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Abstract
In tolerance analysis, the effect of clearance fits is especially difficult to estimate because the mating parts are not necessarily 
in actual contact and can take an infinite number of relative positions. The treatment of these situations is allowed in most of 
the available methods, possibly introducing additional elements in the dimension chains with appropriate statistical assump-
tions. The paper provides a similar extension for the static analogy, a previously proposed method that converts the tolerance 
analysis problem into an equivalent problem of force analysis. The procedure represents each fit, possibly between patterns 
of features (e.g., fasteners and holes), with a proper constraint in the equivalent static model. The ability of the constraint to 
transmit forces and torques is determined according to the types and directions of misalignments allowed by the joint clear-
ance. With simple rules, this avoids complications in the static model, which must include only the constraint between parts 
rather than the geometric details of the mating features. The extended method, currently limited to 2D dimension chains, 
is demonstrated on examples involving both dimensional and geometric tolerances. The comparison with existing methods 
shows the correctness of the proposed procedure. The simplicity of the workflow confirms the possibility, already demon-
strated for the static analogy, of avoiding numerical simulations or even the use of computer-based tools.

Keywords  Tolerancing · GD&T · Stackup analysis · Dimension chain · Joint clearance · Assembly shift

1  Introduction

A mechanical assembly is designed to ensure functions 
involving interaction between parts; examples include the 
positioning of machine elements, the transmission of force 
or motion, and the sealing of closures. These can be affected 
by the stackup of part deviations due to uncertainty sources 
in the manufacturing process. Such situations are detected 
by tolerance analysis [1]. One or more functional require-
ments are identified and expressed as geometric entities, 
such as distances or angles between features of different 
parts. Each requirement is associated with a chain of dimen-
sions involving features of individual parts. Given the toler-
ances on part features, the analysis calculates the stackup of 
part deviations and estimates the resulting variation on the 
requirement.

Tolerance analysis can be carried out with several meth-
ods, which are suitable for problems with assumptions of 
varying complexity [2]. Part dimensions involved in a func-
tional requirement may be parallel (1D stackup) or variously 
oriented in plane or space (2D–3D stackup). Specifications 
on part features may include geometric tolerances in addi-
tion to plus-minus dimensional tolerances. The deviations 
allowed by tolerances may have various types of statistical 
distributions (normal, beta, etc.), which may span equal or 
different fractions of the specified tolerances. In an effort to 
adapt to several possible assumptions, the available methods 
use complex mathematical models that can only be solved 
with the help of software tools.

One of the aspects that make tolerance analysis complex 
is the presence of clearance fits at joints between parts (e.g., 
shaft–hole or tab–slot) or with fasteners (bolts, screws, dow-
els, rivets, etc.). In addition to transmitting their geometric 
deviations, the mating parts can undergo relative linear or 
angular displacements within the limits allowed by the joint 
clearance. These further deviations should be included in 
the dimension chain, but this can be difficult because they 
have randomly varying directions. Furthermore, fasteners 
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are often installed in patterns and therefore can significantly 
increase the number of parts involved in a functional require-
ment; this can make stackup calculations even more difficult.

In 1D stackup problems, joint clearances are treated 
using the concept of assembly shift [3]. The assembly shift 
between two mating parts is an auxiliary dimension which 
corresponds to the random deviation from their relative posi-
tion due to the clearance. The shift has zero mean and a 
tolerance depending on the worst-case tolerance limits of the 
mating features. The advantage of such a definition is that 
the mating dimensions (e.g., diameters of shafts and holes) 
do not have to be explicitly added to the dimension chain, 
as they only determine the tolerance limits on the assembly 
shift. This is especially useful in the presence of fasteners 
because the dimension chain includes only the designed 
parts reducing the total number of elements of the stackup 
model. However, the random direction of the assembly shift 
does not allow a straightforward extension of the concept to 
2D and 3D stackup problems.

This paper proposes a possible treatment of assembly 
shifts in the tolerance analysis of 2D dimension chains. The 
approach is based on a static analogy previously proposed for 
generic assemblies [4] and mechanisms [5, 6]. The method 
estimates the linear contributions of the dimensions to the 
functional requirement (sensitivities) through an equivalent 
force analysis model. Depending on the complexity of the 
assembly, this allows for a resolution of tolerance analysis 
problems through simple force calculations or software tools 
for structural analysis. As discussed in the following, the 
sensitivities of the requirement to the assembly shifts can be 
easily calculated by static analogy without the need to pre-
define a statistical distribution of the displacement directions 
between the parts.

The remainder of the paper is structured as follows. Sec-
tion 2 recalls the methods available for tolerance analysis 
problems, with focus to those considering sensitivities and 
joint clearances. Section 3 recalls the static analogy, while 
Section 4 describes its extension to stackup problems involv-
ing fits and fasteners. Section 5 applies the method to some 
examples, comparing the results of the static analogy with 
known methods of tolerance analysis. Section 6 discusses 
the advantages and limitations of the proposed method. Sec-
tion 7 demonstrates the application of the method to a more 
realistic case. Section 8 summarizes the contribution of the 
work.

2 � Literature review

Tolerance analysis has been extensively studied during the 
past decades. Classifications and in-depth discussions of the 
available results are provided in the main reviews on the 
topic [1, 2, 7–10]. In the following, a few references will be 

made on the methods based on the same assumptions of this 
paper. The parts are rigid and designed with dimensional 
and geometric tolerances on their features. The assembly 
is created with simple contact relationships between part 
features (lower kinematic pairs), which determine the posi-
tion and orientation of the parts without overconstraints. 
The tolerance analysis is done in a given configuration of 
the assembly, which may coincide with one of the possible 
poses of a mechanism.

2.1 � Tolerance analysis methods

The core of any tolerance analysis method is a mathematical 
model of how geometric deviations on part features propa-
gate to the connected parts causing variation on an assem-
bly-level functional requirement. In 2D or 3D stackup prob-
lems, such propagation occurs along one or more degrees of 
freedom (DOFs) allowed by the contact relationships.

Most of the available models associate the requirement 
with a chain of geometric relations between part features. 
Once a local coordinate system is associated with each fea-
ture, a vector or matrix representation is built for the small 
displacements allowed by the tolerances; these are a subset of 
six possible translations and rotations, which excludes those 
corresponding to invariant DOFs. A geometric transforma-
tion (e.g., sum of vectors, product of matrices) is finally used 
to calculate the propagation of the small displacements along 
the chain, which determines the deviation on the functional 
requirement. Different types of representation and transfor-
mation have resulted into several tolerance analysis meth-
ods. These include the variational model [11–14], the vector 
loop model [15–17], the small displacement torsor [18, 19], 
the matrix model [20, 21], the Jacobian model [22], and the 
Jacobian-torsor model [23–25]. They are too complex to be 
solved by manual or spreadsheet-based calculations, but suit-
able for integration into CAD-based software; possible issues 
related to CAD data transfer are dealt with in [26–28].

More complex representations of geometric deviations, 
not yet developed at the same level of implementation, have 
been proposed in order to overcome some limitations of 
the above methods. The convex-hull methods try to reach 
full compliance with current tolerancing standards. For this 
purpose, they represent each tolerance zone by a volume in 
an appropriate displacement space depending on the type 
of feature; the volumes are transformed and composed by 
appropriate operations (e.g., Minkowski sums) to calculate 
the stackup of tolerances. The main methods based on this 
principle are the T-maps [29, 30] and the deviation domain 
[31, 32]. The skin model shapes method aims to account for 
the effect of form deviations, which are usually neglected in 
stackup calculations; this is achieved by the generation and 
the simulated assembly of surface meshes with systematic 
and random deviations [33–36]. Hybrid approaches have 
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also been proposed to integrate skin model shapes into other 
tolerance analysis methods [37, 38].

2.2 � Statistical analysis and sensitivities

Once a suitable propagation model of geometric deviations 
is set up, the analysis may be completed by calculating the 
deviation limits on the requirement from the specified toler-
ances (worst-case analysis). Such limits are often an unreal-
istic estimate of the variation because they do not take into 
account the compensation of deviations on different parts or 
the acceptance criteria adopted in statistical process control. 
For this reason, a more common objective is to estimate the 
parameters of the statistical distribution of the requirement 
from the corresponding parameters of part deviations (sta-
tistical analysis).

In 1D stackup problems, the dimension chain is linear. In 
the assumption of normal distributions without mean shifts, 
statistical tolerance analysis is as simple as the root-sum-
square (RSS) stackup equation, i.e., the sum of the variances 
of independent variables (e.g., [39]). With different distri-
butions, the RSS equation is corrected or replaced by more 
complex stackup models (see detailed discussion in [40]). 
Nonlinear dimension chains of 2D–3D stackup problems are 
treated by further methods reviewed in [8]. Among these, 
Monte Carlo simulation [41–43] is praised as especially 
accurate and implemented in most CAD-based tools for tol-
erance analysis. Quasi-Monte Carlo methods have also been 
proposed to get comparable accuracy with reduced compu-
tational effort [44–46].

A simpler approach to the statistical analysis of 2D–3D 
tolerance stacks is linearization. This consists in using the 
RSS equation with stackup coefficients (sensitivities) calcu-
lated as first-order approximations of nonlinear dimension 
chains. As most tolerance analysis methods require Monte 
Carlo simulation, the linearization is usually done with a 
sensitivity analysis based on the finite difference method 
(changing one tolerance at a time and recalculating the out-
put variation, e.g., [47, 48]); however, even more simulation 
runs are required with a further increase of computational 
effort. This is avoided by direct linearization, which calculates 
the sensitivities by means of matrix equations deriving from 
the 2D–3D modeling of the dimension chain. This approach, 
however, is currently feasible only in the vector loop model, 
although recent studies are trying to extend it to other toler-
ance analysis methods [49–51].

2.3 � Joint clearances

The need to deal with joint clearances has been recognized 
in the development of most tolerance analysis methods. 
The additional deviations due to clearance fits are generally 
treated as additional variables in the stackup model. This 

is straightforward in 1D problems because the relative dis-
placement between the mating features (assembly shift) is 
along the direction of the dimension chain [3, 52]. In 2D–3D 
problems, the displacement is usually in an unknown direc-
tion, which must be calculated or randomly generated.

Some methods handle joint clearances in their original 
formulation (e.g., Jacobian-torsor) or in later extensions. 
For the variational model, the formulation proposed in [13] 
includes assembly deviations between parts; cases involving 
multiple fasteners are addressed in [53] by setting small-
displacement matrices from a preliminary study of allowed 
displacement regions. Extensions for joint clearances have 
also been suggested for the vector loop model [54, 55], for 
the Jacobian model [56], and for the T-maps [57]. Problems 
with joint clearances have also been solved with methodolo-
gies deriving from the kinematic analysis of mechanisms, 
such as the Denavit–Hartenberg model [58, 59] and the 
screw theory [60, 61].

2.4 � Statics‑based approach

As mentioned, external forces may influence misalignments 
at joints. The problem is well known in the assembly simula-
tion of parts with geometric errors. Different loading condi-
tions can change the effective contact points between parts 
causing additional rotational errors. These are difficult to 
estimate, especially when considering form deviations as in 
the methods based on skin model shapes; in [62], the task is 
formulated as an optimization problem based on equations 
of multibody dynamics.

Other studies calculate the effect of external forces on 
assembly configuration using the principle of virtual works 
of statics, with specific formulations for spatial linkages 
[63] and parallel manipulators [64]. The same principle can 
also allow the calculation of worst-case contact conditions 
regardless of external forces, as proposed for spatial linkages 
[65] and mechanisms with prismatic joints [66].

A similar approach has proved useful in the tolerance 
analysis of closed-loop spatial mechanisms (e.g., parallel 
kinematics machines), where the equations of direct kin-
ematics cannot be differentiated in closed form to get the 
sensitivities of an output function to the individual general-
ized coordinates. In [67], the problem is solved by applying 
unit forces along the different DOFs to the tool center point 
and calculating the sensitivities from the internal forces on 
the links.

The above results have suggested a static analogy for 
solving tolerance analysis problems on generic assemblies. 
The method proposed in [4] demonstrates the correspond-
ence between internal forces and sensitivities for a wide 
range of part geometries and joint types. This allows a sta-
tistical analysis with direct linearization, reducing the com-
putational effort compared to methods based on Monte Carlo 
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simulation. With some extensions, the analogy has later been 
applied to planar linkages [5] and gear trains [6].

The objective of this paper is a further extension of the 
static analogy for the tolerance analysis of 2D assemblies 
with joint clearances. Unlike previous methods, force anal-
ysis is not used to calculate the relative position of mat-
ing features. Rather, it directly calculates the sensitivity of 
the assembly shift (a 2D version of the concept introduced 
in [3]) by assuming random directions and lengths of the 
small displacements allowed by the clearance. As will be 
discussed below, this approach can considerably streamline 
the analysis of assemblies containing multiple fasteners.

3 � Background on static analogy

In a tolerance analysis problem, a chain of dimensions Xi 
(i = 1, … n) on individual parts determines an assembly-level 
dimension Y, which represents the functional requirement. 
The stackup equation is the linear (or linearized) relationship 
between the requirement and the dimensions:

where Si = ∂Y/∂Xi is the sensitivity of Y to Xi. The dimen-
sions have a random variation specified as

where X0i are the nominal dimensions and Ti are the dimen-
sional tolerances. These can be either assigned to dimensions 
on part drawings or determined by conversion of geometric 
tolerances as suggested in [3, 52]. Under this assumption, 
the nominal value of the requirement is given by

while the variation of the requirement can be calculated with 
the corrected root-sum-square (RSS) equation:

where c ≥ 1 is a correction factor that accounts for possible viola-
tions of the statistical properties assumed on the actual dimen-
sions of manufactured parts (independence, normal distributions, 
no mean shifts, equal and sufficiently high process capabilities).

The static analogy [4] is a method for calculating the sensi-
tivities in (1) and thus allowing the calculation of output vari-
ation using (4). The analogy defines an equivalent problem of 
force analysis, where two opposite external forces F are applied 

(1)Y =

n
∑

i=1

SiXi

(2)Xi = X0i ± Ti

(3)Y0 =

n
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i=1

SiX0i
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√

√
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√
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∑
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to the same parts and along the same direction of dimension 
Y. If the assembly is exactly constrained, the forces acting on 
the individual parts can be calculated by solving free-body 
diagrams. This gives the internal forces Fi corresponding to 
dimensions Xi. According to considerations deriving from the 
virtual work principle, the sensitivities are finally calculated as

The above correspondence applies to linear dimensions. 
For angular dimensions, forces in (5) are replaced by tor-
ques. If an internal force Fi corresponds to a dimension that 
is a function f(Xi) of one of the toleranced dimensions, the 
chain rule allows to transform the sensitivity of (5):

For example, Fig. 1a shows a circular part connected with 
a V-shaped support. Suppose that the requirement to be con-
trolled is the horizontal distance Y between the left side of 
the support and the rightmost end of the circle. For such a 
simple case, an explicit equation can be readily found to 
calculate Y from three part dimensions: the diameter A of the 
circle, the angle B of the groove, and the distance C between 
the root of the groove and the left side of the support:

The deviations on A, B, and C contribute to the deviation 
on Y with the following sensitivities:

The same results can be obtained with the static anal-
ogy. In the equivalent static model in Fig. 1b, the assem-
bly is loaded with opposite forces F, which have the same 
direction as Y (horizontal) and act on the points where Y is 
defined. As the assembly is exactly constrained, the internal 
forces can be calculated by applying equilibrium equations 
on free-body diagrams of the two parts (Fig. 1c), where all 
the constraints are regarded as bilateral. Each dimension is 
then associated with an internal force Fi, which is eventually 
used to calculate the sensitivity Si.

The circle is subjected to the three radial tensile forces F, 
F/sinB, and F/tanB. Therefore

(5)Si =
Fi

F
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The sensitivity associated with the diameter is then 
obtained from (11) using the chain rule (6):

On the support, the sensitivity of Y to angle B corre-
sponds to the bending moment MB at the internal node of the 
frame. This is equal to the bending force F/sinB multiplied 
by its moment arm:

The sensitivity of Y to distance C corresponds to the ten-
sile force F:

4 � Methods

The static analogy must be extended with further assump-
tions and procedures in order to tackle more complex prob-
lems of tolerance analysis involving fits and fasteners. This 
section introduces the needed extensions and recalls alter-
native methods that will be used later to validate them on 
some examples.
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F
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4.1 � Treatment of 2D assembly shifts

In a planar assembly, parts have contact relationships through 
their features. These are 2D lines or curves corresponding 
to surfaces that are perpendicular to the plane. It is often 
assumed that the contact relationships, specified in the assem-
bly drawing on the nominal geometry of the parts, are pre-
served in the presence of geometric deviations resulting from 
manufacturing errors. Consequently, the functional require-
ment to be analyzed can be expressed as a chain of dimensions 
(i.e., distances between features) on individual parts.

In many cases, however, the assembly includes situations 
that do not satisfy the above assumption. These arise in the 
presence of clearance fits between features of size, where a 
hole on one part is connected to either a shaft on another 
part or a fastener. In a fit relationship, the centers of the two 
features have a random relative displacement (assembly shift) 
due to the inability to make the two features exactly concentric 
during the assembly operation. This displacement should be 
regarded as an additional source of variation, which in turn 
depends on the variation of the sizes of the mating features, 
e.g., the diameters D and d of the hole and the shaft/fastener.

As a first approach to take into account the assembly shift 
in tolerance analysis, D and d could be explicitly added to the 
dimension chain. This would allow to use the static analogy 
assuming a given contact relationship between the two fea-
tures. For example, the shift s in the shaft–hole pair in Fig. 2 
can be analyzed by assuming a contact between the features at 
a given point (as the worst case for the shift). In the equivalent 
static model, two opposite forces F are applied at the centers 

Fig. 1   Example of static analogy: (a) assembly layout, (b) equivalent 
static model, (c) free-body diagrams

Fig. 2   Static analogy assuming a given contact relationship
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of the shaft and the hole. The free-body diagrams show the 
internal force between shaft and hole, which is equal to F. 
This force is associated to the radii of the two features: a ten-
sile force for D/2 and a compressive force for d/2. According 
to the chain rule, the sensitivities on the two diameters are

As can be easily verified with an explicit equation, the 
worst-case variation of the shift in the conditions of Fig. 2 
is therefore

This result is true whenever a contact point can be identi-
fied for the two features as a result of either the assembly 
operation or operating conditions. This usually occurs on 
structures subject to external forces or mechanisms that trans-
mit motion in given directions [4]. In these cases, the shift has 
a systematic component as in (16) because the two features 
are necessarily misaligned in order to reach contact at a point.

In a generic assembly, however, the assembly shift does not 
satisfy the above condition because the parts are not necessar-
ily in actual contact (e.g., due to the presence of lubricant in a 
rotational pair or to friction in a joint with threaded fasteners). 
Therefore, the assembly shift has zero average, corresponding 
to perfect concentricity between the two features (which implies 
no contact at all). As shown in Fig. 3, the tolerance on the shift 
in a generic direction is the distance between the ideal condition 
and two limit conditions of contact on opposite sides. Further-
more, the worst case for the shift is the least material condition 
(LMC) for both features. This gives the following expression, 
the same as the one used in [3] for 1D dimension chains:

Another difficulty with the above approach is related to 
the increase of the number of dimensions to be dealt with in 
the tolerance analysis problem. In an assembly with many 
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fasteners, the dimension chain should include all diameters 
of the holes and fasteners. Consequently, the static model 
would be more complex, and possibly difficult to solve due 
to overconstraining (there are more fasteners than would be 
needed to constrain the three relative DOFs of the connected 
parts). It is therefore appropriate to look for a way to sim-
plify the dimension chain and the equivalent static model.

The proposed method does not explicitly add D and d to the 
dimension chain, but represents their effect with an additional 
dimension (the assembly shift s) with zero mean and equal 
bilateral tolerance given by Eq. (17). This choice corresponds to 
what is done in a 1D stackup problem, with the difference that 
more than one shift may have to be considered in a 2D problem. 
In general cases, there are three possible shifts, two translations 
and one rotation. Yet, it is often recognized that the requirement 
depends on only two shifts or even one. This depends on how 
the clearance influences the relative motion of the parts and the 
requirement itself; this is to be evaluated in advance on each 
different case. For example, the symmetry of the parts can make 
an angular shift irrelevant, or the requirement can turn out to 
be indifferent to a linear shift in one of the possible directions. 
When in doubt about the direction corresponding to the worst 
case for the requirement, the direction of a linear shift can be 
chosen arbitrarily; the static analogy will ensure that shifts in 
different directions have different effects on the requirement. In 
any case, there is no need to identify a given contact condition 
consistently with the above discussed assumptions.

Once appropriate assembly shifts have been identified as 
additional dimensions, the sensitivity of the requirement to each 
shift is calculated using the static analogy. For this purpose, the 
assembly is simplified by replacing each pair of mating features 
with a joint located at a representative point, e.g., the center of 
either the original features or one of the fasteners in a pattern. 
The joint has a number of DOFs which can vary in different 
situations. Without excluding special cases, a single shaft–hole 
pair or (less frequently) a single fastener is represented by a 
constraint with a rotational DOF, while a pattern of fasteners 
corresponds to a fixed constraint without relative DOFs. In the 
static model, the joint transmits a corresponding set of forces 
and torques, which exactly match the linear or angular shifts.

Following the above criterion, any joint that allows trans-
lational and rotational misalignments can be correctly repre-
sented in the equivalent static model. For example, Fig. 4a 
shows the case of an anti-rotation pin fit to a D-shaped hole in 
a bushing. If involved in a functional requirement, the fit can 
be represented by the common center of the two features and 
by selecting two of the three possible assembly shifts s1, s2, and 
s3. As shown in Fig. 4b, the respective tolerances are calculated 
from the limit dimensions as in (17). For an irregularly shaped 
pin and hole, the further difficulty is that the LMC conditions 
depend on the tolerance schemes specified for the two parts. 
Figure 4c considers three possible cases of profile tolerances: 

Fig. 3   Actual limits of a 2D assembly shift
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all-around, with datum at regardless of feature size (RFS), and 
with datum at maximum material condition (MMC).

The static model is finally solved by applying the equilib-
rium conditions to the free-body diagrams of the parts. This 
provides the internal forces and torques transmitted through 
each of the joints. The sensitivity of each assembly shift is cal-
culated again from (5), where Fi is the corresponding internal 
force or torque. As the shifts have zero mean, their sensitivities 
are always assumed positive irrespective of the direction of Fi.

4.2 � Validation

The correctness of the proposed method based on static anal-
ogy is verified in comparison with other proven methods 
for tolerance analysis. These must allow the computation 
of sensitivities in 2D problems including linear and angular 
dimensions as well as assembly shifts.

If the dimension chain is simple enough, the functional 
requirement can be expressed with an explicit stackup equa-
tion such as (7) for the example in Section 3. The shifts can 
be easily added to the equation taking into account their 
direction relative to the requirement. Once this is done, the 
sensitivities of Y to dimensions Xi (including shifts) are 
calculated as ∂Y/∂Xi, and generally include one or more 
nominal dimensions within or outside the chain. The deriv-
atives can be compared with the results of static analogy, 

either analytically or numerically for a given set of nominal 
dimensions.

In more complex problems, the comparison can be made 
with the variational method of [13], here recalled in its simpli-
fied 2D version. Two-axis coordinate frames are established at 
selected points of the parts; at least two frames are needed for 
each part at the features in contact with adjacent parts. The func-
tional requirement Y is associated to two of these frames (the end 
frames). The transformation between the end frames is the result 
of a chain of transformations spanning all the frames in a suit-
able sequence. The chain includes two types of transformations 
expressed by 3 × 3 homogeneous matrices:

•	 Nominal transformations Tij, which represent the relative 
translations and rotations between the coordinate frames 
when all part dimensions have their nominal values X0i;

•	 Small-displacement transformations DTij, which rep-
resent the additional translations and rotations due to 
random deviations δXi on the same dimensions, or to 
assembly shifts between features of adjacent parts.

The transformation matrices have the following typical 
forms:

(18)Tij =

⎡

⎢

⎢

⎣

cos � − sin � p1
sin � cos � p2
0 0 1

⎤

⎥

⎥

⎦

, DTij =

⎡

⎢

⎢

⎣

1 −�� �p1
�� 1 �p2
0 0 1

⎤

⎥

⎥

⎦

Fig. 4   Assembly shifts for an irregular-shape fit
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where p1 and p2 are the relative coordinates of the origin of 
frame j to the origin of frame i, and θ is the angle between 
an axis of frame j and the corresponding axis of frame i. 
The corresponding random deviations are δp1, δp2, and δθ.

The transformation matrix between the end frames is 
the product of the transformation matrices Tij and DTij 
in an appropriate sequence. Two different products are 
calculated: a first product T with the nominal transforma-
tions only, and a second product T′ including the small-
displacement transformations. The difference T′ − T gives 
the deviation δY resulting from the deviations δXi assumed 
for part dimensions and assembly shifts. The calculation of 
Y depends of the geometric definition of the requirement: a 
linear distance corresponds to the translation between the 
end frames, while an angular distance corresponds to the 
rotation between them.

If an expression of the sensitivities is sought, T′ − T can 
be calculated analytically; the expression of δY is a sum 
of linear contributions of the individual δXi. This can be 
tedious in cases where many matrices are to be multiplied 
and should be limited to the elements contributing to Y.

Alternatively, the tolerance analysis problem is solved 
by Monte Carlo sensitivity analysis. For a sample of parts 
(usually in the order of tens of thousands), deviations 
δXi are randomly generated from normal distributions 
with means X0i and 3σ tolerance limits equal to Ti. On 
the whole sample, δY has a normal distribution whose 3σ 
tolerance limit TY is estimated. The simulation is repeated 
for each sensitivity to be found; in the i-th simulation, all 
tolerances are set to zero except Ti; then TY is divided by 
Ti to get an estimate of Si.

5 � Results

The following examples demonstrate the method on 2D 
dimension chains of increasing complexity. The analysis is 
limited to the calculation of sensitivities, omitting the use of 
the RSS equation for stackup calculation. In each example, 
the results of the static analogy are validated using one of 
the methods mentioned in Section 4.

5.1 � Limit switch on swivel arm

The assembly in Fig. 5 includes a swivel arm, a circular 
disc, and a frame. The arm can freely rotate about a pin on 
the frame. The disc is fastened to the arm by four machine 
screws in a circular pattern and gets in contact with a limit 
switch on the frame. The functional requirement Y is an 
angle defining the orientation of the arm when the disc is 
against the switch. It is easily recognized that Y depends on 
three linear dimensions on individual parts: A on the frame, 
B on the arm, and C on the disc.

Only dimensional tolerances TA, TB, and TC are specified on 
the three dimensions, neglecting other geometric deviations 
such as the eccentricity of the hole pattern to the outer profile 
of the disc. In addition, two assembly shifts are considered in 
the horizontal direction: the linear displacement s1 of the hole 
in the arm with respect to the pin, and the linear displacement 
s2 of the holes in the disc to the mating screws (the angular 
shift has no effect on the requirement). Tolerances Ts1 and Ts2 
on the two shifts are calculated using Eq. (17) from the LMC 
conditions of the mating features (hole–pin and holes–screws).

In the equivalent static model of Fig. 6, the hole and the 
pin are represented by their centers; similarly, the screws 
are not included in the model and the corresponding hole 
patterns are represented by their centers. An external torque 
M is applied to the arm, and an opposite reaction torque on 
the switch of the frame avoids its rotation due to the pulling 
force of the disc (the contact between the disc and the frame 
is bilateral for the purpose of force analysis). The free-body 
diagrams provide the contact forces between the parts; all 
these forces have the same direction and equal magnitude

Fig. 5   Swivel arm assembly

Fig. 6   Equivalent static model for the swivel arm assembly
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Table 1 lists the sensitivities calculated for the dimen-
sions and the shifts from the static analogy. For this purpose, 
Eq. (5) is used after identifying the internal forces associated 
to the dimensions:

•	 Dimension A on the frame is subjected to a compressive 
force Fint between the pin and the switch;

•	 Dimension B on the arm is subjected to a tensile force 
equal to the component of Fint along the centerline;

•	 A tensile force Fint acts on the radius C/2 of the disc, and 
the sensitivity ∂Y/∂C associated to the diameter is half 
the sensitivity ∂Y/∂(C/2) associated to the radius;

•	 Shift s1 corresponds to the internal force Fint at the pin–
hole pair;

•	 Shift s2 corresponds to the internal force Fint at the center 
of the hole pattern.

The above results can be verified using the explicit equa-
tion of the dimension chain:

Differentiating (20) gives a relationship between devia-
tions δXi:

hence the following linear expression with the same sensi-
tivities as in Table 1:

5.2 � Diagonal bar on plate

Figure 7 shows a diagonal bar connected to a plate with two 
machine screws. The requirement Y is the distance between 
the top point of the bar and the bottom edge of the plate. To 

(19)Fint =
M

B sin Y

(20)A = B cos Y +
C

2
+ s1 + s2

(21)�A =
(

�B cos Y0 − B0 sin Y0�Y
)

+
�C

2
+ �s1 + �s2

(22)

�Y = −
�A

B0 sinY0
+

�B

B0 tanY0
+

�C

2B0 sinY0
+

�s1

B0 sin Y0
+

�s2

B0 sinY0

control the variation of Y, tolerances are specified on some 
dimensions on the two parts. These include distance B and 
angle C on the plate, and distances E and H on the bar. In 
addition to TB, TC, TE, and TH, the least-material diameters 
dLMC and DLMC are known for the screws and the holes in the 
bar. Tolerances on other dimensions (A, G) may apply but do 
not influence the variation of Y. For simplicity, no geometric 
tolerance is assumed to be specified.

According to the proposed method, the diameters of the 
screws and holes do not explicitly appear in the dimension 
chain. They influence Y through two possible assembly shifts 
of the holes with respect to the mating screws. The first shift 
s1 is a vertical translation (other directions would have been 
equally acceptable, e.g., along the connecting line of the 
hole centers). The second shift s2 is a rotation about the 
center of the first hole. Tolerances Ts1 and Ts2 on the two 
shifts are calculated from (17) and, for the angular shift, 
dividing the displacement by a rotation arm equal to the 
nominal distance G0 of the two hole centers. No shifts occur 
between the screws and the plate, which are connected with 
threaded fits with negligible clearance.

Figure 8 shows the equivalent static model. The hole pat-
tern is represented by the center of the first hole, which is 
regarded as a fixed joint between the two parts. The structure 
is loaded with two opposite forces F applied to the features 
defining the requirement. The free-body diagrams provide 
the internal forces at the joint, which include a force F and 
a torque

The following internal forces are associated to the dimen-
sions of the chain:

(23)M = Fb = F(E cos C − H∕2 ⋅ sin C)

Table 1   Sensitivities for the 
swivel arm assembly

Xi X0i Ti Si

A A0 TA  − 1/B0 sinY0

B B0 TB 1/B0 tanY0

C C0 TC 1/2B0 sinY0

s1 0 Ts1 1/B0 sinY0

s2 0 Ts2 1/B0 sinY0

Fig. 7   Diagonal bar assembly
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•	 Distance B on the plate is subjected to a tensile force F 
between the joint and the bottom edge;

•	 Angle C on the plate is subjected to a positive (anti-
clockwise) torque M at the joint;

•	 Distance E on the bar is subjected to a tensile force equal 
to the component of F along the centerline;

•	 Distance H/2 on the bar is subjected to a tensile force 
equal to the component of F across the centerline; again, 
the sensitivity ∂Y/∂H is half the sensitivity ∂Y/∂(H/2).

•	 Shift s1 corresponds to the force F at the joint;
•	 Shift s2 corresponds to the torque M at the joint.

Each internal force is then used to calculate the sensitivity 
of Y to the dimension using Eq. (5). The results are shown in 
Table 2.

The above results are verified using the variational method 
with analytical derivation. The coordinate frames established 
on the two parts are shown in Fig. 9a. The requirement Y 
is the vertical distance between the origins of frames 0 and 
4, and results from a chain of transformations illustrated in 
Fig. 9b. The nominal and small-displacement matrices are set 
by inspecting the geometric relationships between the coor-
dinate frames:

(24)T01 =

⎡

⎢

⎢

⎣

1 0 A0

0 1 B0

0 0 1

⎤

⎥

⎥

⎦

,DT11� =

⎡

⎢

⎢

⎣

1 0 �A

0 1 �B

0 0 1

⎤

⎥

⎥

⎦

(25)T12 =

⎡

⎢

⎢

⎣

cosC0 − sinC0 0

sinC0 cosC0 0

0 0 1

⎤

⎥

⎥

⎦

, DT22� =

⎡

⎢

⎢

⎣

1 −�C 0

�C 1 0

0 0 1

⎤

⎥

⎥

⎦

Fig. 8   Equivalent static model for diagonal bar assembly

Table 2   Sensitivities for the diagonal bar assembly

Xi X0i Ti Si

B B0 TB 1
C C0 TB E0cosC0 − H0/2⋅sinC0

E E0 TB sinC0

H H0 TB 1/2⋅cosC0

s1 0 Ts1 = (DLMC − dLMC)/2 1
s2 0 Ts2 = (DLMC − dLMC)/2G0 E0cosC0 − H0/2⋅sinC0



517The International Journal of Advanced Manufacturing Technology (2023) 127:507–525	

1 3

The nominal transformation between the end features is

hence

For a given set of random deviations δXi, the actual trans-
formation is

hence

(26)T23 =

⎡

⎢

⎢

⎣

1 0 0

0 1 0

0 0 1

⎤

⎥

⎥

⎦

, DT23 =

⎡

⎢

⎢

⎣

1 −�s2 �s1 sinC0

�s2 1 �s1 cosC0

0 0 1

⎤

⎥

⎥

⎦

(27)T34 =

⎡
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⎢

⎣

1 0 E0

0 1 H0∕2

0 0 1

⎤

⎥

⎥

⎦

, DT44� =

⎡

⎢

⎢

⎣

1 0 �E

0 1 �H∕2

0 0 1

⎤
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⎥

⎦

(28)
T04 = T01T12T23T34 = =
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⎢

⎢

⎣

cosC0 − sinC0 A0 + E0 cosC0 − H0∕2 ⋅ sinC0

sinC0 cosC0 B0 + E0 sinC0 − H0∕2 ⋅ cosC0

0 0 1

⎤

⎥

⎥
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(29)Y0 =
[

T04
]

23
= B0 + E0 sinC0 + H0∕2 ⋅ cosC0

(30)T
�

04 = T01DT11�T12DT22�T23DT23T34DT44�

Comparing (31) and (29) gives the expression of the 
output deviation:

All the sensitivities are equal to those calculated from 
the static analogy and listed in Table 2.

5.3 � Plates with geometric tolerancing

In Fig. 10a, plate 2 is connected to plate 1 with four machine 
screws in a rectangular pattern. The requirement Y is the dis-
tance between the left end of plate 1 and the right end of plate 
2. Tolerances Th1 and Th2 are specified on the diameters Dh1 
and Dh2 of the holes in the two parts. Composite position toler-
ances are also specified on the hole centers: pattern-locating 
tolerances Tp1 and Tp2 with datums on edges of the plates, and 
feature-relating tolerances Tf1 and Tf2 to limit deviations on hole 
positions within patterns. On plate 1, the feature-relating toler-
ance is set according to the fixed-fastener rule, i.e., it is equal to 
the difference between the diameters of the hole (Dh2) and the 
screw (df) at their maximum material condition (MMC). Profile 
tolerances Tw1 and Tw2 are specified on the right edges of the 
plates with datums on the corresponding left edges. The size 
tolerance on the screw is much smaller than those on the holes 
and is thus neglected.

For the purpose of the analysis, the hole pattern on each 
part is represented by an abstracted feature that includes the 
centers of two holes on a diagonal. Geometric tolerances are 
converted to equal bilateral tolerances on the dimensions 
shown in Fig. 10b. These include A, B, C (linear distances) 

and D (angle) on plate 1, and E, G, I, L, M (distances) and 
H (angle) on plate 2. Furthermore, three assembly shifts are 
defined between the holes in plate 2 and the mating screws: 
horizontal and vertical displacements s1 and s2, and angular 
displacement s3. No shifts are considered on plate 1 as the 
screws engage with threaded holes with negligible clearance. 
Table 3 lists the dimensional tolerances as functions of the 
specified geometric tolerances and nominal dimensions.
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Fig. 9   Verification of sensitivities for the diagonal bar assembly: (a) 
coordinate systems; (b) chain of transformations
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Figure 11 shows the equivalent static model. Among the 
endpoints of requirement Y, the one on plate 2 is loaded 
with a horizontal force F, and the one on plate 1 is fixed 
both in translation and in rotation. The free-body diagrams 
provide the support reaction and the internal force between 
the two parts. These forces allow to calculate the sensitivity 

for each of the dimensions and shifts in Table  3 from 
Eq. (5). For this purpose, the internal forces associated 
with the dimensions of plate 1 are identified as follows:

•	 A: horizontal tensile force F between the first point of 
the pattern and the left edge;

•	 B: no vertical internal force;
•	 C: no internal force between the diagonal points of the pattern;
•	 D: negative (clockwise) torque F(M − G).

On plate 2, an internal tensile force F acts between the 
origin of the pattern and the right edge; this force corresponds 
to dimension L − E, and is used to calculate the sensitivities 
associated with dimensions E and L from the chain rule:

In detail:

•	 E: internal force F, regarded as compressive according to 
(33);

•	 G: no vertical internal force;
•	 H: positive (anti-clockwise) torque F(M − G);
•	 I: no internal force between the diagonal points of the pattern;

(33)
�Y

�E
= −

�Y

�(L − E)
,
�Y

�L
=

�Y

�(L − E)

Fig. 10   Two-plate assembly: (a) specified tolerances; (b) equivalent dimensions

Table 3   Dimensional tolerances and sensitivities for the two-plate 
assembly

Xi X0i Ti ( ±) Si

A A0 TA = Tp1/2 1
B B0 TB = Tp1/2 0
C C0 TC = Tf1/2 0
D D0 TD = Tf1/2B0  − (M0 − G0)
E E0 TE = Tp2/2  − 1
G G0 TG = Tp2/2 0
H H0 TH = Tf2/2I0 M0 − G0

I I0 TI = Tf2/2 0
L L0 TL = Tw1/2 1
M M0 TM = Tw2/2 0
s1 0 Ts1 = (Dh2 + Th2 − df)/2 1
s2 0 Ts2 = (Dh2 + Th2 − df)/2 0
s3 0 Ts3 = (Dh2 + Th2 − df)/2C0 M0 − G0
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•	 L: internal force F, regarded as tensile according to (33);
•	 M: no vertical internal force.

The following forces correspond to the assembly shifts of 
the upper plate:

•	 s1: force F at the first point of the pattern;
•	 s2: no force in the direction of the shift;
•	 s3: torque F(M − G) at the first point of the pattern.

Again, the variational model is used to validate the results in 
Table 3. Figure 12a shows the six coordinate frames established 
on the two parts. The requirement Y is the horizontal distance 
between the origins of frames 0 and 6, and results from the chain 
illustrated in Fig. 12b. The transformation matrices are

The nominal transformation is
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Fig. 11   Equivalent static model for the two-plate assembly

Fig. 12   Verification of sensitivities for the two-plate assembly: (a) 
feature coordinate systems; (b) chain of transformations
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The actual transformation including the stackup of ran-
dom deviations δXi is

The deviation on Y is the appropriate element of the 
difference of the two transformations:

The above stackup model is used in Monte Carlo 
simulations for the calculation of sensitivities. For this 
purpose, nominal dimensions X0i are set to the numerical 
values listed in Table 4. The sensitivities (Si)MC are esti-
mated as 90% confidence intervals of the means from 10 
runs of the simulation with random samples of 100,000 
parts; when no interval is shown, equal estimates are 
obtained in all runs. Table 4 also lists the sensitivities 
(Si)SA from the static analogy. The results are clearly in 
good agreement between the two methods.

6 � Discussion

Some considerations suggested by the above examples help 
to clarify the contribution of the present study both to the 
development of the static analogy and with respect to other 
methods of tolerance analysis.

The treatment of fits and fasteners is needed in any toler-
ance analysis method because it allows a proper estimation of 
assembly-level deviations resulting from joint clearances. In 
previous studies on the static analogy [4–6], it was assumed 
that the two mating features of size (shaft and hole) are always 
in actual contact as they have to transmit shear forces between 
the parts; consequently, the equivalent static model was used to 
find the sensitivities of the dimensions (e.g., diameters) of the 
features. The assumption is suitable for the study of truss struc-
tures and linkages, whose members invariably exchange forces 
at the joints. In a generic assembly, however, many types of fits 
(including those involving most types of fasteners) do not have 
the function of transmitting shear forces. As a result, features 
can assume an off-center relative position without coming into 
contact. The proposed procedure, which extends the 1D con-
cept of assembly shift into 2D tolerance analysis, deals effec-
tively with these cases so that the static analogy could cover 
a wider range of assembly designs. From this point of view, 
the examples highlight an interesting feature of the approach: 
once the correct number of DOFs has been correctly associated 
with a fit (single or multiple), the sensitivities are provided by 
the resolution of the equivalent static model without the need 
to predefine the directions of the individual part deviations.

(40)T06 = T01T12T23T34T45T56

(41)
T

�

06 = T01DT11�T12DT22�T23DT23T34DT4�4T45DT5�5T56DT66�

(42)�Y = [(T
�

06 − T06)]13

Table 4   Results of the verification for the two-plate assembly

Xi X0i (Si)SA (Si)MC Unit

A 50 mm 1 1 mm/mm
B 50 mm 0 0 mm/mm
C 111.8 mm 0 0 mm/mm
D 0.464 rad M0 − G0 = 70 69.81–70.09 mm/rad
E 20 mm 1 1 mm/mm
G 20 mm 0 0 mm/mm
H 0.464 rad M0 − G0 = 70 69.85–70.07 mm/rad
I 111.8 mm 0 0 mm/mm
L 140 mm 1 1 mm/mm
M 90 mm 0 0 mm/mm
s1 0 1 1 mm/mm
s2 0 0 0 mm/mm
s3 0 M0 − G0 = 70 69.89–70.09 mm/rad

The proposed extension can therefore be justified as 
an attempt to increase the completeness of the static anal-
ogy, in order to bring its application potential closer to 
other tolerance analysis methods. Many of these allow a 
treatment of fits and fasteners, generally with additional 
elements in the chain of geometric relations, as in the case 
of the variational model used as a baseline method for the 
examples. Compared to existing methods, however, the 
static analogy has some favorable properties with respect 
to two aspects mentioned in the literature review:

•	 It allows direct linearization, i.e., evaluates the sensitivi-
ties without requiring a finite-difference plan of Monte 
Carlo simulations. This feature, which helps reduce the 
computational effort, is seemingly common only to the 
vector loop model as well as to some approaches for 
specific types of mechanisms. An easy calculation of 
sensitivities can streamline any type of stackup analysis 
(worst-case or statistical) with various assumptions on 
manufacturing processes (e.g., statistical distributions 
and process capabilities). It also provides a ready assess-
ment of the relative effects of individual tolerances on 
the functional requirement.

•	 It allows in principle a manual or spreadsheet-based solu-
tion of the tolerance analysis problem, which is currently 
only possible in 1D stackup problems. In most 2D cases, 
static calculations can be done graphically or by solv-
ing equilibrium equations; the use of a computer is not 
strictly necessary and the required knowledge is the same 
required for force analysis in mechanical design projects. 
It can be noted that analytical solutions, here sought for 
comparison purposes, are usually not required in design 
practice; static calculations would be even simpler if 
based on numerical values of the forces, which are suf-
ficient to estimate the variation of interest.
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On the critical side, the latter advantage could lead to limi-
tations in some situations. When dealing with very complex 
assemblies, hand calculations are more complex and can be less 
convenient than a computer-based method. This is especially 
true for overconstrained assemblies, for which the static anal-
ogy has not yet been proven; in any case, these would generally 
require the use of finite element analysis software with possible 
doubts about the effectiveness and simplicity of the workflow.

Furthermore, some difficulties can be expected in perspec-
tive of an integration of the static analogy in CAD-based soft-
ware. Some interactive decisions are needed along the way to 
solve a tolerance analysis problem. The first one is the setup 
of the assembly shifts, which requires an understanding of 
possible misalignments and their potential effects on the func-
tional requirement. The second one is the correct association 
of dimensions and shifts to internal forces of the equivalent 
static model. Further work will be needed to prove that these 
steps can be automated for a full software implementation.

7 � Application

The workflow of the static analogy is now demonstrated on a 
simple realistic case of tolerance analysis. Figure 13 shows the 
mounting of an electric motor on a fixed frame using a bracket 
and threaded fasteners. The variation on the functional require-
ments Y1, Y2, Y3, and Y4, indicated on the assembly drawing, 
is to be estimated. Dimensional and geometric tolerances are 
specified on the three main parts as detailed in Fig. 14. The 

Fig. 14   Parts of the electric motor assembly

Fig. 13   Electric motor assembly
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calculation will neglect any form error and deformation of the 
parts, as well as the deviations on the diameters of the M4 bolts.

For the purpose of the analysis, the geometric tolerances are 
translated into equivalent plus-minus tolerances on the linear 
and angular dimensions shown in Fig. 15. The hole patterns are 
represented by their centers, and appropriate assembly shifts are 
defined where needed. For the holes on the horizontal wall of 
the bracket, s1 and s2 are the misalignments with respect to the 
frame in the longitudinal and angular directions, respectively. For 
the holes on the flange of the motor, s3 and s4 are the misalign-
ments with respect to the bracket in the horizontal and vertical 
directions, respectively. Table 5 describes the calculation of the 
tolerances for all the dimensions and the assembly shifts. The 
tolerances on s3 and s4 are the RSS stackup of two terms because 
the bolts shift with respect to both the bracket and the motor.

Figure 16 shows the equivalent static models for the analy-
sis of the four requirements. External forces F are applied to 
the shoulder of the motor shaft in the directions of Y1 and 
Y3, while external torques M are applied to the end journal 
of the same shaft in the directions of Y2 and Y4. The internal 
forces for each loading are calculated by solving the exactly 
constrained free-body diagram. Table 6 lists the sensitivities 
of the requirements with respect to the tolerances.

The RSS equations give the resulting tolerances on the four 
requirements:

8 � Conclusions

The proposed method has the potential to simplify tolerance 
analysis on assemblies including fits and fasteners. For this 
purpose, it integrates the two concepts of assembly shift and 
static analogy. The assembly shift, commonly used in the 
analysis of 1D dimension chains, excludes the sizes of mating 
features (e.g., the diameters of holes, shafts, and fasteners) 
from the dimension chain; their effect on assembly-level vari-
ation is accounted for by an additional zero-mean dimension, 
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Fig. 15   Dimensions and shifts for the electric motor assembly

Table 5   Tolerances for the electric motor assembly

Tolerance Unit Calculation Value

TA mm 0.5/2 0.250
TB rad 0.15/60 0.003
TC rad 1.5/100 0.015
TE mm (0.4 + 2 ⋅ 0.2)/2 0.400
TG rad (0.4 + 2 ⋅ 0.2)/60 0.013
TH mm (0.4 + 2 ⋅ 0.2)/2 0.400
T1 mm (5.25 − 4)/2 0.625
T2 rad (5.25–4)/60 0.021
TL mm (0.3 + 2 ⋅ 0.1)/2 0.250
TN mm (0.3 + 2 ⋅ 0.1)/2 0.250
TP mm 0.12/2 0.060
TQ rad 0.08/25 0.003
TR rad 0.08/25 0.003
T3 mm (((5.1 − 4)/2)2 + ((5.25 − 4)/2)2)1/2 0.851
T4 mm (((5.1 − 4)/2)2 + ((5.25 − 4)/2)2)1/2 0.851
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between the features or to simulate the relative position of the 
two features using more complex mathematical formulations.

Application to some test cases has shown that the method 
provides correct results in comparison with existing meth-
ods. Compared to these, it could provide the following 
advantages:

•	 Direct linearization, which avoids Monte Carlo simula-
tion plans;

•	 Use of procedures deriving from structural analysis, cus-
tomary in mechanical design, and possibly carried out 
graphically or with simple manual calculations.

On the other hand, further developments are needed to 
overcome the following shortcomings:

•	 Possible difficulties in the application to complex assemblies, 
which may require more effort to solve the static models;

•	 Incomplete automation of the procedure, which could 
require interactive decisions in a possible CAD-based 
software implementation;

•	 Current limitation to exactly constrained assemblies with 
rigid parts;

Fig. 16   Equivalent static models for the requirements of the electric motor assembly

Table 6   Sensitivities for the 
electric motor assembly

Sensitivity Y1 Y2 Y3 Y4

SAi – – 1 –
SBi – – – 1
SCi – 1 – –
SEi – – 1 –
SGi – – – 1
SHi 1 – – –
S1i – – 1 –
S2i – – – 1
SLi – – – –
SNi 1 – – –
SPi – – 1 –
SQi – 1 – –
SRi – – – 1
S3i – – – –
S4i 1 – – –

whose tolerance is calculated from the LMC dimensions of 
the features. The static analogy allows the extension of the 
assembly shift to 2D dimension chains, avoiding the need 
to predefine the worst-case direction of the misalignment 
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•	 Treatment of geometric tolerances through conversion 
into equivalent dimensional tolerances, without complete 
coverage of tolerancing standards;

•	 Need to extend the method to 3D dimension chains, 
through a broader classification of the force-tolerance 
correspondences considered in the static analogy.
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