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Abstract
Among metallic additive manufacturing technologies, wire and arc additive manufacturing (WAAM) has been recently 
adopted to manufacture large industrial components. In this process, controlling the temperature evolution is very important 
since it directly influences the quality of the deposited parts. Typically, the temperature history in WAAM can be obtained 
through experiments and/or numerical simulations, which are generally time-consuming and expensive. In this research, 
we developed a robust surrogate model (SM) for predicting the temperature history in WAAM based on the combination of 
machining learning (ML) and finite element (FE) simulation. The SM model was built to predict the temperature history in 
the WAAM of single weld tracks. For this purpose, the FE model was first developed and validated against experiments. The 
FE model was subsequently used to generate the data to train ML models based on feed-forward neural network (FFNN). 
The trained SM model can fast and accurately predict the temperature history in the cases which were not previously used 
for training with a very high accuracy of more than 99% and in a very short time with only 38 s (after being trained) as 
compared with 5 h for a FE model. The trained SM can be used for studies that require a large number of simulations such 
as uncertainty quantification or process optimization.

Keywords  Wire and arc additive manufacturing (WAAM) · Surrogate model · Finite element simulation · Machine 
learning · Thermal history · 316L

1  Introduction

Being considered an advanced method of manufacturing 
products by adding materials layer-by-layer, additive manu-
facturing (AM) technologies can fabricate very complex 
components [1]. Especially, metal AM (MAM) has been 

increasingly used in important industrial sectors such as 
aeronautics, automobile, shipbuilding, and tooling [2–4]. 
Together with powder-bed-fusion (PBF) AM technologies, 
directed energy deposition (DED) is an important technique 
in the MAM group [5]. DED can use either a laser or an arc 
source to melt metallic powder/wire and to directly deposit 
into a part layer-by-layer through a nozzle [6, 7]. A common 
multi-axis CNC machine or a robot can perform the shaping 
motion in DED. Therefore, DED technologies are commonly 
used to fabricate components with medium to large dimen-
sions compared to PBF-AM [6].

Among DED technologies, the process using metallic 
wire and an arc as the energy source, also called WAAM 
[8], allows the highest rate of material deposition [9, 10], 
so quite suitable to fabricate large components. WAAM 
systems also require a lower investment cost compared 
to other powder-based MAM systems because they can 
be built using available welding equipment and mecha-
nisms such as machine tools and robots [11–14]. In addi-
tion, the metal wires available in the welding market with 
relatively low costs can be used in WAAM. The use of 
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the metal wire is also safer for operators and the envi-
ronment compared to that of metal powder [15]. These 
advantages and benefits of WAAM make it become one 
of the most competitive technologies for fabricating com-
ponents with large dimensions and low production costs, 
especially for industrial applications. In fact, researchers 
and industrial manufacturers have recently focused on 
WAAM [16].

One of the main challenges in WAAM processes is the 
accumulation of the heat during the printing process [9]. 
As the number of deposited layers increases, the accumu-
lated heat significantly increases, leading to the slag of 
melted material, thermal distortion, and residual stress. 
It also greatly influences the solid state transformation 
of the deposited material [17–20]. Moreover, it is largely 
accepted that the microstructures of parts fabricated by 
WAAM are strongly dependent of the thermal history 
[21]. Many authors investigated the thermal history and 
its influences on microstructures, mechanical characteris-
tics, thermal distortion, and residual stress (Cunningham 
et al. 2018). For example, Zhao et al. [18] investigated 
the thermal behavior during the WAAM process of thin 
walls via experiment and simulation. They found that 
the melt pool temperature gradient and the rate of cool-
ing decreased with an increase of the deposition height. 
This was due to the heat accumulation during the layer 
deposition. Similarly, using a thermal infrared camera, 
Yang et al. [22] observed that the high area temperature 
behind the melt pool was gradually more significant with 
the deposition height. Moreover, the interlayer cooling 
time could enhance the forming quality of as-fabricated 
thin-wall components. Rodrigues et al. [23] also utilized 
a thermal infrared camera to study the influence of the 
thermal cycles on microstructures and characteristics 
of high-strength-low-alloy (HSLA) steels deposited by 
WAAM. The authors also observed that the temperature 
gradient mitigated with the increase in the deposition 
height. Moreover, as the heat input increased the cooling 
rate decreased, whereas the solidification time increased. 
Due to the variation of thermal cycles along the building 
direction, the microstructure was changed, especially in 
terms of grain size. Recently, Le et al. [24, 25] analyzed 
the effects of process parameters and the thermal history 
on the quality of stainless steel parts made by WAAM 
via experiment and simulation methods. The authors 
also reported that the thermal cycles played an impor-
tant role in the formation and evolution in microstructures 
and grains’ size of the as-fabricated material. Moreover, 
increasing the travel speed of the weld torch resulted in a 
refinement in microstructures, thus enhancing the mechan-
ical strengths.

Although the experiment or a combination of experi-
ment and simulation was successfully applied to analyze 

the effects of process variables and thermal cycles on 
characteristics of the WAAM fabricated components, they 
are generally time-consuming and expensive. The number 
of experimental tests and simulations was also limited; 
meanwhile, a large number of combined process variables 
need to be examined to build a complete process map for 
predicting the process parameters and product qualities 
[26]. Recently, machine learning (ML) shows the poten-
tial applications to accelerate thermal prediction in MAM 
by exploiting datasets obtained from experiments and 
experimentally validated simulations. ML concentrates 
on algorithms of data modeling and label predictions with 
the goal of generating robust predictions for the tasks of 
regression and classification [27]. Modern deep learning 
(DL) methods have shown great benefits in different sec-
tors from material and product design to manufacturing 
processes [28].

Taking the advantages of ML and DL, several authors 
have successfully developed surrogate models (SMs) to 
predict the thermal evolution in AM robustly. Pham et al. 
[29] and Fetni et al. [30] proposed SMs for predicting the 
thermal field in the powder-DED process, where FFNN 
(feed-forward-neural network) models were adopted. The 
authors stated that the model accuracy was attained above 
99% with a short prediction time. Zhu et al. [28] devel-
oped the PINN (physics-informed neural network) codes 
to predict the melt pool fluid dynamics and temperature 
in MAM. Roy and Wodo [31] developed a SM based on 
ANN to predict the thermal field in the fused-filament-
fabrication (FFF) process. The authors utilized the data 
obtained from numerical simulations to train and validate 
the SM. They showed that the SM could predict the tem-
perature evolution rapidly with high accuracy.

To the best of the authors’ knowledge, SMs for the 
thermal prediction in WAAM are still limited in the lit-
erature. Inspired from previous publications [29–32], we 
developed a SM to predict the temperature variation at 
any point of the part fabricated by WAAM. The FFNN 
model was chosen because it has a simple architecture 
and fast training compared to other complex deep learning 
models, such as RNN and PINN. In this paper, we focus 
on the thermal experiment and simulation of the WAAM 
process of single weld tracks. This step aims to calibrate 
the thermal simulation model of the WAAM process accu-
rately. In future works, we will extend the applications of 
this method for the single-track multi-layer or multi-track 
multi-layer deposition.

The article was structured as follows. In Section 2, 
the materials and research methodology were presented. 
In particular, the methodology was described step-by-
step. Section 3 is intended for the results and discussion. 
Lastly, the main findings and conclusions of this research 
were presented in Section 4.
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2 � Materials and methodology

2.1 � Materials

In this paper, we focused on the thermal evolution during 
a single weld track in the WAAM process. The single weld 
track was fabricated on a 200 mm × 80 mm × 10 mm plate 

made of 316L stainless steel (316L SS) with an industrial 
GMAW welding robot: TA1400 Panasonic. The 316L SS 
wire with 1.2 mm in diameter was utilized. The chemical 
composition of the wire and substrate material includes 
0.01% C, 0.59% Si, 1.53% Mn, 18.56% Cr, 11.55% Ni, 
2.53% Mo, and balance of Fe (in wt. %) (Lee 2020). The 
thermal properties of 316L SS including density, specific 
heat, and thermal conductivity were estimated from its 
chemical composition using JMatPro software, as shown 
in Fig. 1.

2.2 � Experimental set‑up

A single weld track was performed on the 316L SS sub-
strate (Fig. 2a). The main parameters, including a travel 
speed of the weld torch V = 0.4 m/min, a welding current 
I = 110A, and a voltage U = 23 V, were utilized. A shield-
ing gas of pure argon with 20 L/min in flow rate was 
applied during the WAAM process.

The temperature evolutions at five points on the substrate 
surface were recorded using five K-type thermocouples and 
a HIOKI LRB431-20 Memory HiLoggers machine (see 
Fig. 2a). The positions of the thermocouples were carefully 
attached to the measurement positions by the TIG welding 

Fig. 1   The density, specific heat, and thermal conductivity of 316L 
stainless steel as functions of temperatures

Fig. 2   a Experimental set-up for 
capturing the thermal evolution 
at five points on the substrate 
surface by the thermocouples. b 
Positions of five thermocouples 
(T1 to T5)
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process as shown in Fig. 2b. These measurements are used 
to validate the temperature evolution at the identical points 
extracted from the FE model, which is modeled under the 
same process parameters.

2.3 � Finite element model

Thermal analysis of a single weld track in the WAAM pro-
cess is performed by ANSYS software. The temperature 
evolution is governed by the following equation [33]:

where T and K are the temperature and thermal conductiv-
ity, respectively; ρ is the material density, Cp is the specific 
heat, V is the speed of heat source, and Q̇ is the volume 
heat source. In this work, �,K, and Cp are the functions of 
temperature as reported in Fig. 1.

It is assumed that the initial temperatures (denoted by 
Tini) of the testing environment and the substrate are equal to 
25 °C. The boundary conditions of convection and radiation 
on the surfaces are described by Eq. (2).

where σ is the Stefan-Boltzmann constant, σ = 5.67 × 10−8 
W.m−2.K−4 [34]; ε is the emissivity coefficients of the sam-
ple surfaces, ε = 0.9 [17]; �⃗n depicts the unitary normal vector 
of the surfaces; h is the local heating exchange coefficient, 
h = 30 W.m−2.K−1 [17]. Moreover, we also used h = 400 
W.m−2.K−1 for the substrate surface that contacts the build-
ing table [33].

Figure 3a shows the finite element mesh of the simulation 
which contains 3225 hexahedral elements and 3563 nodes. 
The weld bead track was simulated by a volume of L × W × H 
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Fig. 3   a Finite element mesh. b Goldak’s model for the energy source

Table 1   Datasets obtained from the FE simulations used to develop 
the FFNN model

Current I (A) 110 120 130 140 150

Travel speed V (m/min) 0.3 0.4 0.5 0.6 0.7
Training data √ √ √ √
Testing data √

Fig. 4   A general FFNN’s archi-
tecture used in this study
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(in length × width × height, respectively) and a mesh size of 
1.4 mm × 1.4 mm × 1.4 mm was used. The values of L, W, and 
H were measured from the fabricated weld track. The mesh 
size of 3 mm × 3 mm × 3 mm is used in the substrate to reduce 
the computing time. The birth and death method [35] was used 
during the deposition.

The heat source (Fig. 3b) is modeled using the Goldak 
model [36]. For the material points in the first half-ellipsoid 
in front of the welding arc, the heat flux is considered by 
Eq. (3), while the heat flux for the points in the last half-
ellipsoid located in the rear part of the arc is described by 
Eq. (4).

where ar, af, b, and c are constants (see Fig. 3b), fr and ff 
depict the proportion of the heat input in the rear and front 
sides satisfying ff = 0.6 and fr = 1.4, and Q = � ×I × U is the 
heat input with �, I, and U the arc efficiency ratio, the cur-
rent, and the voltage, respectively. In this work, af = 7 mm, 
ar = 13 mm, b = 4 mm, c = 4 mm [37], and � = 0.8 [38] were 
used.
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2.4 � Machine learning–based surrogate model

In this section, we introduce the machine learning–based 
surrogate model to replace the FE model to predict the tem-
perature evolutions of WAAM process. The ML surrogate 
model is chosen based on the following two steps:

	 (i)	 Data collection: generating a set of input–output 
pairs, i.e., the current I, the travel speed V, and tem-
perature by running high fidelity FE model.

	 (ii)	 Choosing an appropriate ML algorithm and optimiz-
ing its hyperparameters.

For step (i), five datasets obtained from the FE-based 
thermal simulations were collected and separated into two 
categories—four datasets for the model training and one 
dataset for model testing (Table 1). The FE simulations gen-
erated these five datasets using different values of the pro-
cess variables (the current I and the travel speed V) while the 
voltage U was fixed at 20 V. In detail, the training and testing 
datasets contain the temperature fields of all mesh points of 
the weld track and substrate sample. Each training dataset 
includes 21,898 data points for the nodes with 420 steps 
of time, resulting in 36,788,640 data points for the train-
ing dataset. Each node presents a temperature curve T(t). 
Similarly, the dataset for the testing of the model contains 
9,197,160 data points. In addition, the FE-based thermal 

Table 2   Testing results with 
different architectures of the 
FFNN model

No Layer 1 Layer 2 Layer 3 Layer 4 Final MSE R2

1 400 300 250 200 6.22×10−5 0.9936
2 300 200 150 100 4.66×10−5 0.9922
3 250 200 150 100 4.12×10−5 0.9931
4 220 160 140 100 4.1×10−5 0.9938

Fig. 5   The points used to assess the prediction accuracy of the FFNN model vs. the FE model
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simulations and the extraction of datasets were performed 
on a computer with the configuration of Intel i7 6700 CPU 
for the processor, 32 GB RAM for the memory, and NVIDIA 
GeForce GTX-1660Ti for the GPU.

For step (ii), there are several methods that can be applied 
such as linear regression, polynomial regression, and feed-
forward neural networks (FFNN). In this study, we choose the 
FFNN architecture to construct the surrogate model to gain 
the advantages of approximating highly non-linear and high-
dimensional function of the physics inside WAAM process.

FFNN is the simplest form of an artificial neuron as the 
information feeds forward in the network, i.e., through input 
nodes, hidden layers, and output nodes. To predict the out-
put, each neuron performs a dot product of the input and 
its corresponding weights, together with the addition of the 
bias and the application of a nonlinearity activation function.

In this study, the input variables are composed of the 
coordinates (x, y, z) of a mesh point, the travel speed V, 
and the current I, while the model’s output is the predicted 
temperature T at the considered mesh point. The number of 
hidden layers was fixed at four layers (Fig. 4).

The training process of the FFNN model consists of opti-
mizing its weight and bias matrices by minimizing a prede-
fined loss function, namely the mean squared error (MSE). 
Meanwhile, the hyperparameters were optimized through 
several training and cross-validation processes to ensure the 
best model performance. The EarlyStopping callback was 
used to avoid model overfitting, and the model weight and 

bias matrices can be saved using ModelCheckPoint callback. 
The EarlyStopping callback was used to avoid model overfit-
ting, and the model weight and bias matrices can be saved 
using ModelCheckPoint callback. The weights and biases 
( W) are determined by resolving the minimization problem 
of mean squared error (MSE) loss, as Eq. (5).

where N is the training data number, ℑ is the FFNN model, 
d = [x, y, z,V , I] is the input vector, and T (i) is the tempera-
ture corresponding to each input vector d(i).

To evaluate the model performance, the coefficient of 
determination R2, Eq. (6) was used.

where T̃i is the predicted value of Ti, and T  is the mean value 
of Ti.

In this study, several structures with different numbers 
of hidden layers and different numbers of neurons in each 
hidden layer (Table 2) were tested with the datasets given 
in Table 1. After evaluating the model performance, the 
most appropriate FFNN model which shows the highest 
R2 value was selected.

(5)MSE =
1

N

N∑

i=1

(ℑ(d(i)|W) − T (i))
2

(6)R2 = 1 −

∑N

i=1
(Ti − T̃i)

2

∑N

i=1
(Ti − T)

2

Fig. 6   Thermal field achieved by the FE model. a Temperature field. b Temperature evolutions
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In addition to the coefficient of determination R2, 
we also considered MAE (the mean of absolute errors) 
(Eq. (7)) and RMSE (root mean squared error) (Eq. (8)) 
to evaluate the robustness of the selected model for the 
temperature evolution prediction in the entire part and at 
several specific points.

Figure 5 shows the positions to assess the FFNN mod-
el’s accuracy versus the FE model. We selected three 
points on the center line of the weld track (i.e., the points 

(7)MAE =
1

N

N∑

i=1

|Ti − T̃i|

(8)RMSE =

√√√√ 1

N

N∑

i=1

(Ti − T̃i)
2

ID #19,270, #19,280, and #19,280) to observe the tem-
perature history in the fusion zone. Moreover, two points 
on each side on the top surface of the substrate close to 
the weld track (i.e., the points ID #331, #622, #1322, 
and #1850) were also examined. The thermal evolutions 
at these points (ID #331 to #1850) are similar to those 
observed by the thermocouples in the experiment.

3 � Results and discussion

3.1 � FE and experiment results

Figure 6 shows the thermal field achieved by the FE model. 
As shown in Fig. 6a, the heat source is moving during the 
deposition process. As shown in Fig. 6b, the temperature 
evolution typically consists of a heating phase in which the 
heat source moves to the observed point and a cooling phase 
in which the heat source passes the observed point. For the 
point of the weld track (P2), a high-temperature peak (up to 
over 3000 °C) is observed, followed by first a rapid cooling 
part and then a long slow cooling part, while in the case 
of the point (P1) on the substrate close to the weld track, 
the temperature peak is much lower. For the solidification 
process of the melted metal, the rapid cooling part of the 
temperature cycle curve is important, because it significantly 
influences the microstructures and the mechanical character-
istics of the as-deposited material [23, 39].

In the experiment, we recorded the temperature evolution 
at five points on the substrate by five thermocouples T1 to 
T5 (Fig. 2). However, only the temperature data recorded 
by T2, T3, and T4 were exploitable, because the results 
observed from these thermocouples nearly repeated at least 
three times in the five repeated experiments. On the other 
hand, the results observed from the thermocouples T1 and 
T5 were variable in the five repeated experiments. This may 

Fig. 7   Comparison of thermal evolution obtained by the experiment 
and the simulation at positions a T2, b T3, and c T4 (see Fig. 3)

Fig. 8   Results on the training and validation losses of the FFNN 
model
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be caused by the imperfection and defects of welding the T1 
and T5 on the substrate. Therefore, we decided to exclude 
T1 and T5 in the validation.

Figure 7 shows the comparison between the temperature 
history obtained with the FE simulation and with the experi-
ment at the measuring points of the thermocouples T2, T3, 
and T4. The simulated temperature curves were good in line 
with the measured temperature curves in terms of the pro-
file and values. The RMSE values between the simulated 
and measured temperatures were about 25.52, 24.87, and 
28.63 °C at points T2, T3, and T4, respectively. The relative 
errors of peak temperature between the experiment and the 
simulation are 3.26% (in Fig. 7a), 1.87% (in Fig. 7b), and 
9.35% (in Fig. 7c). During the slow cooling to room tem-
perature (e.g., from 100 s in all three cases), the temperature 
discrepancy is inferior to 1 °C (corresponding to a relative 
error between two solutions is inferior to 2%). These results 
demonstrated that the FE model was validated accurately 
by the experiment.

The errors between the simulation and experiment may 
relate to the FE model error, the uncertainty in the process 
parameters, and the unknown physical properties of the 
material. The model predictability could be enhanced by 
calibrating the parameters of the heat source (as shown in 

Fig. 3b), the weld bead shape, and the refinement of the finite 
element mesh. However, these tasks were time-consuming 
because they caused a significant increase in the computa-
tion time, the efforts of modeling, and the experimental runs. 
The results obtained from Fig. 7 show that the FE model can 
be generally considered to be validated against experiments.

3.2 � Results of the FFNN model

It is noticed that the normalization of data to the values 
between 0 and 1 was applied before training the model to 
prevent the unfavorable influence of the discrepancy in input 
variable units and improve the convergence and performance 
of the model. Thereafter, four datasets of the training cat-
egory described in step (i) were randomly divided into the 
training and cross-validation sets with a ratio of 80% and 
20%, respectively, and one dataset (corresponding to I = 130 
A and V = 0.5 m/min) was used for the performance testing.

Table 2 shows the testing results with different architec-
tures of the FFNN model. As a result, the selected num-
bers of neurons in the first to the fourth hidden layers of 
the FFNN model were 220, 160, 140, and 100, respectively 
(Table 2) with the smallest final MSE (= 4.1 × 10−5) and the 
highest value of R2 (= 0.9938).

Figure 8 presents the losses of training and validation of 
the FFNN-SM. The training ends at 300th epoch because 
there is no considerable reduction in validation loss, thus 

Fig. 9   Comparison between the temperatures predicted by the FFNN 
and FE models at the studied points

◂

Fig. 10   Comparison between the temperature fields predicted by the FFNN and FE models for the entire part at a 2 s, b 4.72 s, and c 7.2 s
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ensuring a reliable training procedure. Note that some large 
peaks observed in Fig. 8 are unavoidable consequences 
of the Mini Batch Gradient Descent strategy in the Adam 
optimizer of the FFNN training procedure. Since our data-
set consists of more than 36 million data points, we accept 
the trade-off of using the mini-batch strategy but observe a 
couple of peaks during training which does not affect the 
predicting accuracy. Hereafter, we use the model “No. 4” to 
perform the temperature prediction.

3.3 � Comparison of the FFNN model with the FE 
model

To evaluate the capability of FFNN as a surrogate model 
of the FE, a comparison between the FFNN and FE models 
was carried out in terms of the accuracy and the compu-
tational time in the new case of {I = 130 A and V = 0.5 m/
min} which was not previously used for training. For assess-
ing the accuracy, the temperatures predicted by the FFNN 
model and the FE simulation were compared in two aspects: 
the temperature history at several studied points (Fig. 5) and 
the thermal field in the whole space of the weld track and 
the substrate at specific moments of the deposition.

Figure 9 shows the temperature curves for the observed 
points that were depicted in Fig. 5. It is indicated that, 
at all points, the temperature curves reveal the heating 
and cooling characteristics for the case of a single track. 
Moreover, the temperature curves predicted by the FFNN 
model and those obtained by the FE simulations are nearly 
identical. For example, for the points on the substrate close 
to the weld track, the values of R2 coefficient were over 
0.9970, and the MAE and RMSE in temperature between 
the two models were lower than 2 °C. Particularly, for 
the studied points (ID#19,270 to ID#19,290) on the weld 
track, the values of R2 coefficient were superior to 0.9999. 
On the other hand, the MAE and RMSE in temperature 
between the two models were relatively higher than those 
at the points on the substrate, but these error metric values 
were also low and inferior to 6 °C and 9 °C, respectively. 
As a result, it can be concluded that the FFNN model not 
only captures the temperature curve characteristics, but 
also mimics the results generated by the FE model with a 
very high accuracy.

Figure 10 shows the comparison results in the temper-
ature field between the two models at several moments 
of deposition (i.e., t = 2 s, 4.72 s, and 7.2 s). From the 
temperature distribution, the temperature gradient along 
the deposition direction was observed. At all moments 
of deposition, the FFNN model well captured the results 
of the FE model with high accuracy (e.g., R2 = 0.9967, 
MAE = 0.65 °C, and RMSE = 1.83 °C). These results again 

Fig. 11   Weld track fabricated with I = 120 A, V = 0.3  m/min, and 
U = 20 V

Fig. 12   Comparison between the temperature predicted by the 
FFNN and the confirmation experiment for a weld track of I = 120 A, 
V = 0.3 m/min, and U = 20 V at positions a T1, b T3, and c T4

Table 3   Computation time comparison between the FFNN and FE 
models

Model Running time to 
create training 
dataset

Training time Single 
temperature 
evaluation

FFNN model 20 h 6 h 38 s
FE model - 5 h
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show the perfect accordance of the FFNN model with the 
FE model.

3.4 � Comparison of the FFNN model 
with the experiment

To confirm the reliability of the FFNN model, a simi-
lar experiment was set up (as shown in Fig. 2) with the 
following set of process variables: I = 120 A, V = 0.3 m/
min, and U = 20 V. The fabricated weld track is shown 
in Fig. 11. Subsequently, the temperatures measured by 
thermocouples T1 to T5 were compared with those pre-
dicted by the FFNN model to verify the accuracy of the 
prediction model.

The temperature predicted by the FFNN model was also 
compared to that measured by the thermocouple in the con-
firmation test (I = 120 A, V = 0.3 m/min, and U = 20 V). 
As shown in Fig. 12, the temperature curves predicted by 
the FFNN model were in good agreement with the meas-
ured temperature curves. Some discrepancies between the 
experiment and FFNN model can be observed in Fig. 12, 
but they are acceptable. For example, the difference in the 
peak temperature is about 10 °C and 9 °C in Fig. 12 a and 
b, respectively. Namely, the relative error of peak tempera-
ture is inferior to 8%. The discrepancy in temperature dur-
ing the slow cooling part to room temperature between two 
models is also small, inferior to 12 °C. The RMSE values 
between the totally simulated and measured temperature 
curves were about 24.73, 26.38, and 16.85 °C at points T1 
(Fig. 12a), T3 (Fig. 12b), and T4 (Fig. 12c), respectively. 
The errors between the FFNN and experiment could be 
related to the difference in the measuring positions between 
the measured points in the experiment and the points’ IDs 
in the FFNN model. Practically, the temperature curve 
can be only extracted at each mesh point of the simulation 
model, while the measured point in the experiment and 
that point in the mesh model are not identical. Moreover, 
as mentioned above, the environmental conditions and the 
quality of attaching the thermocouples on the substrate sur-
face significantly influence the measurement results, while 
the temperature predicted by the FFNN model is based on 
the numerical data generated by the FE model. This also 
causes the errors between the FFNN model and the experi-
ment. However, with the consistency in the thermal curve 
form and the acceptable RMSE levels between the FFNN 
and the experiment, it is considered that the FFNN model 
is validated against experiments. To improve the consist-
ency between the experiment and the simulation models, the 
step of calibrating the simulation model is very important. 
However, it is difficult to obtain a perfect model because 
of the sensibility of the experimental conditions, while the 
condition boundary of the simulation is ideal. Therefore, in 
most of the published works, the authors considered that 

the predicted results of their model are acceptable when the 
thermal cycle curve is captured in shape and the error values 
(e.g., MAE and RMSE) fall in a permitted range [31, 32].

3.5 � Comparison of the computation time 
of the FFNN model vs. the FE model

Table 3 shows the computation cost of the FE and FFNN 
models. To create the training dataset, the four simulations 
have been carried out, as shown in Table 1. Each simula-
tion required a total time of about 5 h. Therefore, the total 
time needed to build the training dataset is approximately 
20 h. The training time of the FFNN model is 6 h. After 
that, the FFNN model can rapidly predict the temperature 
within only 38 s, resulting in a reduction of 473 times 
compared to the FE model. If only several simulations are 
required, the FFNN model does not show its benefits com-
pared to the FE model. However, when a large number 
of simulations need to be performed, for example, for the 
quantification of uncertainty and the processing optimiza-
tion, the FFNN provides a tremendous advantage in terms 
of computing time.

4 � Conclusions

In this paper, an efficient SM framework using a combina-
tion of machine learning and numerical simulation for pre-
dicting the thermal history in the WAAM process of single 
weld tracks was developed. The SMs are trained by the data-
set obtained from the FE-based thermal simulation, which 
was validated against experiment. The trained SM model 
can fast and accurately predict the temperature history in 
the cases which were not previously used for training with 
a very high accuracy of more than 99% and in a very short 
time with only 38 s (after being trained) as compared with 
5 h for a FE model.

Although the FFNN-SM was developed for the WAAM 
process of single weld tracks—the first step of our project on 
developing SM to rapidly and accurately predict temperature 
field of the whole part fabricated by the WAAM process 
based the simulation data, the approach presented in this 
paper could be used for predicting thermal evolution in the 
deposition of multi-tracks and multi-layers in WAAM and 
other AM processes (e.g., DED process [40]). Moreover, 
the SM development can open the approach towards obtain-
ing real-time monitoring in AM. In future works, we will 
attempt to apply this approach for the WAAM process of 
single-track multi-layer or multi-track multi-layer compo-
nents. Moreover, the current SM was developed with a fixed 
path planning. Therefore, the variation of the path planning 
in the WAAM process will be considered when developing 
the future SM.
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