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Abstract
Al–Zn–Mg–Cu alloys of the 7xxx series have superior strength in their maximum aging condition (T6) compared to other 
age-hardenable aluminum alloys. Here, a comparative study of the corrosion susceptibility of AA7075-T6 aluminum alloys 
was performed under two heat treatments. A 5% NaCl salt solution at a temperature of 40 °C and neutral pH in the salt spray 
chamber was used to evaluate the microstructure and corrosion behavior of the aluminum alloy. The samples underwent two 
heat treatments; one included quenching solution using heat treatment at 475 °C, and the other included aging for 4 days. 
Several tests such as Vickers hardness test, optical microscope, SEM, as well as tensile test were used to study the character-
istics of this alloy. The surface characteristics, including refined microstructure and residual stresses, were characterized, and 
their effect on localized corrosion was studied. The maximum strength value of the sample that underwent aging decreased 
by 24.85%, yet an increase was noticed for elongation of 18%. Pitting was more severe for the quenching treatment than for 
the aging and control treatments. This could be attributed to the formation of fine ή-phase precipitates that are fully coherent 
or partially coherent; the aging treatment improves the corrosion resistance due to the smaller size of the corrosion product 
after the specimen was etched in different areas.
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1 Introduction

Applications for high-strength aluminum alloys are com-
mon in the construction, automotive, aerospace, and defense 
industries. Alloy AA7075 is a high-strength aluminum alloy 
from the 7000 family that is based on the Al-Zn-Mg sys-
tem. Mg and Zn combine to generate strengthening precipi-
tates such as  MgZn2 and  Mg3Zn, which enhance the alloy’s 
mechanical qualities. The “phase” (semi-coherent  MgZn2) 
that precipitates inside the grain and the “phase” (incoherent 
 MgZn2) that precipitates along the grain boundary are what 
give it its strength [1–3]. A 7075 aluminum alloy is utilized 
in aircraft applications due to its high strength-to-density 
ratio, corrosion resistance, and high fracture toughness.

Aluminum structures used in aircraft suffer from pitting 
corrosion, a degrading mechanism that compromises their 

dependability, toughness, and integrity [4–10]. The  MgZn2 
strengthening particles (g0 and g phases) that contribute to 
the high strength of 7xxx alloys during T6 temper aging dis-
solve as a result of solution heat treatment [11, 12]. When 
the alloy is rapidly quenched from the solution treatment 
temperature to ambient temperature, the dissolution of 
 MgZn2 strengthening particles produces a matrix enriched 
with solute atoms like Zn, Mg, and Cu, which results in the 
presence of supersaturated solid solutions [13–15]. Alloys 
composed of Al, Zn, Mg, and Cu, such as AA7075, are sus-
ceptible to severe localized corrosion like pitting, intergranu-
lar corrosion, and spalling [16].

Heat treatment, which modifies the alloy’s microstruc-
ture to produce ideal mechanical properties, has a significant 
impact on these alloys’ sensitivity [10, 17]. Al–Zn–Mg–Cu 
alloy applications in the aerospace sector are complicated by 
some microstructures’ limited resistance to localized corro-
sion. Pitting is supposed to happen to airplane parts when the 
aircraft is idle in between flights; it is unlikely to happen while 
the aircraft is in flight because of the freezing temperatures 
at high altitudes. Pitting is caused by either local matrix dis-
solution or intermetallic compound dissolution as a result of 
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galvanic interaction between the intermetallic compound and 
the matrix [18].

Among the Al–Zn–Mg–Cu alloys, AA7075 has received 
the most attention because the aerospace sector uses it so fre-
quently. Intermetallic complexes and reinforcing particles can 
be found in the microstructure of AA7075 [10, 12]. Interac-
tion between alloying elements and alloy impurities causes 
intermetallic compounds to develop during casting and ingot 
homogenization [16]. They range in size from 1 to 20 µm. 
The most prevalent intermetallic compounds in AA7075 are 
 Al7Cu2Fe and (Al, Cu)6 (Fe, Cu), while  Mg2Si intermetal-
lic compounds are less common [17, 19]. Intermetallic com-
pounds go through phase transitions and change shape during 
ingot homogenization, but solution heat treatment and alloy 
aging have little effect on them [20, 21].

Research has shown the importance of studying the effects 
of heat treatments on aluminum alloy AA7075. N. M. Siddesh 
Kumar et al. have shown that precipitation-hardening alloys of 
the 7XXX family increase tensile strength, fracture toughness, 
and hardness while reducing ductility, elongation, toughness, 
and stress corrosion cracking. Retrogression and re-aging, 
with microstructure, precipitates comparable to those in the 
T6 condition and excessive aging in the T7 condition, are used 
to arrest stress corrosion cracking [22]. Marta Orlowska et al. 
showed that the size of MgZn2 precipitates within the micro-
structure increased following artificial aging, and changes 
in the chemical composition of the matrix improved corro-
sion resistance. Due to the position of precipitates at grain 
boundaries, which did not strengthen the material, variations 
in mechanical strength as a function of aging temperature were 
not significant [23]. Gang Wang et al. methodically studied 
precipitates and their development on AA7075-H18 alloy 
sheets during the solution setting process. Insoluble particles, 
such as Al23CuFe4 and Mg2Si, and soluble particles, such as 
-MgZn2, were found to be uniformly distributed in the H18 
alloy sheet. The solution temperature should be set between 
470 and 505 °C to ensure complete dissolution and avoid over-
heating [24].

The strength of AA7075 alloy is enhanced by various heat 
treatments. The T6 heat treatment applied to this alloy is one 
of the most important means of improving the alloy’s mechani-
cal properties, both by solid solution heat treatment and aging 
treatment [25]. The potential advantages of the heat treatment 
effect in terms of mechanical and microstructural qualities, as 
well as corrosion behavior, have only been briefly examined 
in a few studies. As a result, the purpose of this paper is to 
offer a thorough examination in this direction. This work rep-
resents an attempt to clarify the effect of heat treatment on the 

corrosion resistance and mechanical properties of AA7075-
T6 aluminum alloys under two different treatments (quench-
ing and aging). This study is based on SEM–EDS and optical 
microscope as well as microhardness and tensile tests to study 
the evolution of the behavior of this alloy.

2  Materials and methods

2.1  Material

Aluminum alloy 7075-T6 (AA7075-T6) is widely used in engi-
neering. This alloy has good mechanical properties, such as a 
high specific strength comparable to that of high-strength steel. 
It offers the possibility of significant weight reduction, which 
is vital in certain applications [26]. The chemical composition 
of the studied alloy AL 7075-T6 is shown in Table 1.

2.2  Methods

2.2.1  Salt spray test

Use an ISO 9227 salt spray container for spraying salt on the 
samples in line with ASTM B117, which is an industry stand-
ard. The temperature of the container was maintained at 40 °C, 
and the salt mist solution was 5.0 w% sodium chloride with a 
neutral pH. The metal was exposed to 40 cycles for 3 h each.

2.2.2  Heat treatment

The heat treatments undergone by the AA7075-T6 alloy are 
presented in the following table (Table 2).

2.3  Micrography

2.3.1  Optical microscopy

Measurements of phase and substructure were performed 
using an OLYMPUS BX60 optical microscope. (OM). Before 
being incised for 15 s with Keller’s solution, the samples were 
polished to 400, 600, 800, 1000, and 1200, then with 6-µm 
diamond paste, and finally to micron. (190 ml water, 2 ml 
hydrofluoric acid, 3 ml hydrochloric acid, and 5 ml nitric acid).

2.3.2  Scanning electron microscope (SEM)

Using the JSM-IT500HR model, the structure of intermetal-
lic particulates was examined during different heat treatment 
stages both before and after corrosion.

Table 1  Chemical compositions 
of AA 7075-T6

Element Zn Mg Cu Fe Si Mn Al

Composition% 6.2 2.0 1.7 0.5 0.4 0.1 Bal
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2.4  Characterization

2.4.1  Microhardness

Vickers microhardness testing was performed on each sam-
ple to evaluate its tensile properties. The sample is polished 
from 400 to 1200 grain, stopping at 6 µm and then measured 
with a forced weight of 100 g for 15 s. Hardness measures 
each sample at least ten times to determine the typical Vick-
ers hardness.

2.4.2  Tensile test

The 1.60-mm-thick AA 7075-T6 substance was used in the 
study shown in Fig. 1. Tension experiments were carried 
out on an Instron Zwick 50KN universal testing apparatus 
to evaluate the yield strength (YS), ultimate tensile strength 
(UTS), and elongation to failure (% EL). The test was carried 
out at room temperature 21 °C at a 50 ± 5% humidity and 

crosshead speed of 1.5 mm/min in accordance with ASTM 
B557 [27]. The 0.2% proving stress, UTS, and % EL were 
determined using the stress–strain diagrams.

3  Results and discussion

3.1  Morphology of aluminum alloys

3.1.1  Temperature effect on the microstructure 
of AA7075‑T6

The optical microscopy results for the heat-treated samples 
at 100 magnification are shown in Fig. 2.

The morphology of the grains of the alloys was stud-
ied by observation using an optical microscope after 
etching the surface with Keller’s reagent, which allows 
highlighting, the presence of the coarse intermetallic 
precipitates, and the intermetallic particles. The alloy 
is heated to a temperature higher than the solvus tem-
perature (475 °C) for 40 min, a sufficient time to reach 
thermodynamic equilibrium and thus obtain a total solu-
tion of the solute atoms. Then, the quenching operation 
(rapid cooling of the alloy in cold water) prevents the 
decomposition of the solid solution with the formation 
of coarse equilibrium precipitates of the η-phase, which 
is shown in image (b). A solute supersaturated solid 
solution is obtained where the solute atoms are randomly 
positioned at the nodes of the face-centered cubic lattice 
of the aluminum (this is referred to as a substitutional 

Table 2  Heat treatment 
conditions of aluminum alloys 
7075-T6

Heat treatment Temperature and hold-
ing time

Cooling medium Temperature and holding time

AA7075-T6 B 475 °C 40 min Cold water __________
AA7075-T6 C 475 °C 40 min Cold water Ambient temperature 4 days

Fig. 1  Aluminum alloy 7075-T6 tensile test specimen

Fig. 2  Micrographs of material AA7075-T6. (a) Blank sample alloy. (b) Sample of tempering. (c) Sample of aging at 100 magnification
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solid solution). Image (c) depicts the smaller GP areas 
disappearing during the maturation of the alloy. Scan-
ning electron microscopy observations coupled with 
EDS analysis represented by Figs.(3)and (4)showed the 
nature of the particle types.

Figures (3)and (4) display the results from the EDS 
analysis and scanning electron microscopy respectively. 
The SEM studies for the 7075-T6 alloys in their unpro-
cessed condition (picture a) have shown the existence 
of three coarse intermetallic particles with different 
morphologies and chemical compositions. Addition-
ally, there are mixed intermetallic particles, which are 
composed of several precipitates with various chemical 
characteristics and have separate phases. The Al-Cu-Mn 
type of intermetallic particle is the first and most abun-
dant type. These precipitates are extensively dispersed 
throughout the surface of the 7075-T6 alloys and have an 
erratic form. The second type of particle found in alloy 
7075-T6 is also asymmetrical in shape, occasionally tak-
ing the shape of rods. They mostly consist of Al, Mg, 
and Zn. Their composition can be identified as MgZn2 
phases by EDS analysis. These particles are real, accord-
ing to other authors [28]. The brightest zones, which are 
abundant in Al, Fe, Si, and Mn, correlate to intermetallic 
particles, according to quantitative EDS analysis. Inside 
the matrix and close to the grain boundaries, intermetal-
lic particles are visible [29]. The alloy in image (b) has 
undergone rapid cooling; at this point, a supersaturated 
solid solution has been created, which accounts for the 
formation of coarse equilibrium precipitates of the phase 

in the microstructure. We also note that the distribution 
of this new phase is heterogeneous. According to the 
EDS results for image (c), the microstructure contains 
MgZn2 precipitates; the four points can be regarded as 
Zn-rich regions. The alloy’s strength has been improved 
most noticeably by the second phase precipitates. In 
the second phase of the AA7075-T6 alloy’s structure, 
precipitates such Al7Cu2Fe, Al2CuMg, and MgZn2 
are produced, according to a prior study [30]. Adeyemi 
Dayo Isadare et al., explained the formation of MgZn2 
microsegregations during progressive solidification of 
aluminum alloy 7075 due to the redistribution of Mg 
and Zn solutes, but this phenomenon was suppressed 
during rapid solidification. However, the microsegrega-
tions formed during progressive cooling are dissolved 
to form a homogeneous phase during the quenching 
period of heat treatment operations. The age-harden-
ing heat treatment operation resulted in the formation 
of small, dispersed, and finely uniform precipitates of 
MgZn2 in the aluminum matrix, while large grains of 
the MgZn2 phase were formed in the aluminum matrix 
after the annealing heat treatment operation [31]. Due 
to the aging treatment’s role in demonstrating the mate-
rial’s durability, the second phase (MgZn2) precipitates 
are generated in the structure [32–34]. The hardening 
precipitates are formed and distributed throughout the 
matrix via proper heat treatment: supersaturated solid 
solution followed by aging. The principal precipitation 
sequence that dominates hardening in most commer-
cially used 7XXX alloys is presented in Eq. (1):

Fig. 3  SEM photomicrograph 
of alloy AA7075-T6. (a) Blank 
sample alloy. (b) Sample of 
tempering. (c) Sample of aging
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Fig. 4  EDS spectra of different 
zones in (a) blank sample alloy, 
(b) tempering, and (c) aging

(a) blank sample alloy

(b) tempering

(c) aging

A

B

C

a
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where SSSSα represents a supersaturated solid solution,
GP zones are Guinier–Preston zones,η 0 is a metasta-

ble phase (with an Mg:Zn ratio in the range from 1:1 to 
1:1.15),and η is a stable MgZn2 phase. MgZn2 plays the 
most significant role in the precipitate hardening process 
[35–37].

Figure 4 shows the change in hardness of AA7075 after 
quenching, followed by aging treatment.

3.2  Heat treatment effect on the microhardness 
of the AA7075

Figure 5 shows the hardness of six AA7075-T6 alloy sam-
ples: blank sample, tempering after 40 min at 475 °C, and 
one mature sample for 1 day, 2 days, 3 days, and 4 days. 
The test was submitted to a load force of 100 g for 15 s after 
polishing samples from 400 to 1200 grains and finishing pol-
ishing at 6 µm and 3 µm. The hardness tests were repeated 
at least ten times for each of the samples to calculate the 
average hardness of Vickers.

The average hardness results of AA7075-T6 alloy are 
shown in Fig. 5. The quenching heat treatment results in 
a significant decrease in hardness because of the forma-
tion of compounds and precipitated elements in the solid 
solutions, and the strength of the alloy increases, while a 
noticeable improvement in hardness can be observed in the 
maturation treatment after 4 days which is purely due to 
the formation of fine precipitates of the ή phase which are 
fully coherent or partially coherent. This partial coherence 

(1)SSSS ∝ → GP zones → η 0 → η creates a stress field that hinders the dislocation increase 
in microhardness.

3.3  Fracture morphology

The SEM studied fracture characteristic of AA 7075-T6 
alloy which underwent quenching treatment and aging treat-
ment are presented in Fig. 6.

The control 7075-T6 aluminum alloy (A) fracture mor-
phology displays high and low steps, tearing ridges with 
significant plastic deformations, large and small holes, and 
other mixed ductile and brittle fracture characteristics. After 
quenching, the alloy AA7075-T6 (B) exhibits a rise in the 
number of dimples, leading to the appearance of holes of 
various sizes. The number of dimples has increased when 
comparing Fig. 6 (C) and (A), which is related to the reduc-
tion in particle size and is consistent with the literature [21]. 
As these were the places of the nucleation of cavities, which 
can result in the formation of dimples, it suggests that the 
size and eventually the number of dimples are linked to the 
grain size and dislocations. Inferred from this is that older 
AA7075-T6 is less prone to rust than control AA7075-T6. 
Heat treatment can enhance the corrosion resilience of 
the metal. This is a result of the Al-Zn alloy’s crystalliza-
tion process, which can be summed up as follows:α (solu-
tion solide sursaturée solution) → zone G.P. → phase η′ 
(MgZn2) → phase η (MgZn2) [35, 36, 38].

The G.P. region, which contains Mg and Zn elements, is a 
spherical atomic segregation area. At the Al matrix’s crystal 
surface, the cylindrical Mg and Zn atoms separate. The Al 
matrix and the Al matrix are identical. Phase η′ this is a 

Fig. 5  Evolution of the hard-
ness of the AA 7075-T6 blank 
sample alloy, tempering, and 
aging for 1 day, 2 days, 3 days, 
and 4 days
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transitional phase made of MgZn2, which forms a full half-
lattice in the matrix and has a hexagonal configuration in the 
Al matrix. The precipitation zone (PFZ), which grew notice-
ably bigger with the rise in grain size, is where the corrosion 
resistance ends. The alloy maintains its high toughness and 
strong corrosion protection as a consequence [39].

3.4  Tensile properties

The stress–strain curves of AA7075-T6 after different heat 
treatments are shown in Fig. 7.

Figure 7 illustrates the properties of the AA7075-T6 (A) 
alloy in the raw sample, including its tensile strength of 
499 MPa, 462 MPa YS, and 13% elongation. 477.63 MPa 
UTS, 299.20 MPa YS, and 22.47% elongation for sample 
AA7075 (C), which has undergone aging, quenching of 
AA7075-T6(B) resulted in a 375 MPa reduction in ten-
sile strength and an 18% increase in elongation. The con-
trol sample (A) exhibits the highest ultimate tensile and 
yield strengths, followed by sample (C), which received 
5-day aging, and sample (B), which underwent rapid water 
cooling, according to the findings of the mechanical test-
ing shown in Fig. 7. The other sample’s grain sizes vary, 
which is the cause of the trend shown in their hardness 
and strength. This is consistent with Kenji et al.’s find-
ings, which show that solid solution and grain refinement 
play a role in the hardening of Al–Mg alloys. Additionally, 
earlier research has demonstrated that materials with finer 
grains have more grain boundaries and are tougher and 

stronger than materials with coarser grains, which have 
fewer grain boundaries [40, 41]. Age-hardened materi-
als are harder and stronger because there are more grain 
boundaries than samples that have undergone rapid cool-
ing, which creates more barriers to dislocation migration 
during deformation. According to the Hall–Petch relation-
ship, the yield stress y changes with grain size for the 
majority of materials [42]:

(2)σv = σo + kyd1∕2

Fig. 6  SEM fractography of 
alloy specimens 7075-T6. (A) 
Blank sample alloy. (B) Tem-
pering. (C) Aging

Fig. 7  Stress–strain curves of AA7075-T6 after different heat treat-
ments. (A) Blank sample alloy. (B) Tempering. (C) Aging alloy
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The terms d, y, and ky in this formula are constants spe-
cific to a certain material, and d is the average grain diameter. 
From a microstructural perspective, grain size’s effect on yield 
strength and ultimate tensile strength may also be described. 
The number of restrictions increases with grain fineness. 
Slip or dislocation movement must occur across these grain 
boundaries during plastic deformation. A dislocation migrat-
ing from one polycrystalline grain to another must alter its 
direction of movement because the grain borders of polycrys-
talline grains have various crystallographic orientations. Both 
yield strength and ultimate tensile strength are increased as a 
result of these changes in direction, which also prevent dis-
location movement. Age-hardened samples contain the most 
grain boundaries, which makes it more challenging for dis-
locations to migrate during plastic deformation. Because of 
this, age-hardened samples were shown to have the maximum 
yield strength and fracture toughness. Additionally, the 7075-
T6 Al alloy employed in this study has 2% magnesium (Mg) 
and 6.2% zinc (Zn). Due to the production of MgZn2 precipi-
tates in the structure during aging heat treatment, these two 
alloying elements contribute to a rise in the alloy’s strength. 
The findings of Du et al., Li and Peng, Demir and Gündüz, 
and Kaya et al., who found that Al-Zn-Mg alloy can obtain 
the maximum degree of strength throughout both natural and 
artificial aging, are in agreement with this finding [46, 49].

3.5  Morphology of aluminum alloys after corrosion

The morphology of alloy AA 7075-T6 is shown in Fig. 8. 
The alloys were immersed for 126 h in the 50 g/L mass 

concentration NaCl solution in the salt spray, after we made 
a polishing of 400 to 1200 grains and a finishing polishing at 
6 µm and 3 µm and then we made a chemical attack by the 
solution of KELLER.

SEM observed the surface of AA7075-T6 alloys 
after 126-h exposure to NaCl solution in salt spray. A 
general view of the microstructures of AA7075-T6 alloys 
is shown in Fig. 5 A, B, and C, respectively (A blank 
sample, B tempering, and C aging). The general analysis 
of the micrographs shows that the etching is randomly 
distributed on the three samples. For the AA7075-T6 
alloy (A), the absence of pitting and formation of 
corrosion products around irregularly shaped precipitates 
and rods. For the quenched AA7075-T6 alloy (b), the 
formation of a significant number of pits and removal 
of most of the smaller precipitates from the sample 
surface by the etching. For the matured AA7075-T6 
(C) formation of pits, they are less significant than the 
tempering treatment but we still have removed most of 
the small precipitates. The corrosion products continued 
to be concentrated mainly at the interface between the 
matrix and the larger intermetallic particles. We can also 
observe the corrosion products formed after the test have 
different sizes and shapes depending on the different 
treatments and the number of pits. We can also notice 
during the aging treatment, the pits are less significant 
compared to the tempering AA7075-T6 alloy and are 
absent in the blank sample AA7075-T6 alloy; this is 
a consequence of the corrosion resistance of the solid 
solution in the aging alloy.

PITS PITS 

(A) blank sample alloy (B) tempering (C) aging

Fig. 8  SEM of different zones in (A) blank sample alloy, (B) tempering, and (C) aging after salt spray test
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4  Conclusion

In this study, AA 7075-T6 specimens underwent quenching 
and aging heat treatments. The microstructure and mechanical 
tests such as tensile test and microhardness were examined. 
Here is a summary of the results:

1) The results show that heat treatment at a temperature of 
470 °C has a significant impact on the transformation 
of the microstructure and mechanical microhardness of 
the resulting alloy. A remarkable 32.26% reduction in 
microhardness was achieved after quenching heat treat-
ment, but a slight 3.23% decrease was observed during 
the 4-day aging treatment due to the formation of pre-
cipitated compounds and elements.

2) The formation of microsegregation weakens the 7075 
aluminum alloy and subsequently has negative effects 
on its mechanical properties and application. The stress–
strain curves of aged AA7075-T6 behaved well, but a 
significant reduction of 24.85% was observed for the 
quenched alloy.

3) A different microstructure by scanning electron micros-
copy was obtained after heat treatment before and after 
exposure to the salt spray test. The pitting was more 
severe for the quenching treatment than for the aging 
treatment and the control sample.
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