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Abstract
The die steel NAK80 is used in specular optical molds, deep drawing forming dies, and cold extrusion dies in large quan-
tities; high strength and hardness often induce tool wear during machining. This study established a tool wear prediction 
method for measuring, using the cutting temperature and chip chromaticity characteristic values to predict the tool life. The 
back propagation neural network (BP-LM) was compared with a long-short term memory (LSTM) model in the prediction 
method, and different characteristic signals were imported into the BP-LM and LSTM methods to predict the tool wear. In 
Taylor’s curve diagram, the repeatability accuracies of tool wear and cutting temperature are 2.83% and 9.29%, respectively. 
The BP-LM method was used for prediction in the comparison of prediction methods. When the input characteristic were 
temperature, chip chromaticity, and temperature and chip chromaticity, the MAPE percentage errors are 24.23%, 31.87%, 
and 19.88%, respectively. The error was reduced by 29% when the input characteristics were temperature and chip chromatic-
ity. When the LSTM model was used for prediction, and the input characteristics were temperature, chip chromaticity, and 
temperature and chip chromaticity, the MAPE percentage errors are 30.33%, 28.55%, and 22.1%, respectively. The error was 
reduced by 25% when the input characteristics were temperature and chip chromaticity. Therefore, using the characteristic 
temperature and chip chromaticity in the BP-LM and LSTM prediction models resulted in good forecast accuracy, and a 
new model prediction form for tool life was provided.
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1  Introduction

The domain of intelligent manufacturing develops rapidly 
in recent years, and the requirements for machining geom-
etry, dimension, and surface accuracy are strict. Therefore, 
the CNC machine tool, controller, machining parameters, 
and tool life monitoring are key techniques, and the tool 
life prediction aims to prevent lower product accuracy and 
higher defect rate. In terms of domestic and international 
cutting tool condition monitoring, the cutting tool condition 
is monitored by using acoustic emission signal monitoring, 
current signal monitoring, and vibration signal monitoring. 
In this study, the temperature generated during machining 

was used as a monitoring mode, and the cutting tool life 
was predicted according to the changes in the temperature 
characteristic and chip image chromaticity characteristic. 
The studies about cutting tool wear monitoring, cutting tem-
perature, material chips, color correction, and characteristic 
selection were discussed in this paper.

Studies have presented that machine learning algorithms 
can effectively predict tool life and tool wear in various cut-
ting processes, such as milling, turning, and grinding [1–3]. 
Hybrid models combining machine learning algorithms with 
optimization techniques have also been proposed and shown 
to have high accuracy in predictions [4]. Deep learning 
models such as convolutional neural network (CNN), deep 
belief network (DBN), and recurrent neural network (RNN) 
have been applied to tool wear monitoring and trained on 
big datasets of machining processes to learn the patterns and 
relationships between tool conditions and tool wear [5, 6]. 
In terms of vibration sensors and current sensors, the neural 
network was used for the classification of cutting tool con-
ditions and data training in vibration sensor measurement, 
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and the vibration signals were optimized and processed. The 
precisions of prediction models were compared and ana-
lyzed by using different methods. The prediction precisions 
of artificial neural network (ANN), support vector machine 
(SVM), and K-nearest neighbor (KNN) are 0.9393, 0.9090, 
and 0.8378, respectively, so the ANN has higher prediction 
precision [7, 8]. Monitoring the machining process of fine 
milling not only effectively collects the load current and 
spindle vibration signals on various axes instantly but also 
improves the automatic segmentation of signal data, so as to 
enhance the noise reduction capability and reduce the data 
analysis time [9]. The experimental results show that in noise 
processing, the S/N ratio was increased from 11 dB before 
noise reduction to 15.63 dB by wavelet denoising with a 
five-layer db3 generating function. In terms of characteristic 
set prediction accuracy, the MAPEs of inner circle round-
ness, inner circle cylindricity, and outer circle roundness are 
8.65%, 13.2%, and 6.5%, respectively [10]. The state of tool 
wear was analyzed in the current signal characteristic moni-
toring method. The cutting load current signals of different 
paths were collected in characteristic selection and converted 
into time–frequency domain signal analysis. After the data 
were classified by Markov state and K-means clustering, and 
the required eigenvalues were selected, the test result clas-
sification shows the accuracy to be 74.61 ~ 91.62%, with an 
average recognition of 83.39% [11].

In terms of temperature monitoring for cutting status, a 
micro-temperature sensor was studied. The thermocouple 
sensing element was installed on the tool face to collect 
the cutting temperature synchronously in the machining 
test. The result shows that the cutting temperature meas-
urement could extract data instantly and stably at different 
cutting speeds. When the cutting speed increased from 20 
to 100 m/min, the temperature was the highest when the 
cutting speed was 100 m/min [12]. When the infrared image 
temperature was used for measuring orthogonal cutting, the 
cutting temperature, cutter-chip contact length, chip thick-
ness, main shear angle, heat flux generated in the shear or 
friction zone, and the interfacial temperature distribution 
of cutter and chips during chip formation can be measured 
instantly. The experimental results show the cutting ratio and 
average friction coefficient of cutter-chip contact surface, the 
higher the cutting speed and the feed per tooth are and the 
larger the depth of cutting is, the higher the relative cutting 
temperature [13, 14]. In the rotary motion of the cutter, the 
cutting temperature could be measured instantly, and the 
temperature sensor was a K-type thermocouple, which is 
mainly used in milling and drilling machining forms. The 
friction and energy conversion generated the cutting tem-
perature in the machining process. The experimental results 
show that the temperature value is 150 °C during aluminum 
alloy milling, and the error value is smaller than ± 2%. The 
maximum temperature value is about 600 °C during titanium 

alloy drilling, and the error value is smaller than ± 0.5%. 
The cutting temperature could be measured accurately in 
the validation experiment [15]. In the course of turning 
AISI 1117 steel, the cutting parameters influenced the chip 
surface temperature, and the effects of cutting speed, feed 
rate per revolution, and depth of cut on the chip surface 
temperature were compared. The experimental results show 
that the chip temperature rose as the cutting speed, federate, 
and depth of cut increased; the cutting speed and depth of 
cut were significant factors in the chip surface temperature 
change [16, 17].

The parameter data of surface roughness of the cut AISI 
4340 steel, tool wear, and chip morphology were used 
for cost estimation. According to ANOVA, the dominant 
parameter which influenced the surface roughness was 
the feed-rate per tooth, and the cutting speed took second 
place. The surface roughness value increased with the feed-
rate per tooth, whereas the cutting speed was in inverse 
proportion. The descending order of effects on tool wear 
was cutting speed, feed-rate per tooth, and depth of cut. 
There were three chip morphologies generated as the cut-
ting speed increased, which are helical crimp, long ribbon, 
and short ribbon. The thickness decreased as the cutting 
speed increased and the feed-rate per tooth decreased [18]. 
The findings of the parameters for cutting stainless steel 
AISI304 show that in the cutting conditions of high cut-
ting speed and low feed-rate per tooth, the crimp radius 
of chips increased, the chip thickness decreased, thinner 
chips could reduce the power loss of machine tool, and the 
workpiece had relatively excellent surface roughness. In 
addition, it was found that in the conditions of low cutting 
speed and high feed-rate per tooth, the chips flew slowly, 
and the high temperature generated by cutting made the 
chips yellow [19, 20]. Different machining parameters were 
used for the cutting experiment, and the chip morphologies 
resulted from different cutting speeds (V), feed-rate per 
tooth (f), and depth of cut (ap) were observed. The chip 
changes resulted from different parameters included the 
following: (1) similarity: in terms of cutting speed and feed 
rate per revolution, the chip profile gradually changed from 
a continuous ribbon into a helix, and into a serration and 
ruptured state at last. The chip morphology changed from 
waviness into serration, the serrated chips had heavier heat 
damage to the tool, leading to more tool wear. (2) Dissimi-
larity: in terms of depth of cut, the chip morphology was 
continuous ribbon, but the chip morphology also changed 
from waviness into serration [21, 22].

The objectives of this study include (1) evaluating the 
effect of TiAlN-coated cutting tools on the tool life of tool 
steel NAK80, (2) comparing the influence of input cutting 
temperature and chip chromaticity parameters on different 
prediction methods BP and LSTM, and (3) investigating the 
influence of tools on tool life prediction for die steel NAK80.
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2 � Cutting and equipment measurement 
principles

2.1 � Tool life principle

The experimental plan and study of tool life principle were 
performed by referring to Taylor’s formula. The tool flank wear 
VB = 0.3 mm is the baseline in international standard ISO3685, 
as shown in Fig. 1. The machining time shortens as the cut-
ting speed increases, and the effective tool life is expressed 
as Eq. (1). Different combinations of cutting conditions and 
workpiece materials have different n and C values, and C is 
determined by the workpiece material. In order to show the 
criticality of index n, the equation can be rearranged as [23, 24]:

The cutting speed, cutting thickness, and cutting width 
should be considered in the tool life during milling, so the 
modified equation of effective tool life is:

2.2 � Chip chromaticity principle

In the machining process, the high-speed friction between 
the cutting tool and workpiece material generates a lot of 
cutting heat, the chips are heated up rapidly by the cutting 
heat, but the chips are cooled rapidly in the air after they are 
cut off the parent material. This phenomenon results in oxi-
dation films in different colors on the surface of chips, and 
the color of the oxidation film is influenced by the oxida-
tion film thickness (d), refractive index (n), and absorption 

(1)
VTn = C

T = (
C

V
)
1

n

(2)VTndxf y = C

coefficient (k) of oxidation film and parent material. The color 
of chips during machining changes in the order of light yel-
low → yellow brown → brown → purple → dark purple or 
dark blue → blue → light blue →  > bluish green → greenish 
yellow → dark red, as shown in Fig. 2 [24].

The relation between the chip oxidation film thickness and 
chromaticity coordinate point is shown in Fig. 2. The graph 
of relation presents an annular solid line. The lines radially 
spread from the center represent Y yellow, R red, P purple, 
B blue, and G green hues. The oxidation film thickness (μm), 
chromaticity coordinates (xc, yc), and JIS specified color names 
(hue H, lightness V, and chroma C) [17, 25].

2.3 � Chip chromaticity image processing

The RGB values, normalization, linear RGB values, XYZ tris-
timulus values, and xy chromatic values were converted in the 
chip image processing to obtain the XY chromatic values and 
Lch chromatic value at last. This study used XY chromatic 
values for analyses and predictions. The Lch chromatic value is 
mainly correlated with brightness, chroma, and hue; the process 
of display color space transformation will be described in detail 
in the chip chromaticity image processing, as shown in Fig. 3.

2.3.1 � Normalization

The initial input color signals of the display were [R8-bit G8-bit 
B8-bit] 8-bit RGB signal values; the numerical range of RGB 
signals was 0 ~ 255 and normalized to [R0 G0 B0] signal values, 
as expressed by Eq. (3) [17].

wherein I0 = R0, G0, B0 is the normalized RGB values and I 
= R8-bit, G8-bit, B8-bit is the 8-bit RGB values

(3)I0 =
I

255

Fig. 1   Flank wear related to 
cutting time
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Fig. 2   Chromaticity diagram 
[25]

Fig. 3   Display system color 
transformation process [17, 26]
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2.3.2 � TRC transformation

TRC stands for tone reproduction curve, representing the rela-
tionship between the input signal value and brightness value in 
the display system. As the normalized RGB values [ R0G0B0 ] 
should be transformed by TRC into linear RGB values [R G 
B], their linear relationship can be described by using a 3 × 
3 matrix. The display uses γ value to represent the tone rela-
tionship between the normalized RGB values and linear RGB 
values, so the γ value varies with the display specifications, and 
the general range of γ value is 1.8 ~ 2.4, as expressed by Eq. (4).

wherein R, G, and B are linear RGB values, and �R, �G, and �B 
correspond to the � values of R, G, and B, respectively

2.3.3 � Linear transformation

A linear transformation is the process of transforming linear RGB 
values [R G B] into tristimulus values [X Y Z]. A 3 × 3 matrix is 
used for calculation, and the computing equation varies with the 
displays of different standards, as expressed by Eq. (5).

wherein X, Y, and Z represent tristimulus values, and M is a 
3 × 3 linear transformation matrix

2.3.4 � Chromaticity transformation

The tristimulus values [X Y Z] could be transformed into [xy] 
chromatic values by Eq. (6) as needed and displayed in the 
CIE xy chromaticity diagram. Or, they could be transformed 
into L*a*b* chromatic values [L*a*b*] according to Eq. (7) 
and displayed in the CIE LAB uniform-chromaticity-scale 
diagram, wherein x and y are chromatic values, X, Y, and Z 
are tristimulus values.

wherein I/In = X/Xn = Y/Yn = Z/Zn

(4)R =
(
R0

)�R
;G =

(
G0

)�G
;B =

(
B0

)�B

(5)
⎡⎢⎢⎣

X

Y

Z

⎤
⎥⎥⎦
= M

⎡
⎢⎢⎣

R

G

B

⎤⎥⎥⎦

(6)X =
X

X+Y+Z
; Y =

Y

X+Y+Z

(7)

L∗ = 116f
(

Y

Yn

)
− 16

a∗ = 500

[
f
(

X

Xn

)
− f

(
Y

Yn

)]

b∗ = 500

[
f
(

Y

Yn

)
− f

(
Z

Zn

)] ;

2.3.5 � Color perception transformation

This step transforms [L*a*b*] of CIE LAB color space 
into color perception attribute values of [L C h], wherein L, 
Cab∗ , andhab represent lightness, chroma, and hue, respec-
tively, as expressed by Eq. (8).

The a* and b* for calculating hab have different combina-
tions of positive values or negative values. The absolute 
value of 

(
b∗

a∗

)
 was taken, and the appropriate angle was 

worked out according to the quadrant coordinates.

2.4 � LSTM neural network algorithm

To solve the poor performance of neural networks in long 
time series, an additional output of long-term memory can be 
created in each neuron, so that the long short-term memory 
(LSTM) network can process longer sequence data [27, 28].

In terms of the specific process of LSTM networks, each 
LSTM network had three input data points; the first input 
point is the memory ct − 1, 2 at t − 1 time point; the sec-
ond input point is the data xt at No. t time point; and the 
third input point is the output ht−1 at No. t − 1 time point, 
as shown in Fig. 4. The LSTM network had three types of 
gate structures, which are forget gate, input gate, and output 
gate. All these gate structures used a sigmoid function as an 
activate function, so the output data values were set as 0–1 
to simulate gate opening/closing, and the memory unit was 
operated through the three gates.

(8)
Cab∗ =

√[
(a∗)2 + (b∗)2

]

hab = tan−1
(|||

b∗

a∗

|||
) ;

Fig. 4   Internal structure of the LSTM network [27]
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The first step of the operation in the LSTM network is 
to determine what message the user outputs, and it is com-
pleted by the forget gate. The forget gate coefficient judges 
the importance of current memory for the output at time 
point t according to ht−1 and xt , so as to determine the out-
put of forget gate; if the memory before time point t is very 
important, including 0 to t − 1, then the output of forget gate 
should be 1, and the product of 1 and any number is 1. If the 
output is 0, this means that the memory is unimportant, the 
product of 0 and any number is 0. If the long-term memory 
is 0, this means that there is no memory for the moment. The 
input gate decides whether to add new memory ct in the new 
memory at time point t according to ht−1 and xt . The output 
gate judges how important the memory at time point t is for 
the prediction at time point t. The memory candidate unit 
generates the required memory information at time point t 
through ht−1 and xt , wherein xt is the data of the time point, 
ht − 1 is the time series data of previous point, and ct is the 
long-term memory output, as shown Fig. 5.

3 � Experimental procedure and instruments

The experimental equipment used in this study included a 
CNC machine tool, cutting tools, processing materials, and 
a temperature measurement module and color correction 
module. The cutting temperatures of the cutting tool and 
workpiece material were measured, and the changes in the 
cutting tool wear value and chip surface chromaticity were 

(9)Inputgate ∶ it = �(Wtht−1 + Uixt + bi)

(10)Forgetgate ∶ ot = �(Woht−1 + Uoxt + bo)

(11)Inputgate ∶ ft = �(Wfht−1 + Uf xt + bf )

(12)Memorycandidate ∶ c̃t = tach(Wcht−1 + Uixt + bi)

(13)Memorycell ∶ ct = ftoct−1 + itoc̃t)

(14)Output ∶ ht = ototanh(ct)

shot by using the said experimental equipment. The equip-
ment is described in detail below:

3.1 � Forms of machine tool and cutting tool

The machine tool used in this study is a CNC vertical five-
axis aggregate machine tool, with a maximum spindle speed 
of N = 10,000 (rpm), the X/Y/Z axis stroke of 450/300/360 
(mm), the fast feed G00 of 36 ~ 48 (M/min), the maximum 
feed G01 of 12 (M/min), and a FANUC 0i-MD series con-
troller. The test workpiece was NAK80 die steel, and the 
material hardness was HRC = 42°. The specifications of 
the cutting tool and experimental equipment CNC machine 
tool are shown in Fig. 6. The temperature signal data and 
chip chromaticity image were measured in the experimen-
tal process for applied analyses, and the correlation with 
cutting tool wear value was discussed. After the physical 
characteristics were satisfied, the neural networks, BPNN 
and LSTM, were used for modeling and prediction. The dif-
ference between the measured cutting tool wear value and 
the predicted cutting tool wear value was worked out at last, 
and the experimental process is shown in Fig. 7. This study’s 
data splits of the neural network methodology training and 
testing were 70% and 30%, respectively. The experimental 
data temperature and chip chromaticity are 420 sets.

Fig. 5   LSTM network  
architecture [27]

Fig. 6   Experimental equipment and cutting tool machine
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3.2 � Development of cutting temperature 
measuring equipment

The temperature signals were measured by using the device 
developed in this study. After the cutting temperature at the 
tool flank was measured, the signals were received by the 
temperature sensor. The message queuing telemetry trans-
port (MQTT) and Wi-Fi wireless transmission functions 
were used. The temperature sensor and microcontroller 
were installed inside the toolholder, with a temperature 
measurement accuracy of ± 1.5 °C, a sensitivity of 0.25 °C, 
and a transmission rate of 110–460,800 bps. The data set 
derived from the temperature signals was preprocessed in 
this experiment, and the mean value of maximum tempera-
ture spot and minimum temperature spot signals was used 
as an eigenvalue. The temperature sensor was corrected in 
this study, with an error value of ± 0.5 °C. The temperature 
measuring equipment is shown in Fig. 8, and the temperature 
measurement signal transmission mode is shown in Fig. 9.

4 � Results and discussion

The fundamental purpose of this study is to create a tem-
perature sensor to monitor the cutting temperature and 
observe the effect of cutting surface characteristic vari-
ation on tool life. The temperature signals collected dur-
ing machining were used for subsequent data analyses, 
and the change in cutting tool wear value was observed. 
The variations of machine condition and chip surface 

chromaticity were monitored to know the correlation 
between cutting tool wear values. Finally, a tool wear 
prediction model was built on neural networks. Different 
types of characteristic input values were substituted in 
the built neural model for analysis to evaluate the error 
value between the measured cutting tool wear value and 
the predicted cutting tool wear value and estimate the 
accuracy of tool wear prediction.

4.1 � Relationship between cutting time and tool 
wear

The experiment and analysis were performed referring to 
the Taylor lifetime curve of a cutting tool in the machining 
process. The state of tool flank wear in ISO standards of V 
Bmax > 0.3 mm is the standard of termination for this cut-
ting tool wear loss. In order to verify the repeatability of 
cutting tool wear data, three experiments were performed in 
this study. The cutting stroke was 3750 mm in each experi-
ment, at which time one measurement was made. The cut-
ting was performed 42 times in Group 1, and the tool flank 
wear was almost VB = 0.3 mm; the tool life curve is shown in 
Figs. 10 and 11. The chip curl was relatively regular in the 
initial wear region and stable cutting wear region, and the 
chips appeared as fragments in the accelerated wear region. 
The chip color changed from bluish green into dark bluish 
green and dark green, and the chip surface color changed 
from dark green into deep yellow at last. The trends from 
initial wear to accelerated wear in three repeatable cutting 
tests were close to each other, and the mean value of overall 
repeatability was 2.83%, as shown in Fig. 12 and Table 1.Fig. 7   Training and test processes of cutting tool wear model

Fig. 8   On-line cutting temperature measuring tool holder
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4.2 � Relationship between tool wear and cutting 
temperature

This study used the self-developed cutting tool temperature 
measuring equipment to observe the correlation between 

the cutting temperature and tool wear. The experimental 
sampling frequency was 1 Hz, and the cutting tool cut-in 
and cut-out regions were removed from the effective range 
of cutting temperature sampling, as shown in Fig. 13. The 
temperature sensor was installed on the insert back through 

Fig. 9   Cutting temperature 
measuring tool holder system

Fig. 10   The relationship between tool wear and chip state in Experiment 1
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Fig. 11   The relationship between tool wear and chip state in Experiment 3

Fig. 12   The relationship 
between tool wear curve and 
repeatability
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the toolholder and toolbar, as shown in Fig. 14. The Nos. 1, 
10, 20, 30, 40, and 42 temperature measurement data of the 
same position were discussed. In the case of the same num-
ber of machining processes, the cut-in and cut-out resulted in 
periodic changes in maximum and minimum temperatures, 
with the maximum error being 14.3%. The larger the tool 
wear was, the higher the cutting temperature was. This is 
because the larger the tool wear was, the higher the friction 
was between the cutting tool and workpiece, and the higher 
the temperature was, as shown in Figs. 15 and 16.

The average temperatures and cutting times were fitted, 
the cutting temperature rose obviously as the cutting times 
increased, meaning the wear state of cutting tool was posi-
tively related to cutting temperature. When the tool flank 
wear changed from the initial wear state to accelerated wear 
state, the trend was the same as the measured temperature, 
as shown in Figs. 17 and 18. As a result, the physical phe-
nomena of cutting temperature and tool wear were obtained. 
In three repeated experiments, the temperature and tool wear 
error was 9.29%, which was used as the input factor of tool 
wear prediction model.

4.3 � Relationship between tool wear and chip 
chromaticity

The chip color image was digitized in this study to observe 
the correlation between tool wear and chip surface chro-
maticity eigenvalue. Corresponding to the Taylor tool life 

graph, the trend of chip surface chromaticity was observed 
from Nos. 1, 13, 25, 37, and 42 cutting groups in the same 
position. The ranges of chip surface chromaticity X and Y 
eigenvalues changed clockwise as the cutting tool wear value 
increased, as shown in Figs. 19 and 20. When the cutting 
tool changed from the initial unworn state into accelerated 
wear state, the color change trend of chip surface chroma-
ticity eigenvalue was blue → cyan blue → cyan → cyan yel-
low → yellow. Additionally, the wear state of overall cutting 
times was discussed. The chip chromaticity X eigenvalue and 
Y eigenvalue increased so that the tool wear degree would 
change from the stable cutting state into accelerated wear, 
indicating that the tool wear has reached the unsteady state 
region. The trend diagram of cutting temperature and tool 
wear is shown in Fig. 21.

4.4 � Test error analysis result of tool wear prediction 
model

After the cutting tool wear, temperature, and chip chro-
maticity images were discussed, the said experimental 
results were fitted based on the Taylor life curve of a cut-
ting tool. According to the tool wear, temperature, and 

Table 1   Repeatability of tool wear trends

Number of experimental groups Mean value of 
overall repeat-
ability

Group 1 3.12%
Group 2 2.61%
Group 3 2.76%
Mean value of repeatability 2.83%

Fig. 13   Sampling range of cut-
ting temperature

Fig. 14   Temperature sensor mounting position
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chip chromaticity image analysis results, the trend and 
repeatability were identical. This study used BP-LM and 
LSTM neural network models to build a tool wear pre-
diction model. The input factors were cutting tempera-
ture and chip chromaticity image coordinates, and the 

output prediction value was the cutting tool wear loss, as 
described below:

The BP-LM neural network model was used to predict 
the cutting tool wear value. The input parameters includ-
ing cutting temperature, the chip chromaticity image 

Fig. 15   Cutting temperature 
time-domain graph of Group 1

Fig. 16   Cutting temperature 
time-domain graph of Group 3

Fig. 17   The relationship 
between cutting temperature 
and processing times is in 
Experiment 1
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Fig. 18   The relationship 
between cutting temperature 
and processing times is in 
Experiment 3

Fig. 19   Graph of the relationship between tool wear and chip chromaticity coordinate points in Experiment 1



893The International Journal of Advanced Manufacturing Technology (2023) 127:881–897	

1 3

Fig. 20   Graph of the relationship between tool wear and chip chromaticity coordinate points in Experiment 3

Fig. 21   Cutting temperature and tool wear trend map
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coordinate value, and the cutting temperature + chip chro-
maticity image coordinate value were imported simultane-
ously and compared. The tool wear prediction results are 
shown in Fig. 22 and Table 2. The MAPEs of cutting tem-
perature, chip chromaticity image coordinate value, and 
cutting temperature + chip chromaticity image coordinate 
value prediction results are 31.5%, 32.96%, and 21.16%, 
respectively, so the prediction result of single input factor 
had larger errors than multiple input factors. In Experi-
ment 3, the MAPEs of prediction results of single charac-
teristic cutting temperature, chip chromaticity image coor-
dinate value, and two characteristics are 17.28%, 25.44%, 
and 16.26%, respectively, and the prediction result was the 
same as that of Group 1.

When the LSTM neural network model was used to pre-
dict the cutting tool wear value, the cutting temperature, 
chip chromaticity image coordinate value, and cutting tem-
perature + chip chromaticity image coordinate value were 
compared. The MAPEs of tool wear prediction results are 
30.27%, 29.5%, and 22.1%, respectively. It was observed 
that the larger the number of input factors was, the smaller 
the MAPE was, representing higher prediction precision, 
as shown in Fig. 23 and Table 3.

When the neural network prediction models BP-LM and 
LSTM were analyzed and compared, the cutting tempera-
ture and chip chromaticity image coordinate value as input 
parameters were better than the prediction result of cutting 
temperature and chip chromaticity image coordinate value. 
This proved that the MAPE of prediction result decreased 

Fig. 22   Group 1 and 3 tool wear 
prediction result of BP-LM 
prediction model

Table 2   Groups 1 and 3 tool 
wear prediction error percentage 
(BP-LM)

Sensor selection Normalization MAPE

Group 1 BP-LM method prediction tool wear (Test 1)
Temperature Yes 31.5%
Color chip coordinate value Yes 32.96%
Temperature + color chip coordinate value Yes 21.16%
Group 3 BP-LM method prediction tool wear (Test 3)
Temperature Yes 17.28%
Color chip coordinate value Yes 25.44%
Temperature + color chip coordinate value Yes 16.26%
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as the input parameters increased. The MAPE of predic-
tion results of neural network prediction models BP-LM 
and LSTM are 19.88% and 22.1%, respectively, and the 
BP-LM and LSTM prediction methods are in the error range 
of 10% < MAPE < 20%, meaning the prediction precision 
of different neural networks could conform to the predic-
tive ability level in the specified range of MAPE, as shown 
in Fig. 24 and Table 4. The LSTM had larger errors than 
BP-LM in the prediction test because the few LSTM training 
weights and time sequences resulted in larger errors.

5 � Conclusion

The LSTM and BP methodology applied in this paper is 
used for tool life prediction, and the input is chip color and 
machining temperature parameters. Results can be applied 
to optical molds, deep drawing dies, and the cold extrusion 
dies industry applications. Conclusions are as follows.

1.	 The chip surface chromaticity X and Y eigenvalues could 
be obtained by chip color image processing, and the 
correlation between tool wear and chip surface chro-
maticity eigenvalue was established. As the tool wear 
increased, the chip surface color changed in the order 
of blue → cyan blue → cyan → cyan yellow → yellow, 
even reaching the ranges of cyan and yellow. The color 

change was the most apparent when the cutting tool was 
in the stage of accelerated wear.

2.	 The tool wear, chip image chromaticity, and temperature 
change were transformed by using Taylor’s curve of a 
cutting tool. The overall repeatability average of tool 
wear is 2.83%, so there were high repeatability precision 
and experimental accuracy.

3.	 In terms of tool life prediction, when the input eigenval-
ues were temperature and chip image chromaticity value, 
the mean errors of the BP-LM neural network model are 

Fig. 23   Group 1 tool wear pre-
diction result of TiAlN coating 
in LSTM prediction model

Table 3   Group 1 tool wear prediction error percentage (LSTM)

Sensor selection Normalization MAPE

Group 1 LSTM method prediction tool wear (Test 1)
Temperature Yes 30.27%
Color chip coordinate value Yes 29.5%
Temperature + color chip coordi-

nate value
Yes 22.1%

Fig. 24   BP-LM and LSTM tool wear percentage errors

Table 4   BP-LM and LSTM tool wear percentage errors

Number BP-LM 
method MAPE 
(%)

LSTM 
method 
MAPE (%)

Tool wear prediction error (temperature + color chip coordinate 
value)

Test-1 21.16 22.1
Test-2 22.23 22.93
Test-3 16.26 21.27
Average 19.88 22.1
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24.23% and 31.87%. The mean error is 19.88% when 
the input eigenvalues were temperature and chip image 
chromaticity value, so the error was reduced by 29% as 
the input eigenvalues increased.

4.	 In the LSTM neural network model, when the input 
eigenvalues were temperature and chip image chroma-
ticity value, the mean errors of prediction are 30.33% 
and 28.55%. The mean error of prediction is 22.1% when 
the input eigenvalues were temperature and chip image 
chromaticity value, so the error was reduced by 25% as 
the input eigenvalues increased.

5.	 The mean errors of BP-LM and LSTM neural net-
work prediction models are 19.88% and 22.1%, and the 
BP-LM and LSTM prediction methods are in the error 
range of 10% < MAPE < 20%, meaning the prediction 
precision of different neural networks could conform 
to the predictive ability level in the specified range of 
MAPE. The LSTM had larger errors than BP-LM in the 
prediction experiment because the few training weights 
and time sequences of LSTM resulted in larger errors. 
Using K-means ant colony optimization (KACO) to opti-
mize the path features in the chip chromaticity coor-
dinates, this methodology is recommended for future 
studies.
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