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Abstract
Identifying the dominant acoustic emission (AE) signal attributes acquired under various experimental cutting conditions 
may provide significant insight to the process. Signal processing methods in time-frequency domain are more appropriate 
for such analysis due to their capabilities to cover the time and frequency transparency and transient phenomena. However, 
according to the literature, a lack of study was noticed on the sensitivity of AE signal attributes acquired by time-frequency 
domain analysis to various cutting conditions in the machining processes. Since milling is among the most widely used 
machining operations, this investigation aims to acquire adequate knowledge about interactions between cutting parameters 
and their direct and indirect effects on the obtained AE signal attributes from the milling process. To that end, this study 
investigates wavelet transform (WT) analysis, one of the most famous analyses in the time-frequency domain. WT signal 
processing was conducted with five models of mother wavelets, and appropriate decomposition numbers were deployed. 
The detail and approximate signal attributes obtained from each decomposition were assessed. According to WT analysis 
and statistical calculations, cutting speed, feed rate, and coating material significantly impacted the variation of AE signal 
attributes. Also, the most sensitive AE signal attributes and decompositions were rms, std, entropy and energy, and 2nd and 
6th decompositions, respectively. The outcome of this research can be integrated into artificial intelligence (AI) methods to 
implement online monitoring and predictive system. Consequently, it may lead to better process control and optimization.

Keywords Acoustic emission · Signal processing · Wavelet transform · Milling · Aluminum 7075

Nomenclature
AE  Acoustic emission
NDT  Non-destructive testing
AI  Artificial intelligence
FEM  Finite element methods
SNR  Signal-to-noise ratio
R2  Coefficient of determination
MRR  Material removal rate
rms  Root mean square
std  Standard deviation

AA  Aluminum alloy
DWT  Discrete wavelet transform

1 Introduction

Milling is among the most widely used machining processes, 
which includes a sophisticated morphology and encom-
passes complicated interactions between cutting param-
eters, workpiece, and cutting tools [1]. In recent decades, 
aluminum alloys have been widely applied in numerous 
industrial sectors and products due to their specific charac-
teristics, including a considerable strength-to-weight ratio, 
high conductivity, and relatively good machinability[2, 3].

Nowadays, advanced methods and strategies, including 
AI algorithms, are widely used to analyze sensory signals 
(e.g., acoustic emission (AE) signals) and improve the effi-
ciency of machining process monitoring [4, 5]. The term 
AE refers to transient elastic waves obtained from the 
rapid release of energy from one or more sources when the 
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material is under stress [6]. In recent decades, extensive 
research has been conducted on using AE in various applica-
tions. AE also offers significant advantages over other NDT 
approaches due to its unique ability to monitor manufactur-
ing systems such as power generation, healthcare, offshore 
and onshore structures, and damage pattern recognition [7, 
8]. One of the primary applications of sound signals or AE 
signals in the machining industry is tool condition monitor-
ing [4]. One of the critical machining processes is milling. 
It is noteworthy that, in general, the milling process signals 
are more sophisticated than other non-traditional machin-
ing methods. As a result, they are significantly affected by 
system deviations. These signals can include background 
noise such as mechanical, electrical, or acoustic. Aluminum 
alloy machining presents challenges such as burr formation, 
built-up edge (BUE), and adhesion of work parts to the cut-
ting tools [9–12].

It was assessed whether such signals could be used to 
monitor and detect critical machining attributes, such as sur-
face roughness, surface quality, tool wear, tool failure, chip 
thickness, chatter vibration, and tool life [5, 13–21]. Most 
recent research projects in AE signal usage in machining 
have focused on AI-based control methods [22–24]. Tool 
condition monitoring and tool wear measurement using AE 
signals information are more efficient than ambient signals 
and vibrations due to the broader range of frequencies AE 
sensors cover [5, 25]. Knowing their impressive adaption 
abilities to acquire more satisfying results, researchers have 
adopted AE signals along with the required sensors and 
modeling methods in a vast number of recent research in 
machining and specifically high precision processes [26–28]. 
Murakami, et al. [26] tried to detect the contact between 
the cutting tool and workpiece within the micromachining 
process by using AE signals and built-in AE sensors. Zanger, 
et al. [28] used FEM simulation and AE signals obtained 
from piezoelectric sensors for the cutting operation of Ti-
Al-4V to evaluate the influence of cutting parameters and 
analysis of the segmentation frequency of such operations.

Reliable analysis based on AE signals requires parallel 
consideration of the physical and mechanical conditions of 
the experiments and an understanding of the signal behavior. 
AE signals’ behavior in machining operations depends on 
several parameters, such as cutting parameters, tools, and 
workpiece properties. Besides, the AE attributes in different 
domains must be well identified and confirmed to enhance 
the performance and accuracy of the monitoring process [16, 
17]. Analyzing the AE signal can be investigated in the time, 
frequency, and time-frequency AE signals reported in the 
milling process [29, 30]. In the frequency domain, the con-
clusions revealed that peak amplitude and peak frequency 
are the most sensitive factors to input cutting parameters. 
However, such parameters did not satisfactorily govern them 
[31]. Various research works on signal processing of the 

extracted works are automatic detection [32], surface rough-
ness prediction [33], and modeling slot milling process [30]. 
Additional studies, including tool wear monitoring in end 
milling of aluminum-ceramic composites [5] and surface 
integrity analysis for high-speed machining in the frequency 
domain [34], were conducted using AE signals attributes. 
AE signal attributes in the time-frequency domain were also 
investigated [35].

Although AE signals have significant applications in 
condition monitoring and health diagnosis of machining 
processes, there is a lack of research on the time-frequency 
domain sensitivity of these signals to various cutting param-
eters. The main characteristics are in milling and high-speed 
milling as machining processes, the significant effects of 
interaction, complex chip formation modes, and pressure in 
different directions. Consequently, the mentioned research 
deficiencies are more evident in the milling processes, and 
further studies of AE signal characteristics in the time-
frequency domain are needed. By using WT analysis, this 
study aims to assess the sensitivity of AE signal attributes 
to cutting conditions in the high-speed milling of 7075-T6 
aluminum alloy. Towards this end, a proposed method com-
bined the WT and statistical analyses was deployed. The 
second section comprises the theoretical background of AE 
signals. The third section provides the experimental plan. 
The research methodology was comprehensively discussed 
in section four. Section 5 consists of the results of the pro-
posed methods and a discussion of them. Finally, the last 
part presents the conclusion of this research.

2  Acoustic emission signal

2.1  Definition and sources of AE

In metal machining operations, AE signals are mainly a 
source of information on plastic deformation and crack gen-
eration [36]. The main requirements in this area include AE 
receivers and sensors, AE signals, AE waveguides, machine 
tools, background noise, and coupling. Mechanical energy, 
which is the consequence of releasing elastic waves with a 
frequency range of 100–1000 kHz, leads to AE signal gener-
ation. Generally, piezoelectric sensors detect and convert the 
generated waves into electrical signals. However, as shown 
in Fig. 1, each AE event caused by energy dissipation lasts 
very short (milliseconds range).

2.2  Sources of AE signal

Many studies have evaluated the fundamental sources of 
AE in deformed/machined materials [37–40]. Based on the 
reported works, the underlying sources of AE signals in the 
metal cutting processes are attributed to (a) workpiece plastic 
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deformation caused during the machining, (b) chip plastic 
deformation, (c) flank wear caused by friction between the 
tool flank face and the workpiece, (d) crater wear caused by 
friction between the tool rake face and chip, (e) chip break-
age, (f) tool fracture, and (g) collisions between chip and 
tool chip breakage. The acquired AE signals from milling 
processes containing attributes are usually continuous or 
transient (burst) signals [40]. Tool fracture and chip break-
age are undeniable sources of transient signals (Fig. 2) and 
can be clearly understood to be the result of processes (e) 
to (g). On the other hand, continuous signals result from 
deformation and wear on the rake/flank sides of the cutting 
tools, and the mentioned items (a) to (d) are the key sources 
of this signal.

2.3  AE parameters

Several attributes can be derived and assessed when process-
ing the wavelet transform of AE signals. Table 1 lists the 
extracted wavelet transform decomposition-based AE signal 
attributes. In the Appendix, the formulas of such parameters 
are provided. Because the behavior of the resulting signals 
was monitored in a steady state, the features related to such 
conditions, including max, min, entropy, and energy seem 
to be more sensitive.

3  Experimental procedures

3.1  Experimental plan

A multilevel full factorial design was constructed in this 
work to draw the experimental plan. The experimental con-
ditions and their levels are presented in Table 2. The experi-
ments were conducted on a three-axis CNC machine (power: 

50 kW, speed: 28,000 rpm; torque: 50 Nm) with the details 
and levels introduced in Table 2. Notably, 54  (33 ×  21) tests 
were performed on AA7075-T6 alloy with three types of 
coated tools. The mentioned 54 tests were repeated three 
times to guarantee the accuracy and precision of the experi-
mental results. Due to the small difference in the results 
(around 3%) in all three replications, the average results were 
used.

To ensure the quality stability of the experimental con-
ditions, preliminary tests were performed, including the 
strength of cutting processes, tool vibration, and dynamic 
system behavior. In addition, an AE sensor was installed 2 m 
from the chip formation zone to investigate the background 
noise level. The result indicates a high signal-to-noise ratio 
(SNR), indicating that the background noise has negligi-
ble effects on the signals obtained near the chip formation 
zone (the first sensor). Furthermore, after observing a slight 
deflection in the workpiece and the cutting tool during the 
preliminary tests conducted to guarantee the stability of the 
process and prevent possible tool wear from affecting the AE 
signals, new inserts were deployed after each machining test. 
Tables 3 and 4 provide the parameters and attributes of the 
workpiece and cutting tools. The following section presents 
the method for this process, including the signal processing 
method and data analysis.

3.1.1  AE signal monitoring system

Figures 3 and 4 show the AE data acquisition system utilized 
in this study, including two AE TEDS microphones, a data 
processing unit, and how the system is set up. Figure 3 a 
shows a comprehensive signal processing unit. The micro-
phones depicted in Fig. 3 b and c were installed near the chip 
formation zone and at a distance of 2 m from it, respectively. 
The first microphone was used to obtain AE signals, and the 

Fig. 1  AE signal attributes [36]
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second to measure background noise. The arrangement of 
the workpieces used during the machining process is shown 
in Fig. 3d. The schematic view of the experiments is shown 
in Fig. 4. After implementing the proposed setup, the micro-
phones are calibrated with a signal of 10,000 ± 100 Hz to 
ensure their efficiency and reliability.

3.1.2  Research methodology

Figure 5 shows the required strategy to complete the stud-
ies to investigate the effects of cutting parameters on the 
features of the original AE signals obtained from 0.2 s of 
cutting operation. The steps of this strategy are as follows:

1. Installation of AE sensors (fs = 100 kHz) near the chip 
formation zone for data acquisition and Kistler-9255B 
three-axis dynamometer (fs = 48 kHz) to determine the 
cutting forces in the coordinate axes. The mentioned 
dynamometer is utilized to ensure the experiments’ 
accuracy and the experimental conditions’ stability.

2. Implementation of milling tests with the proposed condi-
tions and parameters on AA7075-T6 alloy.

3. Obtaining AE time-domain signals (x(t)) based on speci-
fied cutting parameters used (Fig. 4b).

4. Conversion of time-domain AE signals (x(t)) into time-
frequency domain data based on the wavelet transform 

Fig. 2  Samples of AE signal attributes in a time domain and b frequency domain; c wavelet domain with two decompositions
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analysis ( DWT
x

�
 ) and process of obtained AE signals in 

the time-frequency domain.
5. Optimal feature extraction is based on different decom-

positions (from details and approximated AE signals) 
and using different mother wavelets.

6. Perform statistical analysis to determine the attributes 
of the processed AE signals with the highest sensitivity 
to the cutting parameters used in each experiment.

Machining aluminum alloys involves difficulties such 
as burr formation, BUE, and wear modes, including adhe-
sion [9–12]. Therefore, to minimize the risk of noted chal-
lenges and also to avoid the possible negative impacts on the 
recorded results, the following assumptions are considered:

1. The machining process proved stable during the imple-
mentation of the preliminary experimental tests per-
formed to validate test conditions. It is noteworthy that 
cutting tools and fixtures were observed without any 
deflection. Additionally, there was no chatter vibration 
detected in the tests.

2. New inserts were used at each stage of the designed 
experiments to avoid the risk of deviations in the test 

outcomes and enhance the milling process measure-
ments' accuracy.

The statistical analysis introduced significant parameters, 
models, decompositions, and mother wavelets by criteria 
such as P-value, R2, and R2

adj (Section 3.2).

3.2  Method of analysis

According to the detailed introduction of statistical terms 
used to analyze data in [43], the following experimental 
techniques and criteria have been used to identify effective 
machining parameters on the values of features extracted 
from wavelet transform signal processing:

1. ANOVA: The analysis of variance (ANOVA) assessed 
any significant relationship between cutting parameters 

Table 1  The extracted wavelet 
features from AE signals

List AE parameters

1 Maximum: max
2 Minimum: min
3 Root mean square: rms
4 Standard deviation: std
5 Energy: enrg
6 Entropy: entrpy
7 Kurtosis: kur
8 Skewness: skew
9 Crest factor: crest
10 Impulse factor: impulse
11 4th moment: mom4
12 FM4

Table 2  Cutting parameters and 
their levels used

D* tool diameter, Z** tool teeth number

Cutting parameters Level

1 2 3

A: Cutting speed (m/min) 300 750 1200
B: Feed per tooth (mm/z) 0.01 0.055 0.1
C: Depth of cut (mm) 1 2 -
D: Tool (D* = 19.05 mm, Z** = 3) Rε= 0.5 mm

Coated with TiCN
Rε= 0.5 mm
Coated with TiAlN

Rε= 0.5 mm
Coated with TiCN +  Al2O3 + TiN

Cutting fluid None (dry machining)

Table 3  Physical characteristics of the material used [41]

Physical parameters Materials
AA 7075–T6

Brinell hardness (HB) 150
Elongation (%) 11
Elastic limit (MPa) 503
Mechanical resistance (MPa) (MPa) 572

Table 4  Parameters of the cutting tools used [42]

Operational conditions Cutting tool (Iscar Ref: E90A-D.75-
W.75-M)

Coating TiCN TiAlN TiCN + 
 Al2O3 + 
TiN

Insert nose radius Rε (mm) Rε = 0.5 Rε = 0.83 Rε = 0.5
Reference insert IC 328 IC 908 IC 4050
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and obtained AE signal attributes at 95% confidence 
interval (CI).

• In statistics principles, the coefficient of determination 
(R2) indicates the measure of the variability of a depend-
ent variable based on the independent variable(s). Here, 
this criterion indicates the sensitivity of an extracted AE 

feature to a variation of cutting parameters. Whereas 
R2 > 0.85 indicates significant sensitivity to variation 
of experimental parameters, R2 < 0.85 shows that the 
extracted attributes are considered non-sensitive to such 
parameters.

• R2
adj is a modified version of R2 and can provide a more 

detailed view of that correlation. This criterion is equiva-
lent or smaller than R2.

Fig. 3  AE Acquisition system (b)(a)

(c) (d)

Signal processing system Microphone 1

Microphone 2 Work parts

(a) (b)

Cutting stage

Cutting signal

Signal 
processing

Frequency 
analysis

Time series 
Analysis

2 m

2 m

AE 
microphone 2

AE 
microphone 1

0.2 m

Data 
acquisition

Fig. 4  a The AE signal acquisition system used. b Schematic overview of machining set-up and data acquisition
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• P-value: Determines whether your experimental test results 
are statistically significant and is widely used in null-hypoth-
esis significance testing, a statistical method to evaluate if the 
assumed data proves a hypothesis. This study adopted this 
criterion to confirm the significance of the cutting parameters 
and the proposed model based on the linear, second-order 
degree, or 2-factor interactions. As it was suggested for the 
first time by Ronald Fisher [44], the following evaluation 
policy was utilized:

• P-value < 0.05; denotes the proposed model/parameter 
is significant

• P-value > 0.1; denotes the proposed model/parameter is 
insignificant

• 0.05 < P-value < 0.1; proves that the proposed model/
parameter is mid-significant

2. Pareto chart: provides a visual demonstration of sta-
tistical analysis of proposed experimental cutting 
parameters (individual and their combined effects) on 
the extracted AE signal attributes employing decreas-
ing contribution.

Statistical criteria, including P-value, R2, and R2
adj, 

were used to determine the significant and insignificant 
parameters. It is to say that the models presented in this 
work are second-order degree models. The AE signal 
responses with an R2 less than 0.85 were also insensi-
tive to various cutting parameters as inputs. Also, with 
magnitudes, less than 0.05 as P-value, the cutting param-
eters and their interactions were considered statistically 
influential.

Fig. 5  Scheme of the proposed 
methodology

Statistical analysis

Feature extraction of 

decomposed signals

Milling tests on 

AA7075-T6 Parts

AE Data Acquisition

Wavelet transform 

analysis on AE signals

Extraction of decomposed 

detailes and approximates 

signals

Determining sensitive 

AE parameters

Determining factors 

governing AE parameters
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4  Results and discussion

After processing the measured AE signals and implement-
ing the strategies for selecting features as described in 
Fig. 5, an assessment of the sensitivity of the experimental 
cutting parameters to AE signal attributes was conducted. 
Five mother wavelets decomposed the measured AE sig-
nals: haar, db2, db10, sym8, and bior1.3. After selecting 
decomposed signals’ attributes, a thorough assessment was 
performed by statistical examinations of the AE attrib-
utes. Figure 6 shows maximum R2 values for the most 
sensitive signal attributes of the three most significant 
mother wavelets for approximate and detail signal types. 
It is worth mentioning that approximate and detail signals 
are the outcomes of the wavelet transform method, which 
introduce high and low-frequency decompositions of the 
milling signals. Based on Fig. 6, the signal attribute “max” 
(for all three mother wavelets) has the highest R2 values 
among all five signal attributes within approximate signals 
and the lowest for detail signals, having the same R2 value 
of about 80% for both approximate and detail signals. The 
“max” attribute does not differ widely for approximate 
and detail signals. All four other signal attributes, includ-
ing rms, std, energy, and entropy, have roughly the same 
R2 values for each approximate and detail signal. How-
ever, the mentioned four attributes for detail signals have 
R2 values 20% more than approximate signals. In other 
words, the sensitivity of rms, std, energy, and entropy is 
20% higher for detail signals. Therefore, regardless of the 

mother wavelet type, they were preferred over approximate 
signals for detecting the changes in machining operations 
when cutting parameters change. For attribute “max,” the 
second type of mother wavelet (db2) had a better perfor-
mance. Due to the page limit and long discussion needed, 
other examined AE signal attributes are not presented in 
Fig. 6. However, as a brief explanation, it can be claimed 
that each of the other features evaluated in this study had 
poorer performance and sensitivity due to a specific rea-
son. For instance, the impulse factor did not significantly 
affect the signals from the experiments in this paper due 
to its impact nature. For this reason, displaying features 
with low R2 values has been omitted.

Figure 7 summarizes the R2 values of signal attributes, 
including rms, std, energy, and entropy for all decomposi-
tions and all five mother wavelets studied. Different decom-
positions do not have the same capability to present sensitive 
features related to their various details and characteristics. 
Considering Fig. 7, it can be seen that decompositions 2 and 
6 offer higher R2 values than other decompositions.

As mentioned, R2 values indicate the variability of a 
dependent variable based on the independent variable(s). 
Since different decompositions contain unique details, the 
results show that decompositions 2 and 6 can introduce the 
most sensitive features and their required details in the mill-
ing of AA 7075. Whereas the R2 values for different manu-
facturing processes or alloys may vary, it can be concluded 
that the appropriate decompositions and features for each 
unique process can be determined. Thus, it can be easily 

Fig. 6  Coefficient of determination (R2) calculated for three main mother wavelets for different decompositions: a approximate and b detail sig-
nals
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understood that rms, std, energy, and entropy in the second 
and sixth decompositions of detail signals have acceptable 
sensitivity according to the introduced criteria. Besides, 
Fig. 6 and Fig. 7 show that R2 values obtained from the 
detail signals using the bior1.3, haar, and db2 mother wave-
lets had the best results, respectively. For further clarifica-
tion, Table 5 presents the R2 and R2

adj values of the rms, std, 
energy, and entropy attributes for decompositions 2 and 6, 
and bior1.3, haar, and db2 mother wavelets for the detail 
signals. Except for minor cases where their R2 was less than 
acceptable, the bior1.3, haar, and db2 mother wavelets in 
decompositions 2 and 6 provided sensitive attributes with 
acceptable accuracy.

Table 6 shows R2 and R2
adj values for the accumulated 

detailed signals. It can be observed that the signal resulting 
from the sum of the detail signals of all decompositions do 
not provide significant performance. The accumulated detail 
signal is not separated into different decompositions and 
includes additional details from the machining process. As 
a result, it adversely affects the performance of sensitivity 

criteria. Figure 8 illustrates the Pareto charts of rms, std, 
energy, and entropy (features with highest values of R2) 
obtained from the most appropriate mother wavelets. Based 
on the presented charts, rms, std, and energy were substan-
tially controlled with the variation of all the proposed cutting 
parameters, including the cutting speed (A), feed per tooth 
(B), coating material (D), and depth of cut (C), respectively, 
while for entropy, depth of cut (C) cannot be assumed a sig-
nificant parameter. There is a correlation between the levels 
of proposed cutting parameters, including cutting speed, 
feed per tooth, coating strength, and depth of cut (not being 
effective on entropy level) and rms, std, energy, and entropy, 
with A as the most effects factor on all the mentioned attrib-
utes. The obtained analysis revealed that a considerable pro-
portion of AE signals generated during milling processes are 
closely linked to consumed energy and material removal rate 
(MRR) levels, as stated in [45]. Other significant factors on 
rms and std are the interaction between cutting speeds (AA), 
coating materials (DD), feed per tooth, and depth of cut 
(BC). The most observable inputs affecting the entropy are 

Fig. 7  R2 changes based on five proposed mother wavelets for a rms, b std, c energy, and d entropy as the most sensitive features
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cutting speed and feed per tooth (AB). However, in compari-
son to rms and std, the energy was affected by more statisti-
cally significant parameters, including coupled interactions 
between cutting speeds (AA), coating materials (DD), feed 
per tooth and depth of cut (BC), cutting speed and feed per 
tooth (AB), cutting speed and depth of cut (AC), and cutting 
speed and coating materials (AD).

As proved, peak amplitude and peak frequency were not 
satisfactorily governed by cutting parameters in the fre-
quency domain. The negligible P-value (≪0.05) of feed per 
tooth, cutting speed, coating material, and depth of cut when 
taking rms, std, energy and entropy throughout the wave-
let transform analysis of decomposed AE detail signals of 
milling of aluminum 7075 was observed and considered. It 
approves that these cutting parameters remarkably control 
the variation in maximum amplitude. Cutting speed, depth 
of cut, coating material details, and feed per tooth strongly 
correlate with AE signals in the time-frequency domain, 
confirming that AE signals and cutting parameters can be 
selected appropriately for monitoring machining processes. 
The order of influential cutting parameters on significant 
attributes of AE signals was shown in Table 7. Signals 
obtained from the milling processes are affected by system 
deviations since they have a more sophisticated nature. Con-
sequently, assessing the sensitivity of signal features and 
processing the obtained signals play a key role in monitoring 
and digitizing such processes.

The present study certifies AE signal information’s accu-
racy and effectiveness in monitoring milling processes. 
According to the obtained information, it can be claimed 
that AE signals change more by the variation of cutting 
parameters (cutting speed and feed per tooth) than by chang-
ing the coatings. This study uses a second-order model to 
investigate the sensitivity of AE signal parameters. As the 
subject of further studies, evaluating more models for statis-
tical analysis on machining data is suggested. Furthermore, 
the method introduced in this study can be utilized with AI-
based techniques (e.g., neural/deep networks) to develop 
a robust classification and predictive model and monitor 
machining operations [46]. Besides, for non-deflecting sig-
nals, higher frequency ranges, advanced filtering, and anti-
aliasing algorithms are recommended. Finally, it should be 
noted that the theory of predicting the AE signal parameters 
is an acceptable approach to avoid the need for repeated 
tests.

5  Conclusion

A detailed full factorial experimental design with 54 
machining tests (milling) on AA 7075 workparts was 
considered to analyze the obtained AE signals in various 
process parameters comprehensively. This study would Ta
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illuminate and cover the lack of knowledge about the cor-
relation between the high-speed milling process param-
eters and significant AE signal attributes derived from 
time-frequency domain wavelet analysis as a method with 
high transparency for transient phenomena.

These conclusions could be drawn from the findings 
presented in the article:

1. Rms, std, energy, and entropy were the most sensitive 
AE signal attributes to variation of cutting conditions.

Table 6  R2 and R2
adj values of 

the most significant proposed 
features using 5 different mother 
wavelets on accumulated 
detailed signals

R2 and R2
adj Haar Db2 Db10 Sym8 Bior1.3

R2 R2
adj R2 R2

adj R2 R2
adj R2 R2

adj R2 R2
adj

max 82.27 76.51 84.45 79.4 81.09 78.9 83.61 79.25 81.58 75.6
rms 75.87 68.03 78.22 71.14 81.08 74.93 80.87 74.66 75.45 67.48
std 75.87 68.03 78.22 71.14 81.08 74.93 80.87 74.66 75.45 67.48
Energy 66.98 56.25 69.03 58.96 70.99 61.56 70.87 61.4 66.57 55.7
Entropy 76.31 68.61 78.48 71.49 81.64 75.67 81.56 75.57 77.1 69.66

Fig. 8  Pareto charts of sensitive features including a rms, b std, c energy, and d entropy with highest values of R2

Table 7  Effective cutting attributes on sensitive AE parameters

* Non-statically effective factors

AE parameters Cutting 
speed

Feed per 
tooth

Depth of cut Coating 
mate-
rial

rms 1 2 4 3
Std 1 2 4 3
Energy 1 2 3 4
Entropy 1 2 4* 3
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2. In decompositions #2 and #6, sensitive AE attributes 
had higher R2 values than in other decompositions. It 
was also noticed that detail signals were more efficient in 
detecting the variation of cutting conditions and coating 
material properties compared to approximate signals.

3. Cutting speed, feed per tooth, coating, and cut depth 
(except in the entropy case) were the most influential 
factors on rms, std, energy, and entropy. Other sig-
nificant factors were interaction effects between cut-
ting parameters, with different intensities of influence 
on each attribute. The mentioned parameters’ coupled 
interaction was the most influential cutting conditions 
on rms, std, and energy. However, the energy was also 
influenced by the coupled interaction between cutting 
speed and feed per tooth, cutting speed and depth of 
cut, and cutting speed and coating material. Entropy was 
influenced only by coupled interaction between cutting 
speed and feed per tooth.

4. As a result of this study, it was demonstrated that AE 
signals could be used for monitoring milling processes 
using wavelet domains. Consequently, AE signal infor-
mation can be used in milling processes, previously 
denied due to noise, friction, chip accumulation, and 
lack of accurate extraction and selection of sensory sig-
nal attributes.

5. Compared with time and frequency analyses, wavelet 
transform led to a better determination of sensitive sig-
nal features with more accuracy and confidence. There-
fore, using the wavelet transform for signal processing 
is recommended when dealing with high-interaction 
environments such as machining operations.

6. A combination of AI-based methods, high-quality and 
precise multiple sensors, a higher frequency range of 
data, and advanced filtering and anti-aliasing algorithms 
is suggested to develop the proposed algorithm’s effi-
ciency.

7. A comprehensive and precise presentation of significant 
cutting conditions and sensitive AE signal features to 
variation input cutting parameters undoubtedly facili-
tates the predictive fault models and online monitoring 
systems for diverse machining processes.

Appendix. Description of AE parameters 
studied

Maximum value of signal, amplitude: max (1)
Average value: mean
Mean = 

∑N

n=1
x(n)

N

(2)

Root mean square: rms
rms = 

�

∑N

n=1
(x(n))

2

N

 
(3)

Standard deviation : std

std(x(n))=
�

∑N

n=1
(x(n)−mean(x(n)))2

N−1

(4)

Energy = 
∑N

n=1
(x(n))2 (5)

Entropy = 
∑N

n=1

�

x(n) log
�

1

x(n)

��2 (6)

Kurtosis(x(n)) =  

∑N

n=1
(x(n)−mean(x(n)))4

(N−1)(std(x(n)))4
(7)

Skewness(x(n)) = 

∑N

n=1
(x(n)−mean(x(n)))4

(N−1)(std(x(n)))3
(8)

Crest factor = 

max (x(n))
�

∑N

n=1
(x(n))2

N

(9)

Impulse factor = 
max (x(n))
1

N

∑N

n=1
∣x(n)∣

(10)

Moment4 = 
∑N

n=1
(x(n)−mean(x(n)))4

N−1

(11)

FM4 = 

∑N

n=1

∑N

n=1
(x(n)−mean(x(n)))4

N−1
∑N

n=1
(x(n)−mean(x(n)))2

N−1  = moment4

variance

(12)
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