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Abstract
A mathematical model of vertical rolling process with the consideration of mechanism displacement is proposed. Using Γ 
function and parabola function to describe edge deformation, the corresponding 3D velocity field, strain rate field and total 
power functional are derived. Simultaneously, an analysis method of mechanism deformation is proposed. The deflection 
of vertical roller and the radial displacement of support bearings are calculated by applying superposition principle and 
Palmgren’s modified formula respectively. The coupling calculation of slab deformation and mechanism displacement is 
realized through minimizing the total functional and repeated iteration. The accuracy of the presented model is verified by 
comparison with other models and factory measurements. Subsequently, the influences of main rolling parameters on edge 
deformation, rolling force and mechanism displacement are analyzed. The proposed model could provide some references 
for the optimization of vertical rolling process and the improvement of slab quality and yield ratio.

Keywords Upper bound method · Vertical rolling process · Mechanism displacement · Coupling model · Rolling force

1 Introduction

The width control in continuous hot rolling process is mainly 
realized by vertical rolling. During width reduction process, 
complicated deformation occurs at the slab edge, leading to 
the rolling force acting on the vertical rolling mechanism. 
However, the distance between the vertical rolling mill and 
horizontal rolling mill is short, and the detection devices of 
rolling force and slab shape are delayed. It is difficult to real-
ize online adjustment of width reduction [1]. Comprehen-
sive research on the whole rolling mechanism to accurately 
predict rolling force and plastic deformation is essential for 
parameter presetting and online control.

There are three ways for vertical rolling research: physical 
experiment method, finite element simulation and theoretical 
model. Experimental method can be summarized as follow: 
Select appropriate materials to roll by a small mill, which 
is scaled down from industrial rolling mill. Then meas-
ure the edge deformation and fit the curves with process 

parameters. Okado et al. [2] and Xiong et al. [3] used pure 
Lead to simulate vertical rolling and fitted empirical for-
mulas of edge deformation parameters including the height 
of peak and edge, the position of peak, and the length of 
plastic zone. Shibahara et al. [4] developed a mathematical 
model for edger set-up by regressing measured values of 
edge bulge. Tazoe et al. [5] obtained an exponential formula 
of dog–bone peak height considering vertical roller diam-
eter, width reduction and initial slab size. Later, the result 
was modified by Ginzburg et al. [6].

Benefiting from the development of computer technol-
ogy, the finite element simulation method has been widely 
used. Huisman et al. [7] proposed a 3D FEM method to 
analyze edge deformation, and the reliability of model 
was verified by the plastic mud experiment. Chung et al. 
[8] put forward an explicit dynamic finite element method 
with appropriate damping to investigate optimum rolling 
procedure to minimize crop losses. The effect of flat verti-
cal roller and grooved vertical roller on vertical–horizontal 
mill is compared. Based on rigid–plastic theory, Xiong et al. 
[9] predicted the slab shape, the spread and the sectional 
distribution of temperature in vertical–horizontal rolling 
process by a full 3D thermal coupling FEM. By finite ele-
ment method and updated geometrical method, Yu et al. [10] 
simulated the rough rolling and finish rolling of stainless 
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steel plate to analyze the influences of width reduction on 
the stress change at strip edge. Yun et al. [11] set up a FEM 
based on the hypothetical mode of vertical rolling process 
and the least–squares regression analysis from the result of 
the FE approach. The model reflects rolling force affected 
by dimensionless process variables including shape factor, 
reduction ratio and width–to–thickness ratio. To improve the 
theoretical prediction accuracy of extra-thick plate rolling 
process, Zhang et al. [12] used the genetic algorithm as an 
enhancing means to optimize the global searching ability of 
the BP model and then combined the neural network model 
with a theoretical model.

Due to the complicated and non–uniform plastic deforma-
tion, it is quite difficult to establish the equilibrium differen-
tial equation. Scholars prefer to give a kinematically admis-
sible velocity field, and then solve total power functional 
according to upper bound energy method. In order to analyze 
edge rolling of steel, copper and aluminum, Lundberg et al. 
[13–15] simplified the edge bulge into a trapezoid and drew 
the speed end diagram of metal flow under the assumption 
of plane deformation. Triangular velocity fields considering 
friction and smoothness were established respectively, and 
the calculation formulas of rolling force and torque were 
deduced based on the achieved energy model. To improve 
the prediction accuracy, a feasible way is to describe the 
process of edge deformation by more appropriate curves. 
Assuming the entire slab section as deformation area, Yun 
et al. [16] used high–order power function curves to describe 
the cross section of edge deformation, and set a velocity field 
based on stream function and volume invariance. Then, a 
regression model was established according to the results 
of finite element simulation. Liu et al. [17] proposed a sine 
function dog–bone model and built a stream function veloc-
ity field. The total power functional is derived based on 
rigid–plastic theory and the incompressibility of flow. With 
the same deformation assumption, Zhang et al. [18] deter-
mined the maximal width of a dog–bone region by slip–line 
method. By repeatedly optimizing the weighted coefficient b 
of intermediate principal shear stress on the yield criterion, 
the rolling force and edge shape are obtained analytically. 
Liu et al. [19], Cao et al. [20] and Li et al. [21] calculated the 
plastic deformation power of a parabolic dog–bone model 
based on angular bisector (ID) yield criterion, twin shear 
stress (TSS) yield criterion, and mean (MY) yield crite-
rion, respectively. The shear power and friction power are 
obtained according to integral mean value theorem and Pav-
lov projection principle. The simplified analytical solutions 
of total power functional and rolling force are given by using 
energy method. Ding et al. [22] analyze parabolic dog–bone 
deformation in chamfer edge rolling of ultra–heavy plate 
and obtained a velocity field with fixed angle. Zhang et al. 
[23] constructed a quadratic velocity field and established 
a three-dimensional rolling model of extra-thick plate by 

using energy method. The model considered the temperature 
difference of the workpiece and the result is much closer 
to the measured data. Later, dual–stream function (DSF) 
method was carried out in 3D edge rolling research. Sine 
[24], parabolic [25], and cubic [1] dog–bone model with 
their corresponding velocity fields and strain rate fields are 
derived. The obtained dog–bone height is lower than that of 
2D models but closer to measurement. In order to satisfy the 
requirement of low computation cost, the author provided 
a rather simple 3D velocity field through global weighted 
method in previous study [26]. A combination of Γ function 
and parabola function is carried out to describe edge defor-
mation. The total power functional is solved numerically.

In the above studies, the slab was analyzed in isola-
tion and the vertical rolling mechanism is assumed to be 
a rigid body. Actually, although the flattening of roller 
can be ignored in hot rolling process [27], the vertical 
roller leads to deflection inevitably result from the large 
rolling force. Moreover, the support bearing could also 
produce radial displacement. In order to accurately predict 
rolling force and edge deformation, the elastic deforma-
tion of mechanism needs to be considered. However, the 
relevant research is poor at present. Base on Γ–parabola 
dog–bone model developed in our previous study, a 3D 
velocity field consisting of a 2D steam function velocity 
field and an additional velocity field in rolling direction at 
the slab edge is proposed. By applying geometric midline 
yield criterion and Pavlov projection principle, the total 
power functional is derived. During the numerical solution 
of the rolling force via the principle of minimum power, 
the deflection of rollers and the radial displacement of 
support bearings are fully considered. Further, the com-
prehensive research on vertical rolling mechanism is car-
ried out according to the established force–displacement 
coupling model.

2  Energy model of vertical rolling process

2.1  Assumptions of vertical rolling mechanism 
and steel slab

Figure 1 shows that a steel slab passes through the vertical 
rolling mechanism. The vertical rolling mill has no complex 
roller system and the rollers are directly driven by the motor. 
The rolling force is only supported by bearings. Due to the 
high ratio of width to thickness, the bulge in thickness direc-
tion only occurs at slab edge while the middle part remains 
rigid. The formation of the dog–bone cross section can be 
seen in Fig. 2(a). Simultaneously, the rolling mechanism 
causes elastic deformation under the rolling force, and the 
whole system is in a static equilibrium state.
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The assumptions before mechanical analysis are given 
as follows:

(1) For hot rolling, the strength of the roller is far more 
than that of workpiece, the elastic flattening of the roller is 
ignored. (2) The steel slab is rigid–plastic material with uni-
form and isotropic microstructure. (3) There is no fore and aft 
tension and impact load during vertical rolling process. The 
slab in bite zone is in steady state without width lose. (4) The 
vertical roller and the inner raceway of the bearing are rigidly 
connected. The extrusion deformation and the relative slid-
ing are neglected. (5) The deformation between the bearing 
rolling element and the raceway is in the range of elasticity.

2.2  Dog–bone deformation at the edge

A 3D coordinate system is located at the center of the 
entrance cross section, which is shown in Fig. 2. The axis x, 
y, and z represent rolling, thickness, and width directions, 
respectively. Because of the symmetry, a quarter of the 
deformation zone is studied.

As Fig. 2(a) shows, half of the slab width before and after 
rolling is given by w0 and w1 , respectively. The unilateral 
width reduction Δw = w0 − w1 . The vertical roller radius is 
denoted by R. The bite angle � = cos−1

[
(R − Δw∕R)

]
 . The 

projected length of the roller–slab contact arc in rolling 

direction l =
√
R2 − (R − Δw)2 . Half of the width, the uni-

lateral width reduction, and the contact angle at arbitrary 
position in bite zone are wx = w1 + R −

√
R2 − (l − x)2  , 

Δwx = w0 − wx , and � = sin−1
[
(l − x)∕R

]
 , respectively.

It can be seen in Fig. 2(b) that the middle part is rigid 
zone, and the edge part is plastic zone with bulge. The half 
thickness of steel slab in bite zone is expressed by h(x,z) . 
The peak height, the edge height, the peak position, and 
the length of dog–bone is given by hbx , hrx , lpx , and lcx , 
respectively. Take the peak of dog–bone as boundary, the 
dog–bone is divided into zone α 

(
0 < z < wx − 2dx

)
 and zone 

β 
(
wx − 2dx < z < wx

)
 . In order to well mark the slow change 

of thickness between dog–bone peak and rigid zone, Γ func-
tion is selected to describe the half thickness in zone α. In 
zone β, the half thickness is assumed to change as a parabola 
function. Detailed explanation can be found in our previous 
study [26], of which the result is given by:

where k is the undetermined constant, m is the friction fac-
tor, u =

wx−z

dx
 , and dx =

d

w1

wx expresses the half of peak posi-
tion at arbitrary cross section.

2.3  Velocity field and strain rate field of plastic flow

The total velocity field and strain rate field in bite zone can 
be expressed by two fields. The velocity field I assumes a 
plain deformation with constant velocity in rolling direc-
tion v0 . All the metal at the edge pressed by roller flows to 
thickness direction.

According to the property of stream function, incom-
pressibility of the material and the boundary condition 
w�

(
wx − 2dx

)
= w�

(
wx − 2dx

)
 , the velocity field I and 

strain rate field I can be derived. The solution of stream 

(1)h� = h0 + kh0
Δwx

dx
u2e−u

(2)h� = h0 +
4kh0

e2

Δwx

dx
−

mkh0

e2

Δwx

dx
(u − 2)2

Fig. 1  The working principle of vertical rolling mechanism

Fig. 2  The edge deformation 
during vertical rolling process
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function can be seen in Ref. [17, 19, 20]. In zone α and 
zone β, there are [26]:

w h e r e  t =
Δwx

dx
 ,  t1

x
= −

w�
x
dx+Δwxd

�
x

d2
x

 ,  u�
x
=

zd�
x

d2
x

 ; 
w� = −kΔwx

[
u2 + 2u + 2

]
e−u , w� =

4kΔwx

e2

[
u −

9

2
−

m

12
(u − 2)3

] are 
lateral displacement functions in zone α and zone β.

Under the contact and friction of roller–slab, there is 
a visible velocity change in rolling direction at the edge, 
and the change decreases gradually along the width 
direction. Assuming no velocity in thickness direction 
and the velocity in rolling direction decreases exponen-
tially, an additional field II conforming to Cauchy equa-
tion, incompressible law and the boundary conditions 
is proposed:

where bx =
b

w1

wx =
2d

w1

wx.
Superposing components of Eqs. (3)–(8) in three 

directions, the kinematically admissible velocity field is 
obtained:

(3)

⎧
⎪⎨⎪⎩

v�xI = v0

v�yI =
v0y

h0

�h�
�x

= kv0y
�
t�xu

2 − tu�
x
u2 + 2tu�

x
u
�
e−u

v�zI = v0
�w�

�x
= kv0

�
w�

x

�
u2 + 2u + 2

�
+ Δwxu

�
xu

2
�
e−u

(4)

⎧
⎪⎨⎪⎩

�̇�𝛼xI = 0

�̇�𝛼yI =
v
0

h
0

𝜕h𝛼
𝜕x

= kv
0

�
t�
x
u2 − tu�

x
u2 + 2tu�

x
u
�
e−u

�̇�𝛼zI = −
v
0

h
0

𝜕h𝛼
𝜕x

= −kv
0

�
t�xu

2 − tu�x u
2 + 2tu�xu

�
e−u

(5)

⎧
⎪⎪⎨⎪⎪⎩

v�xI = v
0

v�yI =
v
0
y

h
0

�h�

�x
=

k

e2
v
0
y
�
4t�

x
− mt�

x
(u − 2)2 − 2mt(u − 2)u�

x

�

v�zI = v
0

�w�

�x
=

4k

e2
v
0

�
Δwxu

�
x +

9

2
w�
x
− w�

x
u
�
+

mk

e2
v
0

�
1

3
w�
x
(u − 2)3 − Δwx(u − 2)2 u�

x

�

(6)

⎧⎪⎨⎪⎩

�̇�𝛽xI = 0

�̇�𝛽yI =
v0

h0

𝜕h𝛽

𝜕x
=

k

e2
v0
�
4t�

x
− mt�

x
(u − 2)2 − 2mt(u − 2) u�

x

�

�̇�𝛽zI = −
v0

h0

𝜕h𝛽

𝜕x
= −

k

e2
v0
�
4t�

x
− mt�

x
(u − 2)2 − 2mt(u − 2) u�

x

�

(7)

⎧⎪⎨⎪⎩

vxII = v0

�
w1

wx

− 1

�
e
−

wx−z

bx

vyII = 0

vzII = v0

�
w1w

�
z

w2
x

+
b�
x

b2
x

�
w1

wx

− 1

��
z − bx

��
bxe

−
wx−z

bx

(8)

⎧⎪⎨⎪⎩

�xII = −v0

�
w1w

�
x

w2
x

+
�

w1

wx

− 1

�
b�
x

b2
x

z
�
e
−

wx−z

bx

�yII = 0

�zII = v0

�
w1w

�
x

w2
x

+

�
w1

wx

− 1

�
b�
x

b2
x

z
�
e
−

wx−z

bx

where i = �, �.
According to the continuity equation, the mass flow is 

equal at the inlet and outlet:

Substituting Eqs. (1) and (2) into Eq. (11), the relation-
ship between the undetermined coefficient k and d can be 
derived:

The above velocity fields satisfy the following boundary 
conditions:

At the entry cross section: v�y(0, 0, z) = v�y(0, 0, z) = 0

At the exit cross section: v�y(l, y, z) = v�y(l, y, z) = 0 ; 
v�z(l, y, z) = v�z(l, y, z) = 0

A t  t h e  b o u n d a r y  o f  t w o  p a r t s : 
v�x

(
x, y,wx − 2dx

)
= v�x

(
x, y,wx − 2dx

)

The strain rate fields satisfy incompressible law:

2.4  Geometric midline yield criterion

The nonlinear Mises yield criterion leads to the integral dif-
ficulty of deformation power. In order to solve the above 
problem, Zhao et al. [28] linked up the geometric midlines 
of error triangles or gaps between Tresca and Twin shear 
stress yield loci on π–plane together to form a linear yield 
locus called Geometric midline (GM) yield criterion. It can 
be seen in Fig. 3 that the obtained yield criterion is an equi-
lateral and non–equiangular dodecagon, which can greatly 
simplify the calculation burden of deformation power with 
sufficient calculation accuracy. The yield criterion in Haigh 

(9)

⎧
⎪⎨⎪⎩

vix = vixI + vixII
viy = viyI + viyII
viz = vizI + vizII

(10)

⎧
⎪⎨⎪⎩

�̇�ix = �̇�ixI + �̇�ixII
�̇�iy = �̇�iyI + �̇�iyII
�̇�iz = �̇�izI + �̇�izII

(11)h0∫
w0

0

vx0dz = v0∫
w1−2d

0

h�dz + v0∫
w1

w1−2d

h�dz

(12)k =
e2

18 −
8

3
m

(
1 −

2d

w1

)

v�y
(
x, y,wx − 2dx

)
= v�y

(
x, y,wx − 2dx

)

v�z
(
x, y,wx − 2dx

)
= v�z

(
x, y,wx − 2dx

)

�̇�𝛼x + �̇�𝛼y + �̇�𝛼z = 0;�̇�𝛽x + �̇�𝛽y + �̇�𝛽z = 0
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Westergaard stress space and the specific plastic power can 
be calculated as follows [29]:

where �̇�max and �̇�min ( s−1 ) are the maximum and minimum 
principal strain rates respectively.

2.5  Total power functional

According to the first variational principle of rigid–plastic 
material, the total power functional consists of plastic defor-
mation power, shear power and friction power:

The plastic deformation power can be expressed by using 
GM yield criterion:

The tangential velocity discontinuity only exists at entry 
section:

where �s = �s∕
√
3 is the shear yield strength.

(13)
�1 −

2

7
�2 −

5

7
�3 = �s for �2 ≤ 1

2

(
�1+�3

)
5

7
�1+

2

7
�2 − �3 = �s for �2 ≥ 1

2

(
�1+�3

)

(14)D
(
�̇�ij
)
=

7

12
𝜎s
(
�̇�max − �̇�min

)

(15)J∗ = Ẇi + Ẇs + Ẇf

(16)
Ẇi=∭

V

D
(
�̇�ij
)
dV =

7

12
𝜎s∭

V

�̇�max − �̇�mindV

=
7

12
𝜎s∫ l

0
∫ wx−2dx

0
∫ h𝛼

0
�̇�max − �̇�mindydzdx + ∫ l

0
∫ wx

wx−2dx
∫ h𝛽

0
�̇�max − �̇�mindydzdx

(17)

Ẇs=∫ S
0

𝜏s
||Δ�⃗vs||ds=𝜏s∫

w
0

0
∫

h
0

0

√(
Δvx

||x=0
)2

+
(
vy
||x=0

)2
+
(
vz
||x=0

)2
dydz

Noticing that the friction shear stress �f = m�s and the 
velocity discontinuity on the interface are collinear vectors. 
The friction power can be obtained by Pavlov projection 
principle [30]:

Substituting Eqs. (16), (17), and (18) into Eq. (14), the 
total power functional is given as follow:

When the parameters, such as h0 , Δw , vR , R , �s , and m are 
given, d is the only unknown variable. Based on the princi-
ple of minimum energy, the optimal d and the correspond-
ing power J∗

min
 can be calculated numerically by MATLAB. 

The rolling force per unit slab thickness F0 is determined as 
follow [31]:

where M is the rolling torque, � is the arm factor, which is 
selected as 0.42 [32].

2.6  Load and displacement analysis of support 
bearing

The support of vertical roller is selected as double–row 
tapered roller bearing in this paper whose structure is 
shown in Fig. 4. The contact angle of roller–inner ring and 
roller–outer ring is �i and �o , respectively. The contact angle 
between the big end of rolling element and the inner ring 
rib is �f  . The diameter of roller pitch circle and the axial 
distance between two rows of roller centroids are dm and 
dc , respectively. The effect length, average diameter and big 
end spherical radius of the rolling element are Le , Dw , and 
Rs , respectively.

As shown in Fig. 5(a), the contact load of roller–inner 
ring, roller–outer ring, and roller–rib on jth rolling element 
is Qij , Qoj , and Qfj . The static balance equation of the whole 
bearing is:

(18)

Ẇf = ∫
Sf

||| �⃗𝜏 f
|||
|||Δ�⃗vf

|||cos
(
�⃗𝜏 f ,Δ�⃗vf

)
dsf

=m𝜏s∫ l

0
∫ hrx

0

√
vz
|||z=wx

2

+
(
vx
|||z=wx − vRcos𝜙

)2

+
(
vz
|||z=wx − vRsin𝜙

)2

sec𝜙dydx

(19)

J∗ =
7

3
𝜎s∫ l

0
∫ wx−2dx

0
∫ h𝛼

0
�̇�max − �̇�mindydzdx +

7

3
𝜎s∫ l

0
∫ wx

wx−2dx
∫ h𝛽

0
�̇�max − �̇�mindydzdx

+𝜏s∫ w0

0
∫ h0

0

√(
vy
||z=0

)2
+
(
vz
||z=0

)2
dydz

+m𝜏s∫ l

0
∫ hrx

0

√
vy
|||z=wx

+
(
vx
|||z=wx

− vRcos𝜙
)2

+
(
vz
|||z=wx

− vRsin𝜙
)2

sec𝜙dydx

(20)J∗
min

=
2MvR

R
=

4h
0
l�F

0
vR

R

(21)

⎧⎪⎪⎨⎪⎪⎩

F
x
=

2∑
�=1

ZB∑
j=1

Q�oj cos �
o
sin �

j

F
y
=

2∑
�=1

ZB∑
j=1

Q�oj cos �
o
cos �

j

Fig. 3  The locus of GM yield criterion on the π–plane
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where � is the number of bearing row, ZB is the number of 
rolling elements, the azimuth angle of jth rolling element is 
�j = �1 +

2�

ZB
(j − 1).

The deformation of rolling element can be seen in 
Fig.  5(b). �ij and �oj represent the inside and outside 
displacement.

According to Hertz line contact theory, the relationship 
between displacement and load of roller–inner ring and 
roller–outer ring is:

where ci =
sin(�o+�f )
sin(�i+�f )

 , Gi , and Go are the flexibility coefficient 

of roller–inner ring and roller–outer ring contact pair. In the 
modified formula proposed by Palmgren, there is:

where si and so represent the ratio of average rolling element 
diameter ( Dw ) to inner and outer ring diameter ( Dri , Dro ), 
�1 and �2 are Poisson ratio, E1 and E2 are elastic modulus.

The projection of �i in �o direction is:

(22)
{

�i = Gic
0.9

i
Qo

0.9

�o = GoQo
0.9

(23)

⎧⎪⎨⎪⎩

Gi = 4.80

�
1−�2

1

�E1

+
1−�2

2

�E2

�0.9 (1+si)
0.1

L0.74
e

D0.1
w

Go = 4.80

�
1−�2

1

�E1

+
1−�2

2

�E2

�0.9 (1−so)
0.1

L0.74
e

D0.1
w

For optional rolling elements, the relationship between 
total normal displacement and load in outer ring direction is:

The radial displacement �rj of optional rolling elements 
can be expressed as:

where �xj and �yj are the displacement of bearing center along 
x and y direction.

When the bearing is acted under the pre load P0 only, 
the axial static balance can be established according to 
Eq. (25) [33]:

The pre displacement can be sorted as:

Then, the total normal displacement in outer ring direc-
tion can also be expressed by radial displacement and pre 
displacement:

(24)�io = �icos
(
�o − �i

)

(25)�nj = �oj + �ioj =
[
Go + Gic

0.9

i
cos

(
�o − �i

)]
Q0.9

oj

(26)�rj = �xsin�j + �ycos�j

(27)
P0 − ZB

[
Go + Gicicos

(
�o − �i

)]− 10

9

(
�0sin�o

) 10

9 sin�o = 0

(28)�0 =

(
P0

ZB

)0.9

sin�−1.9
0

[
Go + Gicicos

(
�o − �i

)]

Fig. 4  The structure and load 
of double–row tapered roller 
bearing

Fig. 5  The (a) load and (b) 
deformation of tapered rolling 
elements
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Substituting Eq.  (29) into Eq.  (25), the relation-
ship between the displacement of bearing and the load 
of roller–outer ring is obtained. Taking the result into 
Eq. (21), the displacement can be solved iteratively.

2.7  Displacement of vertical rolling mechanism

The vertical roller consists of body part, neck part and 
head part, whose diameter and length are lb , Db = 2R ; 
ln , Dn and lh , Dh , respectively, as shown in Fig. 6. The 
roller body is actually involved in rolling and bears roll-
ing force. The roller neck is equipped with the support 
bearing (with a length of lr ) to transmit the rolling force 
to rack through bearing seat and screw–down device. The 
head part is connected with gear housing through con-
necting shaft for transmitting the rotating torque of motor.

The slab thickness is far less than the length of vertical 
roller, so the rolling force can be treated as a concentrated 
load. During rolling process, the vertical roller causes bend-
ing deformation under the effect of rolling force and bear-
ing supports. Due to the gap at the supports, the support 
bearings cannot restrict the minor deflection of the roller. 
Moreover, the contact between the shaft shoulder and the 
bearing limits the axial displacement. Thus, the support 
bearings at both sides can be regarded as fixed hinged sup-
port and movable hinged support, respectively [34].

Thus, the total radial displacement of rolling position is 
composed of two parts:

where �1 and �2 are the axis displacement and deflection of 
rolling position, respectively.

(29)�nj = �rjcos�o + �0sin�o

(30)� = �1 + �2

From the analysis in Sect. 2.6, the value of �1 is equal to 
the radial displacement of the bearing �rj when the bend-
ing moment is ignored. The deflection of the vertical roller 
can be derived according to the superposition principle or 
mathematical integration:

where In =
�D4

n

32
 , Ib =

�D4

b

32
 , Er are the elastic modulus of the 

vertical roller.

2.8  Coupling of rolling force and total radial 
displacement

In rolling process, the total radial displacement of 
mechanism at rolling position causes the insufficiency 
of width reduction, which should be compensated when 
presetting in order to satisfy the requirements of process. 
After establishing the equilibrium equation of support 
force and rolling force, the compensation value of width 
reduction and the corresponding rolling force can be 
modified by iterative method. The detailed calculation 
flow of the coupling model is illustrated in Fig. 7.

3  Result and discussion

3.1  Influence of bearing structure on rolling force

The detailed parameters of vertical rolling mechanism, 
including the double–row tapered roller bearing and 

(31)�
2
=

Fbl
3

n

24ErIn
+

Fblb

24ErIb

(
l2
b
+ 3lbln + 3l2

n

)

Fig. 6  The vertical rolling 
mechanism and its simplified 
model
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the vertical roller, are given in Table 1. The rolling 
force varies with azimuth angle exhibited in Fig.  8. 
The axis track of bearing fluctuates with the azimuth 
angle, which leads to the periodic change of total radial 
displacement and the rolling force. But the fluctuation 
range of rolling force is no more than 16 N. Because 
of the tiny inf luence, the azimuth angle is no longer 
considered in later research of this paper. The aver-
age radial displacement of bearing during a cycle is 
selected for iterative calculation.

3.2  Verification of model accuracy

The presented model predicted the cross section of dog–bone 
shape at exit when considering three–dimensional flow and 
ignoring the edge velocity field ( vx = v0 ), respectively. The 
results are compared with the shape obtained by Shibahara’s 
experiment [4], Okado’s [2], and Xiong’s [3] exponential 
regression model and Yun’s [16] model, which is shown in 
Fig. 9(a). Since the consideration of plastic flow in rolling 
direction, 3D model predicted a remarkably lower dog–bone 

peak and a more uniform deformation than 2D model. The 
comparison of peak position ( lp ) shows that the presented 
model is more accurate than the other models and the error 

Fig. 7  The calculation flow of 
coupling model

Table 1  The structure and 
mechanical parameters of 
vertical rolling mechanism

Parameter Value Parameter Value

Contact angle of roller–inner ring �
i
/° 21.5 Poisson ratio �

1
,�

2
0.3

Contact angle of roller–outer ring �
o
/° 25.5 Elastic modulus E

1
 , E

2
 , E

r
/MPa 2.1*10^5

Contact angle of roller big end–inner ring rib �
f
/° 66.5 Diameter of roller body D

b
/mm 800–1400

Diameter of bearing pitch circle d
m
/mm 592 Diameter of roller neck D

n
/mm 502

Effect length of rolling elements L
e
/mm 103.152 Length of roller body l

b
/mm 480

Average diameter of rolling elements D
w
/mm 51.6 Length of roller neck l

n
/mm 580

Number of rolling elements in per row Z
B

27 Pre load P
0
/N 100,000

Fig. 8  The variation of rolling force with azimuth angle
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with measurement is only 3.2%. Moreover, the predicted 
height of dog–bone is closer to the fitted result by Xiong’s 
model and slightly higher than the experiment data, but the 
error of hb∕hr is within 5%.

The comparison of dog–bone shape at outlet pre-
dicted by the presented model and several models is 
shown in Fig. 9(b). The presented model predicted a 
more uniform deformation than sine function model 
[17] and double parabolic models [19, 20], which can be 
attributed to the properties of Γ function. The presented 
curve well ref lects the slow increase of deformation 
from rigid zone to plastic zone. Compared with global 
weighted model [26], the presented model obtained a 
more inward peak position and is closer to the results of 
exponential regression models [2, 3] and Yun’s model 
[16]. It seems that the velocity field of the presented 
model is more reasonable.

When  the  equ ipment  and  p rocess  pa ram-
e t e r s  a r e  h0 = 0.07 ∼ 0.11m  ,  w0 = 0.5 ∼ 0.95m  , 
Δw∕w0 = 0.011 ∼ 0.026 , R = 0.475 ∼ 0.5m , 92 groups of 
rolling force were recorded and compared with numer-
ical results as shown in Fig. 10. It is obvious that the 
predicted result is in good agreement with measure-
ment, and the error is no more than 8%. The effect of 
displacement compensation on rolling force is further 
analyzed in Fig. 11. Dimensionless coefficient, relative 
error ||Fa − Fm

||∕||Fb − Fm
|| , is used to describe the correc-

tion. Fb and Fa are the predictive rolling force before and 
after compensation, and Fm is the measurement. After 
displacement compensation, the improvement of accu-
racy is around 10%. The width reduction rate of the last 
group is bigger, the radial displacement becomes greater 
by reason of the increasing rolling force. As a result, the 

effect of displacement compensation is more remarkable. 
From the above studies, the reliability and accuracy of the 
model is proved.

3.3  Edge deformation

Figure  12 shows the dog–bone parameters change 
with various process parameters. In Fig. 12(a) and (b), 
the increase of width reduction rate and slab thickness 
enlarges the pressed metal volume in width and height 
directions, respectively. The plastic deformation becomes 
more severe, and the dog–bone expands inward notice-
ably. Vertical roller radius and slab width play a less role 

Fig. 9  The dog–bone deformation predicted by several models

Fig. 10  The comparison of rolling force between prediction and 
measurement
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in edge deformation because of the unchanged pressed 
volume, which is indicated in Fig.  12(c) and (d). The 
interface of roller–slab contact increases with larger roller 
radius, which suppress the plastic flow in height direc-
tion. Increasing the width of slab is equivalent to raise 
rigid area in the middle, which will certainly restrain the 
transverse flow of metal. As a result, the dog–bone moves 
outwards with a higher peak. Moreover, the inhibition is 
more obvious when the slab width is narrow.

3.4  Rolling force and power

With the same equipment and process parameters in 
Sect. 3.3, the research on rolling force and power ratio is 
displayed in Fig. 13. The increase of pressed metal vol-
ume and deformation resistance causes the rise of rolling 
force, but the former, that is, the width reduction rate and 
slab thickness have more prominent effects. The deforma-
tion power is the largest, which account for 50–60% of total 

Fig. 11  The effect of displacement compensation on rolling force

Fig. 12  The effects of (a) Δw∕w
0
 , (b) h

0
 , (c) R , and (d) w

0
 on dog–bone shape
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power, followed by shear power, and the friction power is 
the least. The result is consistent with the previous studies 
[1, 25, 26]. From the above analysis, the width reduction rate 
and slab thickness have greater impact on edge deformation 
and rolling force than roller radius and slab width. For the 
consideration of engineer and economy, adjusting the width 
reduction rate is the most effective method to control the 
mechanical parameters.

3.5  Displacement compensation

Dimensionless rolling force parameter 
(
Fa − Fb

)
∕Fa 

is used to describe force compensation. The com-
pensation of displacement and rolling force changes 
with various main process parameters is expressed in 
Fig. 14. It can be seen from each figure that both of 
the dependent variables have almost the same change 

trend. In Fig. 14(b) and (c), the compensation vari-
ables increase linearly with the rise of slab thickness 
and roller radius. It is worth noting that the growth of 
compensation value has a visible weakness with wider 
width as shown in Fig. 14(d). The similar nonlinearity 
is also indicated in Fig. 12(d) and 13(d), which reveals 
the gradually diminished inf luence of rigid zone on 
deformation law. Differently, the force compensation 
moves slower than displacement compensation appar-
ently in Fig. 14(a). This can be attributed to the change 
of yield strength that affects the displacement compen-
sation, while the dimensionless rolling force parameter 
is unaffected.

Figure 15 illustrates the proportion of axis displace-
ment and def lection in total radial displacement of 
rolling position changes with main process parameters. 
It can be seen that axis displacement is far greater than 

Fig. 13  The effects of (a) Δw∕w
0
 , (b) h

0
 , (c) R , and (d) w

0
 on rolling force and power ratio
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deflection. Obviously, optimizing bearing structure is 
more effective in the control of radial displacement. 
A similar law which can be summarized as rises first 
and then falls is found in Fig. 15(a) and (b). This can 
be explained by the properties of rolling bearing, the 
stiffness of rolling elements gradual increase with the 
increase of load [35]. But the above rule disappears 
in Fig. 15(c) and (d) because of the less influence of 
roller radius and slab width on rolling force, which 
result in the limited change range of rolling force, 
so the properties of rolling bearing cannot be fully 
reflected.

4  Conclusions

The 3D plastic flow is considered to derive the kinematically 
admissible velocity field of Γ–parabola dog–bone model, 
including the planar stream function velocity field and the 

exponential velocity field. The numerical functional of verti-
cal rolling process consists of the plastic deformation power, 
the shear power at the inlet cross section and the friction power 
on the interface. According to the superposition principle, the 
deflection formula of rolling position is derived. Taking dou-
ble–row tapered roller bearing as an example, the axis dis-
placement is solved by Palmgren’s modified formula. Finally, 
a coupling model of rolling force and radial displacement is 
developed. The specific conclusions are listed as follows:

1. With specific example, the proposed model is applied 
to predict the shape of dog–bone at the exit cross section, 
and the results are compared with those obtained by other 
models and measurement. It shows that the predicted shape 
of the presented model is closer to the experimental result. 
92 groups of typical vertical rolling processes in hot rolling 
plant are studied. The displacement compensation method 
can effectively improve the prediction accuracy, of which the 
error of rolling force is only 8%.

2. The volume of the pressed metal becomes larger with 
the increase of width reduction rate and slab thickness result 

Fig. 14  The effects of (a) Δw∕w
0
 , (b) h

0
 , (c) R , and (d) w

0
 on force and displacement compensation
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in significant increase of edge deformation and rolling force. 
The roller radius and slab width affect the resistance of plas-
tic flow in rolling direction and width direction, respectively, 
but their influences on edge deformation and rolling force 
are weaker compared with the influences of width reduction 
rate and slab thickness.

3. The rolling force compensation and displacement 
compensation have a similar trend with the variation of 
main rolling parameters. Axis displacement is dominant 
in the total radial displacement of rolling position, and 
its proportion increases at first and then decreases with 
the increase of width reduction rate and slab thickness. 
In contrast, the proportion of roller deflection is smaller.
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