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Abstract
Because of the high difficulty of smartphone glass detection and the variety of defect morphologies, the detection results
are easily affected by the environment, making it difficult to meet the accuracy requirements of industrial inspection. Based
on the existing YOLO v5s network, this study proposes a new network Dy-YOLO v5s. In particular, an attention module
is introduced into the residual structure, and the cross-scale and cross-layer connections of feature maps are added to the
Neck to improve the feature extraction and information exchange capabilities of the detection network. This algorithm
introduces the dynamic detection framework called dynamic head (DyHead), which improves the detection head’s capacity
for perception. Additionally, the redundant anchor boxes and the balance of positive and negative samples are deduplicated
using the confidence propagation cluster (cp-cluster) and varifocal loss functions. The experimental results demonstrate that
when the intersection over union (IOU) threshold is set to 50%, themean average precision (mAP) of Dy-YOLO v5s, precision
rate (P), and recall rate (R) reach values of 96.2%, 92.6%, and 93.1%, respectively. Compared with YOLO v5s, mAP@0.5
and mAP@0.5−0.95 increased by 4.5% and 4.6%, respectively. The approach also has significant advantages over other
deep-learning algorithms in terms of overall accuracy and real-time performance. Therefore, it can fully satisfy the detection
requirements of smartphone glass.
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1 Introduction

The annual growth rate of the global smartphone industry and
the advent of the 5G era have both contributed to an increase
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in the volume of smartphone transactions recently. Smart-
phones have become an indispensable necessity for people’s
work, life, leisure, entertainment, and communication [24].

As shown in Fig. 1, the exterior of modern mobile phone
screens is predominantly covered with a glass panel, beneath
which are concealed the display panel, polarizer, touch
screen, camera, and several optical sensors [28]. The glass
panel’s surface quality has a direct impact on the display
effect, touch effect, imaging quality, and optical sensitivity
of the phone’s sensors. As shown in Fig. 2, smartphone glass
processing involves multiple steps, such as computer numer-
ical control (CNN) cutting, surface finishing, polishing, ink
printing, and cleaning. These processes inevitably produce
defects such as chippings, scratches, bad-points, dusts, and
smudges [5], which can seriously compromise the user expe-
rience of smartphones.

Smartphone glass is an ultra-thin rectangular glass, with
dimensions of 30-110mm in width, 50-200mm in length,
and thickness of 0.4−1.0 mm. Much of the light will escape
through refraction when ordinary light sources illuminate the
glass surface. As a result, collecting defect information from
the glass surface of smartphones is becoming increasingly
difficult. Furthermore, large smartphone screens significantly
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Fig. 1 The surface division of the smartphone glass ismainly composed
of the printing region, the view window, and receiver holes

complicate the development of real-time detection systems.
Therefore, the development of a real-time detection system
with strong anti-interference ability and high accuracy has
significant potential for broad practical applications.

Deep learning is mainly divided into single-stage [9–
11, 15, 25, 26] and two-stage [18–20] algorithms. These
two stages are mainly based on the region-based convo-
lutional neural networks (R-CNN) series, which has high
accuracy, but it is difficult to meet the real-time requirements
for speed because of the complex detection process. The
single-stage algorithm considers accuracy and real-time per-
formance, increasing its use in industrial inspection. Among
the single-stage algorithms, the YOLO v5s network has the
most outstanding flexibility and detection performance.

Based on YOLO v5s, this study proposes a single-stage
improved algorithm called Dy-YOLO v5s to further improve
the detection performance. The following improvements are
made: (1) To enhance the feature extraction ability of the
backbone network, the lightweight attention module pyra-
mid split attention (PSA) [13] and the residual [7] structure
are combined to form a CPSA module, which is stacked
in a ratio of 1 : 3 : 3 : 1. (2) A new feature pyramid
structure called GiraffeDet feature pyramid network (GFPN)
[22], which increases cross-scale and cross-layer connec-
tions, is introduced to prevent the loss of feature information
caused by the deepening of network structure. (3) To improve
the detection performance of the head, a dynamic detection
framework called dynamic head (DyHead) [4] is added at
the end of the detection network to enhance the perception
of the spatial position, spatial scale, and task area of the head.
(4) The cross-entropy function varifocal loss [29] is used to
solve the problem of an imbalance between positive and neg-
ative samples when detecting dense targets. (5) For screening
anchor boxes, the confidence propagation cluster (cp-cluster)
algorithm [21] is used to transform the prediction box dedu-
plication problem into the confidence propagation problem,
which improves the confidence and accuracy of the predic-
tion box. Compared with the original YOLO v5s model,
the detection algorithm ensures that the P, R, mAP@0.5,
and model complexity floating point operations (GFLOPs)
are increased by 1.8%, 2.3%, 3.9%, and 8.3, respectively.
Compared with other deep learning detection algorithms, the
accuracy and speed of detection are better, fully satisfying the
business requirements for smartphone glass detection.

Fig. 2 Under a
high-magnification microscope
(500x), images of various types
of defects on the surface of the
glass are captured, including: a
Bad-Point, b Scratch, c Smudge,
d Chipping, e Dust
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Fig. 3 a The physical diagram
of the defect detection
equipment for glass surfaces of
smartphones; b The structural
diagram of the defect detection
equipment for glass surfaces of
smartphones. These components
include: 1- feeding slide rail;
2-loading platform; 3-placement
rack; 4-smartphone glass to be
detected; 5-loading adsorption
structure; 6-limit device;
7-image acquisition black box;
8-roller conveyor; 9-signal
processing box for lower
computer; and 10-upper chassis

2 Methodology

2.1 Principle and device of images acquisition

As shown in Fig. 3, to obtain a clearer defect image, this study
designs an image acquisition and detection device based on
the laser scattering principle [12].

At the beginning of the operation, the intelligent smart-
phone glass is first placed on the placement rack, before the
loading platform moves the glass to the designated position
for detection. Then, the loading adsorption structure vac-
uum adsorbs the product and places it on the roller conveyor
mechanism. The limit device at the entrance of the transfer
mechanism corrects the scanning posture of the smartphone
glass. When the product reaches the acquisition position, the
sensor triggers the image acquisitionmodule to collect defect

information, which is then transmitted to the upper computer
for defect detection and recognition.

The image acquisition module is based on the laser
scattering principle, and the specific operating principle is
illustrated in Fig. 4. The key optical components used in our
experimental arrangement encompass a semiconductor laser
diode denoted as MGL-S-532, developed by The Institute of
Chang ChunOptical-mechanical. This device emits coherent
light at a wavelength of 532 nm with an output power of 300
mW. Furthermore, our experiment used octahedral reflector
mirrors obtained from Lincoln Laser Company, labeled as
DT-08-039/P1.

During the working process, the smartphone glass is
transmitted using the roller-type transmission device, the col-
limation system forms the laser beam into a parallel beam,
and the scanning mirror is rotated to scan the surface of the

Fig. 4 The smartphone glass
surface defect detection
schematic diagram
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Fig. 5 Dy-YOLO v5s network structure. The improved module is marked in yellow. The red dotted line denotes the new connection between
feature maps

smartphone glass line by line. When scanning on a defect-
free smartphone glass surface, refracted and reflected light is
mainly generated, and when scanning a defect, the scattering

phenomenon occurs. Simultaneously, the low-light detector
receives the scattered light and transmits the signal to the
image acquisition card, which converts it into a digital sig-

Fig. 6 a The PSA module
network structure. In the PSA
module, feature extraction is
initially performed using
convolutional kernels of various
sizes. Subsequently, the
obtained multi-scale feature
maps are concatenated using the
Concat function. The structures
C3_1 and CPSA_1 in the
backbone network correspond to
b and c, respectively. By
comparing b and c, the
application method of PSA in
Dy YOLO v5s can be elucidated
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nal and outputs it to the upper machine to display and detect
defects.

2.2 Improved Dy-YOLO v5smodel

The YOLO v5s is a popular deep-learning detection algo-
rithm in the field of industrial detection owing to its small
model size, fast calculation speed, and high recognition rate.
YOLO v5s has good detection performance for large-size
and sparse targets. However, for detecting smartphone glass,
the defect size is small and dense, the overlap is high, and
the image background is complex. Therefore, YOLO v5s
detection is unsatisfactory. It is necessary to enhance the fea-
ture extraction and information exchange capabilities of the
network, optimize the anchor boxes’ screening method, and
reduce the impact of background on target recognition.

The network structure ofDy-YOLOv5s is shown in Fig. 5,
which is divided into four parts: backbone, neck, head, and
detection. The main innovations are as follows: (1) In the
cross stage partial module (CSP) of the backbone network,
the PSA module and the residual structure block are com-
bined to form a newCPSAmodule,which is stacked and used
in a ratio of 1 : 3 : 3 : 1. (2) The neck network strengthens
the connectionbetween featuremapsusing theGFPNmethod
and avoids the loss of defect information owing to too deep-
ening of the network. (3) DyHead, a dynamic head detection
framework, is added to the head to unify target detection and
self-attention. This structure significantly improves the per-
ception and expressiveness of the object detection head. (4),
the Cp-cluster algorithm is used during detection to improve
the screening accuracy and efficiency of anchor boxes. The
algorithm uses the concept of confidence propagation in an
undirected graph and transforms the deduplication problem
of anchor boxes into a confidence propagation task.Addition-
ally, to alleviate the imbalance between positive and negative

samples, the cross-entropy loss function varifocal loss is
introduced.

2.3 CPSA—attentionmodule

To improve the feature map extraction capability of the back-
bone and form a new module CPSA, the attention module
PSA is used to replace the 3 × 3 convolution in the resid-
ual structure of CSP. As shown in Fig. 6, PSA, as a novel
attention module, can efficiently process the spatial data of
multi-scale feature maps. It mainly consists of four parts.
First, the SPC module integrates the spatial data from differ-
ent scale feature maps. The specific measures use three, five,
seven, and nine convolution kernels for group convolution
[27], each convolution group with a size of two, four, eight,
and 16, respectively. Second, the SEWeigh [8] module trains
the SPC-processed feature map to obtain the weight vector.
The Softmax [3] function can normalize the weight vector.
Then, the normalized weight vector is dot-multiplied with
the feature map output by SPC. The PSA module realizes
the interaction between attention weights and spatial chan-
nels, producing more informative multi-scale feature maps.

The PSA-Block structure in Fig. 6(c) is the residual
structure formed by replacing the attention module PSA.
This structure can be stacked in different numbers to form
CPSA_1, CPSA_2, and CPSA_3. Figure7(a) shows the
CPSA_1 module in the backbone network, which contains
only one PSA-Block structure, while Fig. 7(b) and (c) show
CPSA_2 and CPSA_3 modules with two and three stacked
PSA-Block structures, respectively. As shown in the back-
bone network part of Fig. 5, When the stacking ratio of
1 : 3 : 3 : 1 is adopted, the CPSA_1, CPSA_3, CPSA_3,
and CPSA_1 in the backbone network of Dy YOLO v5s will
be connected in sequence.

Fig. 7 a, b, and c correspond to
CPSA_1, CPSA_2, and
CPSA_3 modules respectively,
where PSA-Block structures are
stacked in different numbers. In
the backbone network of
Dy-YOLO v5s, CPSA modules
are stacked in a ratio of
1 : 3 : 3 : 1, that is, CPSA_1,
CPSA_3, CPSA_3, and
CPSA_1 are sequentially
connected
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Fig. 8 By comparing a PANet
and b GFPN, GFPN increases
the cross-scale connection
between adjacent layers and the
cross-layer connection at the
same scale

2.4 GFPN—a feature pyramid with nore fusions

The detection method used in this study has small-sized
defects such as bad-points and chippings, and feature infor-
mation will continuously be lost when transmitted through
the deep network. Therefore, it is necessary to optimize the
structure of the neck network to increase the fusion and infor-
mation exchange between feature maps of various scales and
prevent information loss caused by the network being too
deep. In the path aggregation network (PANet) [14] that the
originalYOLOv5s use, the fusion of featuremaps only exists
between the same scale of the adjacent layer and the adjacent
scale of the same layer. Because this fusion route is relatively
simple, and the feature information is still lost in the trans-
mission of PANet, this study adds cross-layer connections at
the same scale and cross-scale connections between differ-
ent layers. These feature fusions enable the deep and shallow
layers, large- and small-scale information in the network to
fully communicate, which improves the accuracy of small-
scale target recognition in shallow layers.

As shown in Fig. 8, compared with PANet, the dotted line
is the newly added connection of GFPN. The large-size fea-
ture map must be down-sampled by max pooling and then
fused with the small-size feature map for the cross-scale con-
nection between adjacent layers. The new connections of this

type are {P2 − P
′
3; P3 − P

′
4; P4 − P

′′
5 ; P ′

4 − P
′′
5 }. The small-

size feature mapmust use bilinear interpolation (Bi linear) as
the up-sampling operation before it is fused with the larger-
size feature map, which creates a new connection {P4 − P

′
3}.

Scale transformation is not required for the same-scale and
cross-layer connection {P4 − P

′′
4 }, and the feature maps are

fused directly.

2.5 DyHead—Dynamic Detection Framework

InDy-YOLOv5s, to enhance the head’s perception of defects
in different morphologies, this study adopts a novel dynamic
detection framework, DyHead, which combines the spatial
scale, spatial location, and task awareness of objects with
a multi-head self-attention mechanism. Compared with the
original head, the expression ability and detection accuracy
are significantly improved.

To unify scale perception, space perception, and task
perception, the DyHead mainly designs three parts of the
attention mechanism:

1. Spatial-aware attention: rely on a deformable convolution
[30] to extract the target position in the feature map.

Fig. 9 DyHead detection
framework structure diagram,
the feature maps must be passed
through the three attention
modules of spatial perception,
scale perception, and task
perception in turn

123

5822



The International Journal of Advanced Manufacturing Technology (2023) 127:5817–5829 

2. Scale-aware attention: through 1 × 1 convolution, rec-
tified linear unit(ReLU) and hard sigmoid activation
function in turn. Through the fusion of feature maps of
different scales, the spatial-scale information of the target
can be obtained.

3. Task-aware attention: use a fully connected network as a
"classifier" to expand the input information for classifi-
cation.

As shown in Fig. 9, DyHead is used in Dy-YOLO v5s.
First, through spatial-aware attention, three different scale
feature maps temp3, temp4, and temp5 can be obtained.
Then, temp3, temp4, and temp5 are up/down-sampled to a
unified scale and fused with each other to form a new three-
dimensional tensor F1, F2, F3 ∈ RL×S×C , where L denotes
the feature level, which indicates the number of feature maps
to be fused, S denotes the feature map size, andC denotes the
number of channels. Then, the feature tensors F1, F2, and F3
are passed through the scale-aware and task-aware attention
mechanisms to generate the information of anchor boxes.

2.6 Cp-cluster—a confidence propagation algorithm

For the screening and deduplication of the anchor boxes,
YOLO v5s generally uses non max suppression (NMS) [1]
or Soft-NMS [17] methods. In NMS, the anchor boxes must
be arranged according to the confidence, and the one with
the highest confidence is selected as the ground truth (GT)
box. The IOU of the remaining anchor boxes and GT box is
calculated, and the anchor boxes are removed above a certain
threshold. This method cannot achieve multi-object parallel
processing. Furthermore, NMS assumes that the highest con-
fidence score is the GT box, which is not entirely consistent
with the actual situation. When dealing with the redundant
boxes, NMS is directly set to zero and clear, and the informa-
tion on these redundant boxes is not fully used. Therefore,
the cp-cluster algorithm is introduced into Dy-YOLO v5s to
replace NMS or Soft-NMS when screening anchor boxes.
The screening efficiency can be improved through parallel
computing, and the information on the redundant boxes can
be fully used to further improve the confidence of the GT
box.

The cp-cluster algorithm must calculate the IOU of each
anchor and label box and aggregate the anchor boxes whose
IOU is greater than the set threshold β into an undirected
graph set. The target of the anchor box detection in this set
is consistent. If the IOU of the two anchor boxes in each set
is greater than the set threshold θ , a connection is formed
between the two nodes. Each anchor box is used as a target
anchor box in turn. In this set, the anchor boxes with confi-
dence greater than the target anchor box are called the strong
adjacent boxes. In the strong adjacent boxes, if the IOU of

the strong adjacent boxes and the target anchor box is greater
than the threshold, it will have a negative impact on the con-
fidence of the target anchor box. In the set, if the anchor box
confidence is lower than the target anchor box, it is called the
weak adjacent anchor box, which has a positive impact on the
confidence of the target anchor box. Finally, the confidence
of the prediction box is strengthened, and the confidence of
the redundant boxes is continuously weakened.

The positive effect on the confidence of the target anchor
box, as illustrated in Eq.1.

Mp(i)=Q/(Q + 1) × (1− P̂(bi )) × max
b j∈Wb j

P̂(b j ) (1)

In the equation, bi denotes the object that must be calcu-
lated with confidence;b j and bi belong to the same set of
undirected graphs,P̂(b j ); P̂(bi ) denotes the confidence of
the b j ; bi and (Q + 1) denote the number of nodes in the set
of undirected graphs; andWbj denotes the set of nodes of b j .

The propagation of the negative influence Mn(i) can sup-
press the redundant boxes.

Mn(i) = P̂(bi ) × IOU
(
bi , argmax

b j∈Nbi ,SU P j,i≤ξ

Mbj

)
(2)

where SU P j,i denotes a suppression count matrix, which is
used to limit the number of times bi is suppressed. Mn(i)
is the negative parameters of the weak adjacent boxes. The
maximum negative parameters are selected frommany weak
adjacent boxes to suppress the confidence of the target anchor
box.

The negative parameters are expressed as shown in Eq.2.

Mbj =
(
α × P̂(bi )/P̂(b j )+(1−α)×IOU(bi , b j )/θ

)
(3)

Among them, α is a negative influence factor, and the value
of α determines the selection of different strong neighbor
anchor boxes b j , whichweakens the confidence of bi . During
training, the box with the largest confidence value (α = 1.0)
and the boxwith the highest overlap (α = 0.0) are alternately
selected.

Based on the above, combining the positive and negative
effects of the adjacent anchor boxes results in the final con-
fidence of the target anchor box of P̂(bi ).

P̂(bi )= P̂(bi )+Mp(i) − Mn(i) (4)

2.7 Cross-entropy function—varifocal loss

To detect dense small-size objects, this study adopts a new
cross-entropy function, varifocal loss. This function uses the
focal loss [23] weighting concept to optimize the imbalance
problemofpositive andnegative samples.According toEq.5,
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Fig. 10 Dividing an image with
a resolution of 4500 × 6600 into
multiple 640 × 640 images and
sending them to Dy-YOLO v5s
can reduce the loss of
information caused by adaptive
scaling of the image

the contribution of negative samples to the loss is reduced by
different weighting amounts, enhancing the contribution of
positive samples to the loss and balancing the positive and
negative samples. Among them, α denotes the negative loss
calculation factor, which is 0.75 by default, γ denotes the
calculation modulation factor, which was set to 1.5 in this
study, q denotes the IOU value of the prediction box and the
labeling box, and P denotes the score of the prediction box.
When q = 0, the box is represented as a negative sample,
and its contribution to the loss is continuously reduced by
Pγ , and when q = 1, it means that the box is represented
as a positive sample. The higher the anchor box score, the
greater the contribution to the loss.

V EL( p, q) =
{

−q
(
q log(P) + (1 − q) log(1 − q)

)
q > 0

−αPγ log(1 − P) q = 0
(5)

3 Results and discussion

Experimental environment and data preparation. The
experimental configuration of this study is as follows: Win-
dows 10 operating system, 2.3 GHz Intel Xeon Gold 5118
CPU, 52 GB of memory, NVIDIA RTX 2080Ti 12G ×
2 graphics processor, and CUDA 1.10.0 + PyTorch 1.9.0
training environment. The model training parameters are as
follows: for each training, input images batch size of 64,
300 training epochs, numworks = 6 training thread, and
lr = 0.001 learning rate.

The test samples used in this studywere all randomly sam-
pled from the production line of the enterprise. The chosen

samples were sent to the above device for image acquisition.
The size of the image scanned by the devicewas 4500×6600.
If the sample is directly sent to the detection algorithm, the
size becomes 640 × 640 after the image adaptive operation.
Such large-scale image scalingwill result in the loss of small-
sized defects, which affects the detection accuracy. As shown
in Fig. 10, before creating the dataset, the image must be
reduced to 640 × 640.

The divided images were screened and labeled to cre-
ate a dataset. The dataset used in the experiment comprises
16,410 images, including 13,128 for the training set and
1,641 images each for the validation and test sets. Each cat-
egory of defects in the training set contains at least 2,000
images, allowing the detection model to learn sufficiently
and improve its generalization and accuracy. As shown in

Fig. 11 The statistical chart of various types of defects in the smart-
phone glass dataset
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Fig. 12 The collected images of
surface defects of different types
of smartphone glass: a
Bad-Point, b Scratch, c Smudge,
d Chipping, and e Dust

Fig. 11, the bar chart illustrates the number of each type of
defect and the corresponding number of images in which
they appear. The chart demonstrates that bad-point defects
are many and have the widest distribution, whereas chipping
defects are few and have the least distribution. However, both
the quantity and distribution ratios of each type of defect are
greater than 1:4, implying that the collected dataset has a
balanced distribution and is unlikely to generate overfitting.

From the defect sample in Fig. 12, the defects of the smart-
phone glass have the following characteristics:

1. The defect size gap is large, and the smallest defect in the
bad point is approximately 3×3 pixels, while the largest
one in the smudge is 400 × 400 pixels.

2. The width of the scratch is narrower by approximately 2
pixels.

3. Chipping is located at the edge of the panel, and the gray-
scale value of the defect is almost the same as that of the
edge pixel, which is difficult to detect.

4. Smudge defects in various shapes and sizes.

Backbone network improvement. This experiment aims
to verify that the improved backbone of Dy-YOLO v5s has a
stronger feature extraction ability than Darknet53 (backbone
of YOLO v5s). Based on YOLO v5s, different backbones
were constructed and tested by adding attention modules and
changing the stacking ratio of residual modules. The main
module of the Darknet53-1 network is CSP with a stacking
ratio of 1 : 2 : 3 : 1, and the ratios of Darknet53-2 and
Darknet53-3 are 1 : 1 : 3 : 1 and 1 : 3 : 3 : 1, respectively.
Compared with Darknet53, PSA- Darknet53 replaces CSP
with CPSA.

As shown in Table 1, as the attention mechanism PSA is
incorporated into Darknet53, the mAP increases by approx-
imately 2% when the IOU threshold is 50%, and the average
mAP between the IOU thresholds between 50% and 95%
increases by approximately 1.5%. Although the model com-
plexity GFLOPs increased slightly, the detection speed FPS

Table 1 Backbone network
ablation experiment

Backbone Radio mAP(%) mAP(%) GFLOPs FPS
@0.5 @0.50 − 0.95 (109)

Darknet53-1 1:2:3:1 91.7 49.7 15.8 61.73

Darknet53-2 1:1:3:1 91.0 49.1 15.3 65.36

Darknet53-3 1:3:3:1 92.6 51.3 16.4 59.50

PSA- Darknet53-1 1:2:3:1 93.7 52.3 16.0 63.69

PSA- Darknet53-2 1:1:3:1 93.2 51.5 15.4 65.36

PSA- Darknet53-3 1:3:3:1 94.2 52.6 16.5 61.73
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Table 2 Comparative
experiments of Neck network

Backbone Neck mAP(%) mAP(%) GFLOPs FPS
@0.5 @0.50 − 0.95 (109)

Darknet53 PANet 91.7 49.7 15.8 61.73

GFPN 94.0 52.3 20.3 56.50

PSA- Darknet53-3 PANet 94.2 52.6 16.5 61.73

GFPN 94.8 53.2 20.8 56.50

remained unchanged. This shows that the PSA module
improves the feature extraction capability of the backbone
network. According to the comparative experiments of radio,
increasing the proportion of modules used helps the extrac-
tion of target features. Comprehensive experimental data
demonstrate that the final improved PAS-Darknet53-3 com-
pared with Darkenet53 improved mAP and enhanced the
network performance, while the detection speed remained
unchanged.

Neck network improvement. The feature pyramid net-
work PANet used in the neck stage of YOLO v5s has a
relatively simple fusion line of feature maps. Therefore,
Dy-YOLO v5s introduced more GFPN fusion routes. Com-
parative experiments are required to study the effect of GFPN
on the information extraction and communication fusion
capabilities of detected targets in feature maps. According
to the experiments in this section, the backbone uses Dark-
net53 and the improved network PSA-Darknet53-3, while
the neck uses PANet and GFPN for combined experiments.
Finally, the performance of different neck networks is com-
pared according to the experimental results.

According to the experimental data in Table 2, compared
with the original PANet, the GFPN network is more fre-
quently fused between feature maps of different scales and
levels. This increases the FLOPs of model complexity by
approximately 4.5G and decreases the FPS by 5.23, but the
output feature map is more informative and accurate. Based
on Darknet53, when only GFPN is used, the performance
is improved significantly; mAP@0.5 and mAP@0.5−0.95
increased by 2.3%and 2.6%, respectively.When based on the
improved backbone, both mAP@0.5 and mAP@0.5−0.95
increased by 0.6%. Overall, for images of smartphone glass,
GFPN loses less defect information than PANet.

Head improvement.The experiments in this section used
the models Darknet53-1+ PANet and the optimized network

PSA-Darknet53-3+GFPN,while the headswith andwithout
DyHead were combined to form four groups of experiments.

According to the experimental data in Table 3, regardless
of whether the DyHead framework is added to the original
Darknet53-1+ PANet or the improved PSA-Darknet53-3+
GFPNmodel is used, the evaluation index mAP of the detec-
tion results is significantly improved. Using DyHead alone
increases mAP@0.5 by 3.1%, while adding DyHead based
on the improved algorithm increases mAP@0.5 by 0.4%.
Although part of the detection speed is sacrificed, adding the
DyHead module to the YOLO series algorithm significantly
improves the detection of smartphone glass.

Detection function improvement. In the detection of the
algorithm, three common operations such as NMS, Soft-
NMS, and cp-cluster are used for the deduplication and
screening of anchor boxes. For the balance of positive and
negative samples, two cross-entropy functions: focal loss and
varifocal loss are used for experiments. The model of the
algorithm uses the network optimized by the above experi-
ments.

According to the experimental data in Table 4, among
the three deduplication methods- NMS, Soft-NMS, and cp-
cluster- cp-cluster demonstrated a significant improvement
in the detection speed. This shows that the parallel operation
method of the cp-cluster is suitable for smartphone glass
detection. According to the comparison experiment of the
cross-entropy function, analyzing that the varifocal loss sig-
nificantly improves the accuracy indicators such as mAP is
not difficult. Therefore, the cp-cluster algorithm significantly
improves the detection speed through the parallel screening
of anchor boxes. Through the evolution of the weight fac-
tor, the varifocal loss function can effectively enhance the
contribution of anchor boxes with higher loss confidence,
while suppressing the contribution of negative samples or
low-confidence anchor boxes to the loss.

Table 3 Improvement
Experiment of Head Structure

Backbone Head mAP(%) mAP(%) GFLOPs FPS
@0.5 @0.50 − 0.95 (109)

Darknet53-1+ PANet N/A 91.7 49.7 15.8 61.73

DyHead 94.8 52.3 19.1 37.47

PSA- Darknet53-3+ GFPN N/A 94.8 53.2 20.8 56.50

DyHead 95.2 53.8 24.2 32.33
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Table 4 Optimization of anchor
screening algorithm and
cross-entropy function

Cross-entropy Anchor Box mAP(%) mAP(%) GFLOPs FPS
@0.5 @0.50 − 0.95 (109)

Focal loss NMS 95.2 53.8 24.3 32.33

Soft-NMS 91.6 51.2 18.87

Cp-cluster 95.5 54.2 43.29

Varifocal loss NMS 95.6 53.8 22.37

Soft-NMS 92.6 52.8 16.08

Cp-cluster 96.2 55.3 30.58

Dy-YOLO v5s. Based on the aforementioned improve-
ment experiments, the improvement steps of Dy-YOLO v5s
and the change curves of some detection indexes are listed in
Fig. 13. The improvement steps based on YOLO v5s are rep-
resented from left to right in the diagram. First, the stacking
ratio of CSPmodules is adjusted to 1: 3: 3: 1, which increases
the mAP@0.5 and model complexity GFLOPs by 0.4% and
0.6, respectively. Then, the C3PSAmodule replaces the CSP
module, which increases mAP@0.5 and model complexity
GFLOPs by 1.0% and 0.7, respectively. Then, GFPN and
DyHead networks are added to the neck and head to increase
mAP@0.5 and GFLOPs to 95.2% and 24.1, respectively.
Finally, the varifocal loss function and cp-cluster algorithm
are used to improve the detection accuracy to 96.2%, while
maintaining the model size.

In this experiment, different YOLO algorithms, the two-
stage algorithm faster RCNN, Mobilenet [2, 6, 16], and
Dy-YOLO v5s were compared to show the detection per-
formance of the Dy-YOLO v5s algorithm. According to the
experimental results in Table 5, the Dy-YOLO v5s algorithm
has better accuracy in the single-stage detection algorithm,
and themodel complexity anddetection speed aremoderated,

Fig. 13 Changes in various indicators during the improvement of the
Dy-YOLO v5s algorithm

which can satisfy the real-time requirements. Comparedwith
the two-stage classic algorithm faster RCNN, although the
accuracy is slightly lower by 0.6%, it has significant advan-
tages in model complexity and detection speed.

According to the above experiments, the improved Dy-
YOLO v5s in this study has obvious advantages in the
detection of smartphone glass defects. According to Table 6,
the detection results of P, R, andmAP for all defects are listed
in detail when training with Dy-YOLO v5s. Additionally,
Fig. 14 shows the detection effect of all defects. Accord-
ing to the above experimental results, the mAP@0.5 of the
Dy-YOLO v5s network was 96.2%; P was 92.6%; the best
performance for smudge defect detection reached 98.6%, and
the average accuracy rate for scratch and chipping were poor
with values 95.8% and 93.4%, respectively.

Table 5 Comparison of experimental results of different algorithms in
smartphone glass defect detection

Models mAP(%) GFLOPs FPS
@0.5 (109)

YOLO v5s 91.7 15.8 61.73

YOLO v3 89.69 116.9 15.64

YOLO v7-tiny 88.6 5.8 132.53

Faster R-CNN 96.8 214.6 12.32

Mobilenet-YOLO v5s 86.1 6.3 69.44

Dy-YOLO v5S 96.2 24.3 30.58

Table 6 Detection indexes of various defects in the Dy-YOLO v5s
algorithm

Detection P (%) R (%) mAP(%)
@0.5

All 92.6 93.1 96.2

bad-point 94.1 92.8 96.4

dust 94.8 92.6 96.8

scratch 89.2 92.9 95.8

chipping v5s 88.5 90.6 93.4

smudge 96.2 96.8 98.6
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Fig. 14 The different types of
smartphone glass surface defect
detection renderings: a
Bad-Point, b Scratch, c Smudge,
d Chipping, and e Dust

4 Conclusion

In this study, an improved algorithm, Dy-YOLO v5s, is pro-
posed for detecting surface defects on smartphone glass.
Among them, to improve the ability of the backbone network
to extract input features, the attention mechanism PSA and
the residual structure are combined, and the stacking ratio is
adjusted in the backbone network. To address the information
loss problem, which is caused by small-sized defects owing
to network depth, GFPN is used in the neck to strengthen the
fusion between feature maps of different scales and layers.
To enhance the head’s ability to perceive the spatial position,
scale, and detection task of the target, a dynamic detection
framework DyHead is incorporated. In algorithm detection,
the cross-entropy function varifocal loss and the anchor box
deduplication method cp-cluster are combined to improve
the use efficiency of positive and negative sample informa-
tion and efficiently and accurately screen out the prediction
box. Finally, the map@0.5, GFLOPs, and FPS of Dy-YOLO
v5s are 96.2%, 24.3, and 30.58, respectively.

In this study, experimentswere conducted using the smart-
phone glass image dataset to verify the effectiveness of the
above-improved methods, and the Dy-YOLO v5s improve-
ment steps are listed. Comparedwith other classic algorithms
such as the YOLO algorithm and faster RCNN, the Dy-
YOLOv5s satisfies the detection requirements of smartphone
glass in terms of detection accuracy and real-time perfor-
mance.
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