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Abstract
Soft sensors are data-driven devices that allow for estimates of quantities that are either impossible to measure or prohibitively 
expensive to do so. DL (deep learning) is a relatively new feature representation method for data with complex structures 
that has a lot of promise for soft sensing of industrial processes. One of the most important aspects of building accurate soft 
sensors is feature representation. This research proposed novel technique in automation of manufacturing industry where 
dynamic soft sensors are used in feature representation and classification of the data. Here the input will be data collected 
from virtual sensors and their automation-based historical data. This data has been pre-processed to recognize the missing 
value and usual problems like hardware failures, communication errors, incorrect readings, and process working condi-
tions. After this process, feature representation has been done using fuzzy logic-based stacked data-driven auto-encoder 
(FL_SDDAE). Using the fuzzy rules, the features of input data have been identified with general automation problems. Then, 
for this represented features, classification process has been carried out using least square error backpropagation neural 
network (LSEBPNN) in which the mean square error while classification will be minimized with loss function of the data. 
The experimental results have been carried out for various datasets in automation of manufacturing industry in terms of 
computational time of 34%, QoS of 64%, RMSE of 41%, MAE of 35%, prediction performance of 94%, and measurement 
accuracy of 85% by proposed technique.
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1  Introduction

Soft sensor is a virtual inferential prediction method that 
uses easily measured variables to forecast process vari-
ables that are difficult to measure directly due to techno-
logical, economic constraints as well as a complex envi-
ronment. Soft sensor attempts to construct a regression 
prediction method between easily measured variables as 
well as difficultly measured variables, which is used to 
address issue that hinders measurements from being used 
as feedback signals in quality control methods [1]. For 
at least 10 years, there has been a growing trend in use 
of data-driven AI (artificial intelligence) approaches to 
enhance machines, processes, and products across several 
industrial domains [2]. In recent years, reducing emis-
sions as a result of stronger environmental restrictions 
has also been a major motivator [3]. However, gathering 
the data required for such approaches is fraught with dif-
ficulties, one of which is the long life of industrial gear. 
Official depreciation estimates range from (rarely) 6 to 
more than 30 years, depending on the country, type of 
machinery, and industrial sector [4]. Experience suggests 
that, particularly in small and medium-sized businesses, 
resilient equipment can last even longer in regular usage. 
Soft sensor approaches are used more widely in industrial 
processes, and they have become a key emerging trend in 
both academics as well as industry [5]. Early academics 
proposed model predictive control like generalized pre- 
dictive control, dynamic matrix predictive control and 
model control method, in light of model prediction in 
industrial production process [6]. However, these soft 
sensor prediction approaches have several flaws. ANN 
(Artificial neural networks), rough set, SVM (support  
vector machine) and hybrid techniques are some AI and 
ML methods based on data-driven technologies that  
have been proposed to solve issues where it is difficult 
to measure key processes as well as quality variables for 
soft sensor methods as a result of DL in soft sensor con-
trol method as well as continuous progress in engineering 
technology [7].

The contribution of this research is as follows:

•	 Then, the features have been classified using least square 
error backpropagation neural network (LSEBPNN) in 
which the mean square error while classification will be 
minimized with loss function of the data

•	 Here the experimental results have been carried out in 
terms of QoS, measurement accuracy, RMSE, MAE, pre-
diction performance, and computational time.

Research organization is as follows. In Section 2, related 
works are described. Section 3 gives details of proposed 
method. proposed method performance, and the results are 
present in Section 4. Finally, Section 5 concludes the work.

2 � Related works

DL-based techniques are recently exhibited solid representa-
tion competency and success in a variety of computer sci-
ence domains, including image processing, computer vision, 
NLP, and more [8]. Stack autoencoder (SAE) [9], DBN 
(deep belief network) [10], CNN [11], and LSTM [12] are 
some of widely utilized deep network architectures. Greedy 
layer-wise unsupervised pre-training, as well as supervised 
fine-tuning, are highly important for DL architectures like 
SAE. The SAE weights evaluated during unsupervised pre-
training step are used in supervised fine-tuning stage, which 
is a more significant method than random weight initiali-
zation [13]. As a result, various industrial applications of 
soft sensors based on SAE [14] are presented. Same authors 
improved this result significantly by utilizing a TDNN in 
[15].Mean error dropped to just 1.14 to 1.32% and 1.65° 
to 3.08°, in the same conditions utilized in [16, 17]. As a 
result, the type of network used in these two papers had a 
significant impact on the algorithms’ performance. In [18], 
an RNN is presented that collects information regarding 
air–fuel ratio λ, ignition angle, and turbocharger boost pres-
sure in addition to rotational speed signal. Focus was on 
neural network design, which had a significant impact on 
the algorithm’s performance. To estimate cylinder pressure 
curves, [19] uses a NN with RBF (radial basis functions) as 
well as consequently no recurrence. Authors of [20] presents 
a novel convolutional, BiGRU, and Capsule network-based 
deep learning model, HCovBi-Caps, to classify the hate 
speech and authors of [21] introduce BiCHAT: a novel BiL-
STM with deep CNN and hierarchical attention-based deep 
learning model for tweet representation learning toward hate 
speech detection. Authors of [15] do not use raw rotational 
speed signal, but instead translate it into frequency domain 
as well as process only first 20 harmonics, to earlier research 
are used an RBF network. They also employ structure-borne 
sound signal’s 21st–50th harmonics. As a result, the prepa-
ration of the given data is the most important aspect of this 
project. The typical errors for pMax as well as its position 

•	 To design novel techniques in automation of manufac-
turing industry where the dynamic soft sensors are used 
in feature representation and classification of the data

•	 To collect the data cloud storage and create the virtual 
sensors dataset based on gear fault detection, spindle 
fault detection, and bearing fault detection in automa-
tion industry

•	 To represent the feature using fuzzy logic-based 
stacked data driven auto-encoder (FL_SDDAE) where 
the features of input data have been identified with gen-
eral automation problems.
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in crank angle range are 3.4% and 1.5°, respectively. Using 
a multi-layer perceptron, [22] predicts combustion param-
eters directly from crankshaft’s rotational speed as well as 
acceleration data, in contrast to the previous studies (MLP). 
The mean error lies between 1.38° and 9.1°, with a range 
of 4.1 to 8.0%. A deep learning-based R2DCNNMC model 
is proposed for detection and classification of COVID-19 
employed chest X-ray images data [23]. Privacy of data 
driven uses on the k-anonymity and l-diversity supervised 
models classifies the healthcare data [24]. Virtualization for 
dynamics on cloud for network operation and management 
is discussed in [25] and proposed hybrid model on cloud 
ensures the maximum benefits from virtualization.

The effective implementations of SAE-based DL listed 
above reveal a significant capacity to extract features. Deep 
structures exceed typical soft-sensing prediction perfor-
mance thanks to unsupervised layer-wise pre-training as well 
as supervised fine-tuning processes. Proposed industrial soft 
sensors are static methods based on notion of a static process 

as well as steady-state. However, the inherently dynamic 
nature of industrial processes cannot be neglected. Chemi-
cal processes, for example, are highly dynamic, with current 
state being linked to earlier ones. As a result, time-related 
characteristics of time-series recorded data are important.

3 � System model

This section discusses the proposed design in automation of 
manufacturing industry based on dynamic soft sensors. Here 
the data has been processed to recognize the missing value 
and usual problems like hardware failures, incorrect read-
ings, communication errors, process working conditions. 
Then their features have been represented in module 1 and 
the represented feature has been classified in module 2 using 
deep learning techniques. The overall research architecture 
is given in Fig. 1.

Fig. 1   Overall Proposed diagram for virtual sensor-based fault detection in automation industry
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3.1 � Feature representation using fuzzy logic based 
stacked data driven auto‑encoder (FL_SDDAE)

ENotice is replaced Eq. (2) represents overall input–output 
transfer function about general autoencoder (AE) structure. 
The input 

(
x[�] ∈ R

d
)
 is supplied to hidden layer, whose out-

put is utilized to reconstruct 
�

‵
x
��⌋ �

 input through output 

layer (y) as shown in Eq. (1).

An encoder or recognition model is another name for this 
approach. Optimize variational parameters φ such that as 
shown in Eq. (2):

As stated in Eq. (3), inference models are any directed 
graphical model.

In the directed graph, Pa
(
�j

)
 is set of parent variables of 

variable �j.

The non-negative Kullback–Leibler (KL) divergence 
between q�(�|�) and p

�(�|�) is the second term in Eq. (5):

The variational lower bound, commonly known as ELBO, 
is the first term in Eq. (6):

Because the KL divergence is non-negative, ELBO shows 
a lower bound on data’s log-likelihood, as demonstrated in 
Eq. (7).
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Because the ELBO’s expectation is taken q�(�|�) , which is 
a function of φby Eq. (9):

Apply a reparameterization approach to compute unbiased 
estimates of ∇�L�,�(�) , in case of continuous latent variables.

Replace an expectation w.r.t. q�(�|�) with one w.r.t. p
�
 via 

reparameterization given by Eq. (10).

A simple factorized vGaussian encoder by Eq. (12)

The log determinant of the Jacobian is given by Eq. (13):

and the posterior density is given by Eq. (14):

From Eq. (15)
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Define Nj(j = 1, 2,… , n) fuzzy sets A1
j
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j
,… ,A
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From (26), conclude that fuzzy systems in form.
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We can see from (28) that we need to know the boundaries 
of the derivatives of G(x) about x1, x2,… , xn to represent a 
fuzzy system with a pre-specified accuracy.
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Select a fuzzy method with a MIS, an SF, a CADand a 
Triangular MF, which then derive using Eq. (29).

The more rules you have, the more parameters you will have 
and the more computation you will have to do, but you will get 
better accuracy. When initial parameters yi (0), aji (0), bji (0), cji 
(0) are specified, the fuzzy system becomes by Eq. (30).
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for a sigmoid activation function, it gives by Eq. (31):
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where s is number of hidden neurons. Taylor series expan-
sion of Ψk T isgiven by Eq. (34):

By replacing h[�](t)
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 of Eq. (36):
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Finally, by substituting
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Fuzzy based SAEs and gives compact representation of input 
over time.

3.2 � Least square error back propagation neural 
network (LSEBPNN)

Let, training set in a C-class issue contains vector pairs {(
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target output of c network corresponding to this input.

All weights and bias terms are included in LSEBPNN’s 
adaptive parameters. The training phase’s main aim is to 
establish the best weights and bias terms for minimizing 
difference between network output as well as target output. 
The difference is referred regarded as the network’s train-
ing error. MSE for pth input pattern in the traditional BP 
technique is Ep =
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 . It shows that an input 
pattern’s target value could be several. To put it another 
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membership value. To put it another way, the training prob-
lem can be thought of as a fuzzy constraint fulfillment 
problem.Suggested network modifies parameters through-
out training phase to ensure that these limitations are over-
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input pattern are stated mathematically as fuzzy MSE term, 
which is given by Eq. (38)

The learning laws for networks are derived using same 
approach as traditional BP technique. Suppose that the weight 
update, Dw, happens after each input pattern has been pre-
sented. Assuming that all weight changes in network are made 
with same learning-rate parameter h, weight changes applied 
to weights w and w are k j ji determined according to the 
gradient-descent rules by Eq. (39), (40):
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where by Eq. (43)

In many circumstances, the traditional BP technique may 
not converge quickly, when classes overlap. Because ambig-
uous vectors are assigned full weightage in one class, this 
is case. In suggested version, error to be back propagated is 
given more weight in the case of nodes with higher member-
ship values.

The learning algorithm’s purpose is to reduce the squared 
error cost function, which is given by Eq. (44)

Equation (45), where m is total number of vectors in train-
ing data set given by

Partial derivative about w i (s) and equate it to zero to 
determine weight vector that minimizes cost function given 
by Eq. (46).
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In vector matrix form, Eq. (48) are rearranged as
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Fig. 2   The flow chart for 
LSEBPNN
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Equation (51), (52) is set to the following

where by Eq. (53)

Now, define a matrix operation for simplicity 
A⊙ B ≐ ARBR + 𝚥AIBI . The flow chart for LSEBPNN is 
represented in Fig. 2.
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Windows 10 was the operating system on which the sug-
gested system was hosted and tested.

Table 1 shows comparative analysis for various fault situ-
ations for proposed and existing techniques. Here the fault 
situation has been detected by virtual sensor-based datasets 
of automation industry. The parametric analysis has been 
carried out in terms of QoS, measurement accuracy, RMSE, 
MAE, prediction performance, and computational time.

Figures 3, 4, and 5 show comparative analysis for vari- 
ous virtual sensor-based datasets from automation industry. 
The dataset collected from cloud is based on spindle fault 
detection-based data, gear fault detection-based data, and 
bearing fault detection-based data. For spindle fault detec-
tion data, the proposed technique obtained computational 
time of 34%, QoS of 64%, RMSE of 41%, MAE of 35%, 
prediction performance of 94%, measurement accuracy of 
85%.The proposed technique obtained computational time of 
43%, QoS of 67%, RMSE of 43%, MAE of 39%, prediction 
performance of 79%, and measurement accuracy of 85% by 
gear-based fault detection dataset. For bearing fault detection 
data, the proposed technique obtained computational time of  
49%, QoS of 68%, RMSE of 45%, MAE of 41%, prediction 
performance of 86%, and measurement accuracy of 84%. 
From the above analysis, proposed technique obtained opti-
mal results for all the fault detection based on automation 
industry data.

The fundamental challenge in dealing with soft sensor 
principles is a lack of understanding due to their novelty 
and, as a result, a lack of typical mathematical descriptions 
or structure. On the other hand, it allows for more creative 
expression. In general, vast arrays of statistics for calcula-
tions are required when working with soft sensors. It is vital 
to have a thorough understanding of the controlled process’s 
principles, physical characteristics, and the parameters’ 
relationships.

Table 1   comparative analysis for various fault situation for proposed and existing technique

Virtual sensor-based datasets 
of automation industry

Techniques Computa-
tional rate

QoS RMSE MAE Prediction 
performance

Measure-
ment 
accuracy

Spindle-based dataset CNN 41 59 47 43 91 76
RBF 36 61 45 40 93 79
FL_SDDAE-LSEBPNN 34 64 41 35 94 85

Gear-based dataset CNN 50 62 51 51 73 79
RBF 46 63 48 45 76 81
FL_SDDAE-LSEBPNN 43 67 43 39 79 85

Bearing-based dataset CNN 59 63 53 49 79 73
RBF 53 65 49 45 83 77
FL_SDDAE-LSEBPNN 49 68 45 41 86 84

4 � Performance analysis

Proposed method is implemented into a prototype software 
system utilizing Python 3.7 to evaluate and assess potential 
contribution of proposed strategy for future real-world appli-
cations. Resources utilized to combine proposed method 
were an Intel i7 processor (Intel(R) Core(TM) i7-3770 CPU 
@3.40 GHz 3.80 Ghz) and an eight (8) gigabyte RAM (Intel, 
Santa Clara, CA, USA) (Samsung, Seoul, Korea). Microsoft 
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5 � Conclusion

This research propose novel technique in virtual soft sen- 
sor-based fault detection in automation industry using deep 
learning technique integrated with cloud module. Here  
the aim is to design novel techniques in automation of 

manufacturing industry where the dynamic soft sensors are 
used in feature representation and classification of the data. 
The data has been collected from cloud storage and cre- 
ated the virtual sensors dataset based on gear fault detection, 
spindle fault detection, and bearing fault detection in auto-
mation industry. Then to represent the feature using fuzzy 

(a) (b)

(c) (d)

(e) (f)

Fig. 3   Comparative analysis of spindle-based dataset in terms of a computational time, b QoS, c RMSE, d MAE, e prediction performance, f 
measurement accuracy
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logic-based stacked data-driven auto- encoder (FL_SDDAE) 
where the features of input data have been identified with 
general automation problems. Then the features have been 
classified using least square error back propagation neu- 
ral network (LSEBPNN) in which the mean square error 

while classification will be minimized with loss function  
of the data. Here the experimental results have been carried 
out in terms of computational time of 34%, QoS of 64%, 
RMSE of 41%, MAE of 35%, prediction performance of 
94%, and measurement accuracy of 85% has been obtained 

(a) (b)

(c) (d)

(e) (f)

Fig. 4   Comparative analysis of gear-based dataset in terms of a computational time, b QoS, c RMSE, d MAE, e prediction performance, f meas-
urement accuracy
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by proposed technique. One is that nonlinear systems’ pre-
dictive control cannot be solved successfully. Another issue 
is that stability as well as resilience of multivariable pre- 
dictive control algorithms must be addressed, and accurate 
principle models for complex systems are extremely dif- 
ficult to construct. Despite the contributions made so far,  

there are still areas where future work might be improved.  
On the loss function, targeted-output regularizes would  
extract even better features, improving the suggested work. 
Another future intervention would be to use approaches on 
the unsupervised pre-training to identify dynamic-related 
aspects. In addition, industrial research scenarios were used 

(a) (b)

(c) (d)

(e) (f)

Fig. 5   Comparative analysis of bearing-based dataset in terms of a computational time, b QoS, c RMSE, d MAE, e prediction performance, f 
measurement accuracy
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to apply the proposed method, however developing a soft 
sensor proposal for a real-world industrial scenario could  
be challenging. Non-linearities, abnormalities, and highly 
complex ecosystems must all be taken into account. The 
industrial study cases have shown to be suitable and widely 
used in the implementation and evaluation of models, and 
they serve as the foundation for many contributions in this 
field of research.
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