion. It is worth noting that the magnetocrystalline 
anisotropy has a reduced effect on minimizing coercivity in 
this case [52, 53].

The magnetization remanence (Fig. 9) of FeSi is larger 
than Fe because of the presence of Si atoms in the alloy. As 
Si is introduced into the Fe lattice, it creates local magnetic 
moments that are opposite in direction to the Fe moments. 
This results in a reduction of the net magnetic moment of 
the Fe atoms, which decreases the overall magnetization of 
the alloy.

However, the presence of these Si-induced moments in 
FeSi also causes an increase in the magnetization rema-
nence, as these moments tend to align with the external 
magnetic field and maintain their orientation even after the 
field is removed. The magnetization remanence of FeSi var-
ies with changes in Si content. As the Si content increases, 

Fig. 5   Morphology of the FeSi 
alloy milled at 20 h for different 
silicon concentration: a Fe, b 
Si, c Fe-3%Si, d Fe-4%Si, e Fe-
5%Si, and f Fe-6%Si
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Fig. 6   EDS spectrum of nanostructured FeSi alloy with different silicon concentration

Fig. 7   Hysteresis loops of the nanostructured FeSi alloy milled at 20 
h for different Si concentration

Fig. 8   Coercivity and magnetization saturation changes of the nano-
structured FeSi alloy milled at 20 h for different Si concentration
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the magnetization remanence initially increases due to the 
aforementioned effect of Si-induced moments. However, at 
higher Si concentrations, the magnetization remanence starts 
to decrease, as the diamagnetic Si ions begin to disrupt the 
ferromagnetic ordering of the Fe ions, leading to a reduction 
in the overall magnetic moment of the alloy. Therefore, the 
variation of Si content can have a significant impact on the 
magnetization remanence of FeSi [54, 55].

4 � Conclusion

In conclusion, this study successfully demonstrated the 
production of a nanostructured Fe-Si alloy with varying 
silicon concentrations and its consequent enhancement of 
magnetic properties through mechanical ball milling. Uti-
lizing advanced techniques, the analysis of the morphologi-
cal, structural, and magnetic properties of the alloy yielded 
significant changes, including the appearance of the Fe3Si 
phase after the milling process, indicating a transformation 
in the crystal structure of the alloy. Furthermore, increas-
ing the silicon concentration led to a reduction in crystallite 
sizes and lattice strain, with lattice parameters observed to 
increase until reaching 3%, beyond which further increases 
did not significantly impact the lattice structure. The FTIR 
analysis clearly demonstrated the existence of a prominent 
band at 1070 cm−1, unequivocally indicating the presence 
of robust stretching vibrations attributed to the Fe-Si bonds. 
This finding provides valuable insights into the molecular 
composition and structural characteristics of the investigated 
material, further enriching our understanding of the Fe-Si 
system. The milled samples exhibited improved magnetic 
properties, with increasing saturation magnetization values 
observed with higher silicon concentration. These findings 
provide valuable insights into the relationship between the 

structural and morphological properties of Fe-Si alloys and 
their magnetic behavior, thereby offering a foundation for 
the development of enhanced magnetic devices.
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