
Vol.:(0123456789)1 3

https://doi.org/10.1007/s00170-023-11281-9

ORIGINAL ARTICLE

Machine learning augmented X‑ray computed tomography features 
for volumetric defect classification in laser beam powder bed fusion

Jiafeng Ye1 · Arun Poudel2,3 · Jia (Peter) Liu1,3  · Aleksandr Vinel1,3 · Daniel Silva1,3 · Shuai Shao2,3 · Nima Shamsaei2,3

Received: 15 September 2022 / Accepted: 14 March 2023 
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023

Abstract 
This study proposes a data-driven framework to augment low-resolution X-ray computed tomography (LR-XCT) scanning 
with machine learning (ML) for efficient defect inspection and classification for laser beam powder bed fusion (L-PBF) 
process. The framework leverages the efficiency of LR-XCT scanning and improves defect classification accuracy with 
data-driven augmentation. Since volumetric defects can severely influence the usability and durability of L-PBF parts, it 
is critical to accurately classify defect types (i.e., keyhole, lack of fusion, and gas-entrapped pore) and understand their 
fabrication conditions and their impacts on the part performance. Additionally, it is reported that each type of defects has 
distinct morphological features, which can be creatively used for defect classification. In the proposed framework, the distinct 
morphological features of different types of defects are extracted from the LR-XCT, and they are augmented based on their 
relationships with the morphological features from high-resolution XCT (HR-XCT) scans. These augmented LR-XCT mor-
phological features are used in ML-based defect classifiers, among which the k-nearest neighbor classifier has achieved the 
highest defect classification accuracy of 90.6%, with an improvement of 7.7% over directly using the LR-XCT morphological 
features. Moreover, defect classification with augmented LR-XCT morphological features saves up to 75% of the scanning 
time compared to HR-XCT scanning.

Keywords Machine learning · Additive manufacturing · X-ray computed tomography (XCT) · Computer vision · Defect 
classification

1  Introduction  

Laser beam powder bed fusion (L-PBF) additive manufac-
turing (AM) process uses a laser beam as energy source to 
melt and fuse powder particles, layer upon layer, into a pre-
designed shape in an enclosed chamber filled with inert gas 
[1–5]. Volumetric defects generated in the L-PBF process 
can severely influence the reliability and durability of the 
L-PBF-manufactured parts, specifically in fatigue-critical 
applications [6]. X-ray computed tomography (XCT) scan-
ning has been commonly used for non-destructively defect 

inspection by measuring the absorption differences of pen-
etrable X-rays on the L-PBF parts and reconstructing three-
dimensional (3D) models of the parts to display the internal 
volumetric defects [7–10]. Due to its efficiency and low cost 
in inspection, we focus on developing a data-driven frame-
work to augment low-resolution XCT (LR-XCT) to achieve 
accurate defect inspection and classification for promoting 
the nondestructive inspection of L-PBF parts and paving the 
way to understand the impacts of defect on the performance 
of L-PBF parts [11–13].

Due to different fabrication conditions, there are three 
major types of defects occurring in the L-PBF process: 
keyholes (KHs), lack of fusions (LoFs), and gas-entrapped 
pores (GEPs) [13–19]. They can initiate cracks, leading to 
impaired mechanical properties and reduced fatigue lives 
[20–23]. To identify them, high-resolution XCT (HR-XCT) 
scanning  can provide precise feature values for the defects 
[9, 16, 24], resulting in a high defect classification accuracy, 
yet it can be prohibitively costly and/or time-consuming. For 
instance, in the authors’ previous work [25], defect features 
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extracted from HR-XCT scans (voxel size: 1 μm) led to a 
high defect classification accuracy (above 98%) at the cost 
of long scanning time (up to 12 h for each scan). Mean-
while, the availability of HR-XCT scanning for large-sized 
parts is limited due to its small scanned volume [8, 26]. 
On the other hand, LR-XCT scanning can be significantly 
less expensive (e.g., in our case, an LR-XCT scanning takes 
only 25% or less of the scanning time of an HR-XCT one); 
however, it typically captures much fewer features. Hence, in 
this research effort, we consider the question of how accurate 
defect classification can be performed with LR-XCT.

It is broadly agreed that KHs are large, near-spherical 
(more precisely, keyhole-looking) defects that occur when 
the excessive energy input vaporizes the powder near the 
bottom of the melt pool [13, 17, 27, 28]. LoFs are irregu-
larly shaped, elongated, and crack-like defects that occur 
when insufficient energy input fails to fully melt the pow-
der between the adjacent scan tracks of the laser beam or 
layers [13, 17, 18, 29–31]. In this case, the occurrence of 
either KHs or LoFs indicates the inappropriate energy 
input and corresponding rectifications for the L-PBF pro-
cess. For instance, KHs can be prevented by reducing the 
energy input [13, 15, 25, 32], while LoFs can be mitigated 
or prevented by increasing the energy input [13, 15, 16, 25]. 
GEPs are the smallest and most spherical defects among 
all three types [13, 15], caused by a small amount of gas 
— either presented originally in the powders or generated 
in the printing — trapped in the parts. GEPs may not be 
completely prevented even with appropriate energy input 
[15]; they can be mitigated by reducing the gas entrapment 
in the powder [33, 34] and optimizing the inert gas flow 
velocity [35].

Moreover, classifying the defects in the L-PBF parts can 
also assist in a better understanding of their structural integ-
rity [11, 12, 36]. Among these three types of defects, LoFs 
were found to be the most detrimental to the L-PBF parts 
when the sharp edges of those irregularly shaped and large-
sized LoFs can induce high stress concentrations in tensile 
tests or under cyclical loadings [23, 29, 37]. Due to this 
reason, the L-PBF fabricated Ti-6Al-4 V (Ti64) parts with 
large-sized and non-spherical LoFs exhibited lower ductility 
(3–10%) than those with other types of defects (10–15%) 
[38]. The stainless steel 316 L parts with irregularly-shaped 
LoFs had an average of 20% lower fatigue limit and 12% 
lower fatigue life than the ones with spherical and small 
GEPs [39, 40]. On the contrary, GEPs were found to be the 
least detrimental ones due to their small sizes and spherical 
shapes [37]. It is reported that GEPs were harmless to the 
tensile, fatigue, and hardness of the L-PBF fabricated Ti64 
parts when presented in amounts up to 1 volume percent-
age [31].

A practical approach for defect classification is to uti-
lize the sizes and morphologies of different types of defects 

obtained by XCT scanning. Some 3D features, such as 
dimensions, volume, and surface area of the defects, can 
be directly measured from the XCT scans to quantify the 
defects’ sizes. Furthermore, these 3D features can be used 
to derive other features that describe the defects’ morpholo-
gies. The morphological features (as a combination of some 
directly measured and derived features) extracted from the 
XCT scans can effectively assist in distinguishing different 
defect types.

We propose a data-driven framework to augment LR-
XCT with machine learning (ML) to classify the defects in 
the L-PBF parts with high efficiency and accuracy based on 
the morphological features of defects extracted from XCT 
scans. Our proposed framework incorporates (1) morpho-
logical features extraction from XCT scans using computer 
vision–based feature derivation, (2) morphological features 
augmentation by regression-based features augmentation 
models to enhance LR scans, and (3) defect classification 
through ML-based classifiers. We pose that with appropri-
ately trained augmentation modeling, it may be possible to 
use the LR-XCT scanning, specifically for larger and more 
influential defects, to replace the time-consuming HR-XCT 
scanning without significantly reducing classification accu-
racy (assuming some HR-XCT scans are also available dur-
ing training).

The rest of the paper is organized as follows. A review 
of the literature on defect classification methods, defect 
inspection by XCT scanning, and applications of ML in 
AM processes is presented in Sect. 2. Then, the proposed 
framework for defect classification is presented in Sect. 3, 
followed by a case study using defects in fabricated L-PBF 
parts to validate the proposed framework in Sect. 4. Finally, 
Sect. 5 provides conclusions and a discussion of future work 
and study limitations.

2  Literature review

The review of relevant literature is organized into three 
parts: (1) commonly used methods in defect classification, 
mainly by process map and defect length; (2) advantages 
and usage of XCT scanning in defect inspection; and (3) a 
summary of ML applications in AM processes. Based on the 
reviewed literature, two primary research gaps in developing 
an efficient and accurate defect classification for the L-PBF 
process are identified for this study.

2.1  Defect classification by process map and defect 
length

Process map is a commonly used method to classify different 
types of defects based on the effect of process parameters 
in the L-PBF process [14, 15, 41–43]. As mentioned above, 
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the generation of KHs and LoFs is significantly impacted by 
the energy input; meanwhile, the energy input is stated to 
be controlled by four main process parameters of the L-PBF 
process. A volumetric energy density EV(J/mm3) [13, 43, 44] 
is defined to qualify the magnitudes of the energy input as a 
function of these four process parameters:

where p is the laser power (W), v is the scanning velocity 
(mm/s), h is the hatch distancing (mm), and t  is the layer 
thickness (mm). Excessive energy input leading to KHs can 
be caused by high laser power, low scanning velocity, small 
hatch distancing, or small layer thickness. On the contrary, 
insufficient energy leading to the LoFs can be caused by 
low laser power, high scanning velocity, large hatch distanc-
ing, or large layer thickness. For example, a combination of 
recommended laser power (280 W) and low scanning veloc-
ity (400 mm/s) gave rise to the occurrence of large (max 
equivalent diameter of 133 μm) KHs in the L-PBF fabri-
cated Ti64 parts [15, 16]. On the other hand, increasing the 
hatch distancing from 60 to 140 μm led to the occurrence of 
more irregularly shaped (volume percentage of irregularly 
shaped defects increasing from 0.005 to 0.015) and larger 
(max equivalent diameter increasing from 36 to 54 μm) LoFs 
in the Ti64 parts [15, 16]. Reducing the laser power from 
380 to 200W with a constant scanning velocity of 300 mm/s 
caused the occurrence of more non-spherical LoFs (average 
sphericity values reducing from 0.61 to 0.56) in the 316L 
stainless steel parts [45].

Based on the relationship between defect types and pro-
cess parameters, Zhu et al. [14] developed process maps to 
fabricate a nearly full-density (relative density above 99%) 
L-PBF nitinol part by identifying proper combinations of 
those four process parameters. Gordon et al. [15] generated a 
process map to identify the boundaries of KHs and LoFs in a 
laser power-scanning velocity (p–v) space of the L-PBF Ti64 
parts. Tapia et al. [41] and Meng et al. [42] distinguished 
keyhole mode and conduction mode regions in the p–v space 
of the L-PBF parts fabricated with stainless steel 316L to 
identify KHs. However, utilizing the process map approach, 
all the defects in one L-PBF part are classified by the process 
parameters instead of being individually inspected, leading 
to a possible high misclassification rate, especially in iden-
tifying the GEPs, which can co-occur with KHs and LoFs.

Other studies [15, 44, 46, 47] classified different types of 
defects primarily depending on defect length. Gordon et al. 
[15] stated that the lengths of KHs and LoFs were larger than 
40 μm, while the lengths of GEPs were smaller than 20 μm. 
To further distinguish KHs and LoFs, they stated that KHs 
were spherical and LoFs were non-spherical. Their findings 
were based on the L-PBF Ti64 parts fabricated with laser 
power varying from 100 to 370 W and scanning velocity 

(1)EV =
p

v ⋅ h ⋅ t

from 400 to 1500 mm/s. Kasperovich et al. [44] summa-
rized that the lengths of LoFs ranged from 10 to more than 
200 μm, and the lengths of KHs were larger than 100 μm in 
the L-PBF Ti64 parts fabricated with laser power varying 
from 100 to 200 W and scanning velocity varying from 200 
to 1100 mm/s. Zhang et al. [46] observed that both LoFs and 
KHs had lengths ranging from 10 to more than 100 μm, and 
GEPs had lengths shorter than 10 μm from the defects in 
the L-PBF parts fabricated with stainless steel 316L. Snell 
et al. [13] concluded that the lengths of LoFs are larger than 
31 μm, and the lengths of KHs are roughly two times larger 
than LoFs to distinguish the LoFs and KHs in the L-PBF 
parts fabricated with Inconel 718. However, the inconsist-
ency of the defect lengths used for defect classification in 
various studies due to different materials and process param-
eters might lead to a discrepancy in the results. Therefore, 
it is beneficial to include more features (e.g., morphological 
features) of defects for more consistent defect classification. 
Furthermore, it would be useful to have a technique that does 
not depend on fixed thresholds for classification.

2.2  Defect inspection by XCT scanning

Using XCT scanning for defect inspection has four advan-
tages over the conventional cross-sectioning (e.g., scanning 
electron microscopy), such as (1) keeping the L-PBF parts 
intact for future processes (e.g., heat treatments, shot peen-
ing, fatigue testing) [7, 9]; (2) eliminating the part prepa-
ration procedures (e.g., grinding, and polishing processes, 
which may change the morphologies and sizes of defects 
owing to metal smearing) [24]; (3) examining the entire 3D 
volume of the L-PBF parts (compared to fractions of the 
parts with 2D planes); and (4) describing 3D features of the 
defects (e.g., spatial distribution, volume).

Given the advantages of XCT scanning, many studies 
[24, 48, 49] used it to inspect the defects in L-PBF parts. 
Maskery et al. [24] utilized XCT to obtain the morpholo-
gies and sizes of defects in the L-PBF AlSi10Mg parts and 
refined the process parameters to mitigate the defects with 
large volumes and irregular shapes. du Plessis et al. [49] 
utilized XCT to investigate the effect of hot isostatic press-
ing (HIP) on L-PBF parts non-destructively. They observed 
that the HIP reduced the average volumes and lengths of 
the defects in the Ti64 parts. In another study to investigate 
the effects of shot peening (SP), Damon et al. [48] used 
XCT to obtain the spatial distribution and volumes of the 
defects in the L-PBF AlSi10Mg parts before and after SP 
and concluded that most of the near-surface defects were 
healed with their volumes decreased. Other studies [16, 23, 
47, 50] obtained the volumes and positions of all defects in 
the entire L-PBF parts through XCT scanning and used them 
as ground truth to verify their respective defect prediction 
models. Generally, the HR-XCT scanning with a small voxel 
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size (0.65 ~ 2.1 μm) was used to obtain precise morphologies 
and sizes of the defects [15, 16, 24, 51, 52]. However, the 
HR-XCT needs a long scanning time and may only allow 
for a relatively small scanned volume. For instance, in [24], 
it took approximately 32 h for an HR-XCT to finish scan-
ning a region of 125  mm3. As a result, HR-XCT could be 
prohibitively costly and inefficient for analyzing defects in 
many practical applications.

2.3  ML applications for defect analysis

Several pioneering studies have applied ML to model the 
relationship between defect features and types of defects in 
the L-PBF parts for defect classification. Snell et al. [13] 
used k-means clustering models to classify large amounts 
(over 20,000) of defects into KHs, LoFs, and GEPs based 
on three 2D morphological features (i.e., length, spheric-
ity, and aspect ratio). However, these three morphological 
features cannot fully distinguish all the defects with unsu-
pervised learning; roughly half of the defects were unable to 
be classified into any defect types. Poudel et al. [25] applied 
an artificial neural network (ANN) model to establish the 
relationships between the defect types and some 3D mor-
phological features (e.g., elongation, aspect ratio, sphericity) 
extracted from the HR-XCT scans for defect classification. 
Their ANN model achieved an overall accuracy above 98% 
to classify approximately 2000 defects into their types. Cui 
et al. [53] trained convolutional neural network models to 
classify defects by 2D image features (e.g., edges, shapes) 
of the defects directly and achieved an accuracy of 92.3% 
from 4140 images.

Other studies utilized ML to predict occurrences of 
defects from the in situ monitoring data. Bartlett et al. [54] 
trained naïve-Bayes classifiers to identify the nonoptimal 
energy input–induced KHs or LoFs by the irregular surface 
topology of each powder layer detected by an optical cam-
era and achieved an average accuracy of 72%. Khanzadeh 
et al. [50] applied a self-organizing map to distinguish the 
defects in the L-PBF process by their abnormal melt pool 
signatures, and their model achieved an accuracy of 63% in 
predicting the occurrences and positions of defects.

Besides, many studies [55–60] used ML to predict poros-
ity (the ratio between the total volume of all defects and 
the volume of an L-PBF part [61]), primarily depending 
on the process parameters. For instance, Read et al. [56] 
used a polynomial regression model to build the relation-
ship between the porosity and process parameters (i.e., laser 
power, scanning velocity, and hatch distancing) and fabri-
cated low-porosity (0.29%) L-PBF parts with the optimal 
process parameters found by their model. Tapia et al. [57] 
built a Gaussian process regression (GPR) model to predict 
part porosity based on laser power and scanning velocity 
and achieved a low mean absolute square error (below 20%) 

between the predicted porosity values and actual observa-
tions. Ye et al. [59] conducted an iterative Bayesian optimi-
zation established on a GPR model to search for the optimal 
process parameters in the p–v space and reduced the porosity 
of L-PBF parts by 0.6%. Liu et al. [60] developed a Gaussian 
process–based layer-wise porosity modeling to quantify the 
spatial distribution of porosity in previous layers and predict 
the positions, sizes, and numbers of the pores in consecu-
tive layers. They achieved an F-score of 0.86 to identify the 
porosity in 30 consecutive layers based on the 6 previous 
ones. More ML applications to predict or mitigate the poros-
ity of L-PBF parts were reviewed in [62].

2.4  Research gaps

Based on the reviewed literature, two primary research 
gaps in the defect classification of the L-PBF process can 
be identified. First, commonly used HR-XCT scanning is 
prohibitively costly and inefficient for many practical appli-
cations. Second, only a few studies take full advantage of 
the characteristics of defects (i.e., distinct morphologies and 
sizes of different types of defects) for defect classification. 
We aim to bridge these research gaps by proposing a data-
driven framework that utilizes the morphologies and sizes of 
defects obtained by the XCT scanning to develop a general 
defect classification framework for the L-PBF process. The 
proposed framework uses time-efficient LR-XCT and lev-
erages ML to augment morphological features to achieve 
defect classification with improved accuracy and efficiency.

3  Proposed methodology

The overall structure of the proposed framework is depicted 
in Fig. 1. It consists of three key elements: morphological 
features extraction from XCT scans, morphological features 
augmentation, and ML-driven defect classification, and 
comprises the following four steps.

Step 1 (Sect. 3.1): Morphological features describing 
the morphologies and sizes of the defects are extracted and 
derived from the HR and LR-XCT scans of the same L-PBF 
parts.

Step 2 (Sect. 3.2.1): An algorithmic defect matching 
model is developed to correlate the HR-XCT and LR-XCT 
morphological features of the same defects in HR and LR-
XCT scans, enabling feature augmentation in Step 3.

Step 3 (Sect. 3.2.2): Regression-based features augmenta-
tion models are built to improve the LR-XCT morphologi-
cal features base on corresponding HR-XCT morphological 
features.

Step 4 (Sect. 3.3): ML models are employed to classify 
the defects into their types (i.e., KH, LoF, and GEP) using 
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the augmented LR-XCT morphological features obtained in 
Step 3.

3.1  Morphological features extraction

Figure 2 depicts typical KHs, LoFs, and GEPs observed in 
our experiments (see design details in Sect. 4). As discussed 
in Sect. 1, the three defect types exhibit distinct morpholo-
gies and sizes. KHs and GEPs are relatively spherical and 
regular, while KHs have larger sizes than GEPs; LoFs are 
elongated and irregularly shaped.

To distinguish different types of defects, we employed 
nine morphological features: solidity, sparseness, extent, 
sphericity, roundness, aspect ratio, elongation, flatness, 
and major axis [13, 24, 63–65]. Definitions of the features 

are given in Fig. 3. Here, the convex hull refers to the 
smallest convex polyhedron that contains the defect; the 
fit ellipsoid is the ellipsoid with the same normalized 
second central moments as the defect, and the bounding 
box is the smallest right rectangular prism that fully con-
tains the defect. Solidity, sparseness, and extent measure 
the irregularity of the defect by comparing the volumes 
of the convex hull, bounding box, and fit ellipsoid to the 
volume of the defect, respectively [63, 65, 66]. The aspect 
ratio, elongation, and flatness measure the differences 
between two out of three axes of the fit ellipsoid around 
a defect [13, 24, 63–65]. The roundness and sphericity 
measure how closely a defect resembles a perfect sphere 
[13, 65, 67]: the former uses the ratio of equivalent diam-
eter to the major axis of the defect, while the latter uses 
the ratio of volume to the surface area. Lastly, the major 
axis, quantifying the length of a defect, is also included 
in the morphological features to distinguish the sizes of 
different defects.

Based on characteristics and observations in the lit-
erature [13, 16–18], we surmise that these morphologi-
cal features can effectively distinguish different types of 
defects in the L-PBF. First, the irregularly shaped LoFs 
are expected to have lower solidity, sparseness, and extent 
values than KHs and GEPs. Second, the elongated LoFs 
have more significant differences among their three axes 
and thus are expected to have lower aspect ratio, elonga-
tion, and flatness values. Moreover, KHs and GEPs are 
expected to have higher roundness and sphericity. Lastly, 
GEPs and KHs can be distinguished by their major axis 
lengths due to their differences in size. These total of nine 
selected morphological features are extracted from both 
the HR- and LR-XCT scans.

Fig. 1  The overall structure 
of the proposed framework 
consists of morphological 
features extraction, morphologi-
cal features augmentation, and 
ML models to classify the types 
(i.e., KH, LoF, and GEP) of the 
defects in the L-PBF parts from 
XCT scans

Fig. 2  Several typical GEPs, LoFs, and KHs show distinct morphol-
ogy and size of each type of defects
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3.2  Morphological feature augmentation

In this section, we describe the proposed approach to aug-
menting the LR-XCT morphological features to achieve a 
higher accuracy of defect classification by using the discov-
ered relationship between the HR-XCT and LR-XCT mor-
phological features. We first develop an algorithmic defect 
matching model to pair the defects in LR-XCT and HR-XCT 
scans and then use the regression-based features augmenta-
tion models to find the relationship between them.

3.2.1  Algorithmic defect matching model

To find the relationship between defect features on LR-XCT and 
HR-XCT scans, it is necessary to develop an automatic way to 
match the defects from the respective scans. Figure 4 a and b 

provide a snapshot of HR and LR scans of the same scanned 
area, with 3 defects manually matched by an expert based on 
their position. Note that due to the limited accuracy of LR scans, 
mismatch in the scanned volumes, and the presence of noise, this 
is a non-trivial task.

The proposed matching algorithm is based on the following 
assumptions: (1) the positions of the same defects, as measured 
by the coordinates of the defect centroids, are similar in the HR 
and LR-XCT scans, and (2) the volumes of the same defects in 
the HR and LR-XCT scans are similar. Note that both assump-
tions are not necessarily true since the LR-XCT scanning, in 
particular, can distort the shape of the defect (and hence the 
position of the centroid and volume), as seen in Fig. 4.

The following process is then used for matching. For each 
large defect (major axis length ≥ 20 μm) in the LR-XCT scans 
used as the target defects (TDs), all the large defects in the 

Fig. 3  Illustrations of the eight 
morphological features derived 
from the directly measured fea-
tures (i.e., volume, surface area, 
convex hull volume, bounding 
box volume, major, median, and 
minor axis of the fit ellipsoid)

Fig. 4  Defects in a HR- and 
b LR-XCT scans of the same 
scanned area with a size of 
3.14  mm3. It is observed that 
morphologies, sizes, and num-
bers of the defects are changed 
largely with the reduced 
resolutions of XCT scanning. 
For instance, defects 1, 2, and 
3 show different morphologies 
and sizes in HR- and LR-XCT 
scans
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HR-XCT scans are considered to be the candidates for match-
ing. The match is then selected as the HR defect that mini-
mizes the following expression, which gives the weighted sum 
of distance and volume ratio between TD and a candidate:

where d is the distance between the evaluated candidate and 
the TD, dmin and dmax are the closest and farthest distance 
between all the defects to be matched in HR- and LR-XCT 
scans; vr is the LR/HR defect volume ratio, vrmin and vrmax 
are the smallest and largest volume ratio between all the 
defects to be matched in HR- and LR-XCT scans; � is the 
weighting parameter that can be selected to prioritize either 
the size similarity or position proximity.

3.2.2  Regression‑based features augmentation models

The features augmentation models using both linear and non-
linear regression algorithms are trained to find relationships 
between the LR-XCT and HR-XCT morphological features. 
We denote the values of nine LR-XCT morphological features 
of a defect by Xi , i = 1, 2,… , 9 . Correspondingly, the HR-
XCT morphological feature values of the defect are denoted 
by Yj , j = 1, 2,… , 9 . The relationships found by the features 
augmentation models are then used to augment the LR-XCT 
morphological features of a new defect with LR-XCT mor-
phological feature values X′

i
, i = 1, 2, 3,… , 9 , by the predicted 

values Ŷj , j = 1, 2, 3,… , 9.
A linear relationship between the values of HR-XCT 

morphological feature j and nine LR-XCT morphological 
features can be built by the linear regression-based features 
augmentation model (multiple linear regression (MLR)) [68, 
69] as follows:

where �0
j
, �1

j
, �2

j
,… , �9

j
 are the model coefficients estimated 

as �̂0
j
, �̂1

j
, �̂2

j
,… , �̂9

j
 , and �j are the error terms with 

�j∼N(0, �
2) , for j = 1, 2,… , 9 . The augmented LR-XCT 

morphological feature values of the new defect can be 
obtained as the predicted values Ŷj by the linear 
relationship:

Similarly, the non-linear relationship can be found by the 
non-linear regression-based features augmentation model as 
follows:

(2)Min

[

�

(

d − dmin

dmax − dmin

)

+ (1 − �)(
vr − vrmin

vrmax − vrmin
)

]

(3)Yj = �0
j
+ �1

j
X1 + �2

j
X2 +⋯ + �9

j
X9 + �j, j = 1, 2,… , 9

(4)Ŷj = �̂0
j
+ �̂1

j
X�

1
+ �̂2

j
X�

2
+⋯ + �̂9

j
X�

9
, j = 1, 2,… , 9

(5)Yj = Fj

(

X1,X2,… ,X9

)

+ �j, j = 1, 2,… , 9

The function Fj(∙) depicts the non-linear relationship 
between the HR-XCT and LR-XCT morphological features 
and is used to augment the LR-XCT morphological features 
of the new defect by the predicted values Ŷj as follows:

The non-linear regression algorithms used in this study 
include the random forest (RF) regression [70–72] and 
Gaussian process regression (GPR) [57, 60, 73–75].

The mean absolute percentage error (MAPE) is used to 
evaluate the average percent deviation of the augmented LR-
XCT morphological feature values (i.e., the predicted values) 
from the features augmentation models to the actual HR-XCT 
morphological features. The augmented LR-XCT morphologi-
cal feature values with a lower MAPE value are used as pre-
dictors for the defect classification in Sect. 3.3.

3.3  ML‑driven defect classification

In this section, we propose a data-driven framework to use 
augmented LR-XCT morphological features for efficient defect 
classification. ML-based defect classifiers with different clas-
sification algorithms are utilized to classify the defects into dif-
ferent types (i.e., KH, LoF, and GEP) based on the augmented 
LR-XCT morphological features. The defects with similar aug-
mented LR-XCT morphological features are more likely to be 
classified into the same defect types. This observation is in line 
with our prior knowledge of the defects in the L-PBF parts: the 
same type of defects has similar morphology and size.

To conduct defect classification, we use the augmented 
LR-XCT morphological feature value Ŷj , j = 1, 2, 3,… , 9 , 
and type (denoted as c) of a defect as the predictors and 
response, respectively. A function G(∙) is used to classify 
the defect into its type based on the predictors as follows:

The ML-based classifiers G(∙) used in this study include 
decision tree [76, 77], random forest (RF) [70–72], naïve 
Bayes [54], k-nearest neighbor (k-NN) [70], and linear 
support vector machine (SVM) [78, 79]. They will be 
evaluated by classification accuracy.

4  Case study

4.1  Experiment setup

The L-PBF parts are fabricated by an EOS M290 machine 
with plasma atomized Ti64 Grade 5 powder (particle size 
range of 15 to 53 µm) supplied by AP&C — a GE Additive 

(6)Ŷj = Fj

(

X�

1
,X�

2
,…X�

9

)

, j = 1, 2,… , 9

(7)c = G(Ŷ1, Ŷ2,… , Ŷ9)
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company. The recommended process parameters for Ti64 
on this machine are 280 W laser power, 1300 mm/s scan-
ning velocity, 40 µm layer thickness, 120 µm hatch dis-
tance, 67° layer rotation, and 10 mm stripe width. To 
induce the defects (especially KHs and LoFs), we fab-
ricate two parts labeled “K” and “L” with excessive and 
insufficient energy input by adjusting the laser power and 
scanning velocity, as summarized in Table 1. The geom-
etry of the fabricated L-PBF parts is shown in Fig. 5, with 
the upper cylindrical portion machined and scanned with 
XCT.

The HR-XCT scanning is performed by a ZEISS Xradia 
620 Versa machine with an X-ray source of 160 kV and 
25 W power passing through a ZEISS “HE1” filter, while 
the LR-XCT scanning is performed by the same machine 
with an X-ray source of 100 kV voltage and 14 W power 
through a ZEISS “LE1” filter [25]. For both HR- and LR-
XCT scans, 1601 2D projections are collected over a full 
360 degrees rotation of the scanned area in each scan. The 
isotropic voxel sizes of the HR- and LR-XCT scans are 
1 µm and 5 µm, respectively. It takes approximately 12 h 
to complete each HR scan and only 3 h for each LR-XCT 
scan, even though the LR scans cover a volume 125 times 
larger than the HR scans. Only a portion of the LR scanned 
area, matching the HR scanned area, is selected.

The defects are isolated [80] from the XCT scans, and 
their morphological features are extracted. The volumetric 
tomography data of the XCT scans are reconstructed by 
the ZEISS Reconstruction software. As shown in Fig. 5, 

the defects (black spots) are isolated from these recon-
structed images of the HR- and LR-XCT scans through a 
binary function in ImageJ [81]. As summarized in Table 2, 
the numbers of the isolated defects significantly decrease 
with the reduced resolution of the XCT scanning, where 
only 87 and 164 defects are detected in the LR-XCT scans 
of parts K and L, respectively, compared to 129 and 911 
in the HR-XCT scans.

4.2  Evaluation of the proposed framework

4.2.1  Evaluation of algorithmic defect matching model

The matching algorithm described above is applied to the 
defects in both parts K and L. Note that only LR defects 
with major axis lengths larger than 20 μm are selected for 

Table 1  The process parameters used to fabricate the L-PBF parts K and L and their deviation (in parenthesis) from the recommended process 
parameters (i.e., laser power: 280W, scanning velocity: 1300 mm/s, and energy density: 44.87 J/mm3)

L-PBF parts Process parameters

Laser power (W) Scanning velocity (mm/s) Energy density (J/mm3)

Part K 336 (+ 20%) 780 (− 40%) 89.74 (+ 100%)
Part L 252 (− 10%) 1560 (+ 20%) 33.65 (− 25%)

Fig. 5  The geometry of the L-PBF part and the scanned areas of a 
the HR-XCT scans and b the LR-XCT scans. The scanned area of 
the LR-XCT scanning is larger than the HR-XCT scanning due to the 
larger voxel size of the LR-XCT scan. In this case, 200 slices in the 

middle are selected from the total 1000 slices of the LR-XCT scan for 
a similar scanned area of the HR- and LR-XCT scans in terms of size 
and position. The defects (black spots) are isolated from the HR- and 
LR-XCT scans through binarization

Table 2  The total number of defects in the HR- and LR-XCT scans of 
the L-PBF parts K and L. The defects with a large major axis length 
( ≥ 20 µm) in the LR-XCT scans are used as the target defects (TDs) 
for defect matching

L-PBF parts Defect numbers

HR-XCT scan LR-XCT scan LR-XCT scan 
( ≥ 20 µm)

Part K 129 87 64
Part L 911 164 79
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matching, i.e., the total of 64 and 79 defects are tested. A 
manual inspection, which verifies each pair of matched 
defects, is performed by AM experts to evaluate the accu-
racy of the algorithm. Figure 6 illustrates an example of 
the manual inspection to verify a pair of matched defects 
in part K. The TD occurs from the 12th to 20th slice of the 
LR-XCT scans, and its match identified by the algorithm is 
observed from the 53rd to 78th slice of the HR-XCT scans. 
The slice numbers of these two defects indicate their simi-
lar positions in the Z-axis since the height of each slice 
in the LR-XCT scans approximately equals the height of 
five slices in the HR-XCT scans (1 µm and 5 µm voxels). 
Furthermore, the relative positions of reference defect 1 
(RD 1), reference defect 2 (RD 2), and TD (or its match) 
are similar in both LR and HR-XCT scans. Therefore, it 
is concluded that these two defects are correctly matched.

Figure 7 depicts the accuracy of the proposed matching 
algorithm with different values of weighting parameter λ. The 
best accuracy is observed to be 98.73% and 90.65% in parts 
L and K, respectively, which can be simultaneously achieved 
for λ ranging from 0.48 to 0.5, indicating roughly equal impor-
tance of defect position and volume in defect matching. For 
the rest of the study, we select λ equal to 0.5. The reasons 
for incorrect matched defects by the algorithmic defect match-
ing model are discussed in Appendix  (see Appendix Fig. 8). 

4.2.2  Evaluation of features augmentation models

A separate prediction model is constructed to augment each 
of the features. For each target feature to be augmented, its 
corresponding HR-XCT morphological feature is used as the 
response variable, and the LR-XCT morphological features 
are the predictors. For each of the nine response variables, 
we construct multiple linear regression (MLR), random forest 

(RF), and Gaussian process regression (GPR) models. Only 
those LR-XCT morphological features statistically significant 
to the responses are used as predictors in the MLR-based 
models to improve the prediction accuracy. In contrast, all 
the LR-XCT morphological features are used as predictors 
in the RF- and GPR-based feature prediction models. Five-
fold cross-validation is employed in all cases. Mean average 
percentage error (MAPE) is used to evaluate model accuracy.

Table 3 summarizes the results. Overall, the average 
MAPE values of these features augmentation models indi-
cate that most augmented LR-XCT morphological features 
have an average of approximately 20% deviation from the 
HR-XCT morphological features (assumed to be ground 
truth) except extent (42%), flatness (14%), and spheric-
ity (12%). It is observed that non-linear regression-based 
models outperform MLR in predicting all the derived mor-
phological features except major axis, with smaller MAPE 
values. Note that since the derivations of these eight mor-
phological features are through non-linear calculations (see 
Fig. 3), it is reasonable to expect that a non-linear ML model 
may be more suitable. On the other hand, the linear regres-
sion model slightly outperformed non-linear models for the 
major axis, a directly measured feature. This model has a 
single predictor as the LR-XCT major axis, which is the only 
feature being statistically significant to the response and has 
a relatively stronger linear correlation, and takes the form of:

(8)Ŷmarjoraxis = 4.032 + 1.076Xmajoraxis

Fig. 6  An example of manually verifying a pair of matched defects 
identified by the algorithmic defect matching model. The target defect 
(TD) and its match have similar positions on the Z-axis, and similar 
relative positions of the reference defect 1(RD 1) and reference defect 
2 (RD 2) to the TD (or its match) are observed

Fig. 7  Accuracy of the algorithmic defect matching model to match 
the defects in the L-PBF parts L and K with weighting parameter 
λ varying from 0 to 1. The best defect matching accuracy can be 
simultaneously achieved as 98.73% (78 out of 79 pairs are correctly 
matched) and 90.65% (58 out of 64 pairs are correctly matched) for 
the defects in parts L and K, respectively, when λ equals 0.5
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The estimated model coefficients indicate that the major 
axis lengths of defects are shrunk in the LR-XCT scans. It 
is worth noting that all models’ performance is very close 
in all cases.

Though the obtained average accuracy (20% MAPE) can 
be viewed as relatively low, since our goal is defect clas-
sification, we argue (and experimentally demonstrate in the 
next section) that even low accuracy prediction could still 
improve the classification accuracy.

4.2.3  Evaluation of defect classification

For the correctly matched pairs of defects, we label the types 
(i.e., KH, LoF, and GEP) of defects based on their morpholo-
gies and sizes in the HR-XCT scans. Five AM experts expe-
rienced in defect classification individually labeled these 
defects in the HR-XCT scans, and only the defects labeled 
with a consensus (at least four out of five experts) are included 
in this study. As a result, a dataset of 131 (out of 136 correctly 
matched pairs of defects) defects, including 31 KHs (23.7%), 
73 LoFs (55.7%), and 27 GEPs (20.6%), along with their mor-
phological features, are integrated for defect classification. The 
dataset is randomly divided into training (70%) and testing 
(30%), with the same proportion of each defect type as the 
whole dataset. Five popular ML models, decision tree, random 
forest (RF), naïve Bayes, k-nearest neighbor (k-NN), and linear 
support vector machine (SVM) classifiers, have been used for 
classification and compared according to their accuracy.

Model performance is summarized in Table 4, where the 
rows correspond to ML models, and the three columns rep-
resent the predictors used: LR-XCT morphological features, 
augmented LR-XCT morphological features, and HR-XCT 
morphological features. Naturally, predictors trained and 
tested on HR-XCT scans show the best performance (94–97% 
depending on the models) since the HR-XCT scans provide the 
most accurate representation of the actual shape and size of the 

defects. On the other hand, if LR-XCT data only is available, 
the defect classification accuracy drops to only 77–82%. Most 
importantly, for 4 out of 5 tested models (except the decision 
tree classifier), the introduction of augmented LR-XCT mor-
phological features significantly improves the accuracy. For the 
best model (i.e., k-NN), the accuracy improves from 82.9 to 
90.9%. While augmentation cannot completely overcome the 
limitations of the LR images (since the accuracy is still lower 
than what is possible with HR scans, i.e., 94% for k-NN), the 
proposed framework can vastly reduce the time of defect clas-
sification with the time-consuming HR-XCT scanning (12 h 
for each scan) to the LR-XCT scanning (3 h for each scan).

Since the k-NN classifiers using LR-XCT and augmented 
LR-XCT morphological features have the highest average 
accuracies among all the classifiers using the same predic-
tors, they will be used as the classifiers in the proposed 
framework. The k-NN classifiers measure the distances 
among the defects in the multi-dimensional augmented LR-
XCT morphological features space and classify them by the 
majority of defect types among their k nearest neighbors. In 
this study, ten nearest neighbors (i.e., defects in the train-
ing datasets) measured by Euclidean distance are used in 

Table 3  The average MAPE 
values and standard deviations 
(in the parenthesis) of the 
linear regression and non-
linear regression-based features 
augmentation models using 
MLR, RF, and GPR algorithms 
on nine morphological features 

a Bold values indicate the lowest MAPE values among the three models for eachmorphological feature

Morphological features Mean average percentage error (MAPE) values

Linear regression models Non-linear regression models

MLR RF GPR

Solidity 0.212 (0.006) 0.187 (0.003)a 0.204 (0.005)
Sparseness 0.239 (0.005) 0.201 (0.002) 0.225 (0.003)
Extent 0.525 (0.012) 0.418 (0.018) 0.466 (0.009)
Aspect ratio 0.276 (0.006) 0.263 (0.003) 0.258 (0.002)
Elongation 0.240 (0.004) 0.239 (0.001) 0.233 (0.003)
Flatness 0.147 (0.003) 0.138 (0.003) 0.137 (0.001)
Roundness 0.204 (0.002) 0.178 (0.001) 0.186 (0.003)
Sphericity 0.133 (0.004) 0.117 (0.002) 0.124 (0.005)
Major axis 0.207 (0.003) 0.215 (0.004) 0.214 (0.002)

Table 4  Average defect classification accuracy and standard deviation 
(in the parenthesis) of the classifiers using the LR-XCT, augmented 
LR-XCT (ALR-XCT), and HR-XCT morphological features 

a Bold values indicate the highest defect classification accuracy 
among all fiveclassifiers using the same predictors

Classifiers Predictors

LR-XCT ALR-XCT HR-XCT

Decision tree 0.804(0.030) 0.804(0.030) 0.972(0.004)
RF 0.829(0.039)a 0.880(0.059) 0.974(0.027)
Naïve Bayes 0.778(0.064) 0.838(0.029) 0.966(0.014)
k-NN 0.829(0.039) 0.906(0.039) 0.940(0.029)
SVM (linear) 0.795(0.026) 0.872(0.044) 0.940(0.039)
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the vote to classify the new defects (i.e., defects in the test 
dataset). Each neighbor is inverse distance weighted (i.e., 
weight = 1/distance), where the defects closer to the new 
defects have more impact on the classification result.

To further validate the improvement in defect classifica-
tion accuracy resulting from the proposed framework, we 
present the confusion matrices of the k-NN-Augmented LR 
(ALR) and k-NN-LR classifiers on the test dataset shown 
in Table 5. Compared to the k-NN-LR classifier, the k-NN-
ALR classifier correctly distinguishes all the LoFs from the 
other two types of defects and identifies more KHs. These 
improvements indicate that the proposed framework can 
augment the LR-XCT morphological features to identify 
more detrimental LoFs, which are more likely to initiate 
cracks due to their irregular shape and sharp edges [17, 23, 
30], and KHs, which negatively impact the fatigue lives of 
the L-PBF parts more than GEPs with smaller sizes [82, 83].

Lastly, to examine the effect of the proposed framework 
on classifying the largest defects, which are most important 
to the structural integrity of the L-PBF parts among all the 
defects [36, 37], we conduct another defect classification 
based on the defects with their major axes larger than 50 µm 
using the k-NN classifier. Note that this is a binary clas-
sification since only 17 labeled LoFs and 11 labeled KHs 
are longer than 50 µm among all the 131 defects used in 
this study. The average classification accuracy summarized 
in Table 6 shows that the k-NN-LR classifier has a high 
accuracy of 96.3%, which indicates that even though the 
LR-XCT morphological features are less accurate in pre-
senting actual morphologies and sizes of defects, these fea-
tures can still be used to classify most of the largest defects 
accurately. Besides, no improvement in the accuracy of the 
k-NN-ALR classifier over the k-NN-LR one to classify the 
largest defects is observed, which indicates that the proposed 
framework is more effective in augmenting the LR-XCT 

morphological features of defects between 20 and 50 for a 
higher defect classification accuracy.

5  Conclusion and future works

In this study, we propose a data-driven framework to aug-
ment LR-XCT defect inspection and classification using 
limited HR-XCT data. This can greatly improve the effi-
ciency and accuracy of LR-XCT inspection and classifi-
cation, promote the nondestructive inspection of L-PBF 
parts, and pave the way to understand the impacts of 
defect on fatigue performance of L-PBF parts. It cent-
ers on time-efficient LR-XCT scanning to improve its 
efficiency and utilizes ML to augment the morphological 
features extracted from the LR-XCT scans for improved 
accuracy of defect classification. Specifically, nine mor-
phological features (solidity, sparseness, extent, sphe-
ricity, roundness, aspect ratio, elongation, flatness, and 
major axis length), which describe the morphologies and 
sizes of defects, are derived to distinguish different defect 
types and extracted from the LR- and HR-XCT scans. An 
algorithm for matching the same defects observed in LR-
XCT and HR-XCT images is developed, which uses the 
defect positions and volumes to match with an accuracy 
exceeding 95%. The LR-XCT morphological features are 
augmented with regression-based features augmentation 
models, which build linear (using the MLR algorithm) or 
non-linear (using RF and GPR algorithms) relationships 
between the LR-XCT and HR-XCT measurements. It is 
then observed that for a collection of classification models, 
using augmentation does indeed significantly improve the 
classification accuracy. We conclude that the k-NN clas-
sifier exhibits the best performance, with 82.9% accuracy 
for LR features only, which can be improved to 90.6% with 
augmentation. Furthermore, for the largest defects that are 
more important for the structural integrity, specifically the 
fatigue performance, the k-NN classifier can classify them 
with high accuracy of 96.3% using LR features with or 
without augmentation.

The classification results showing the types of defects 
can be used as an effective method to identify and improve 
the quality of fabricated parts by the L-PBF process. Since 

Table 5  Confusion matrices of classification performance of the 
k-NN-ALR classifier (a) and k-NN-LR classifier (b) on the test data-
set consisting of 8 GEPs, 22 LoFs, and 9 KHs

a) Confusion matrix of k-NN-ALR

Types GEP LoF KH

Actual GEP 7 0 1
LoF 0 22 0
KH 1 2 6

Predicted
b) Confusion matrix of k-NN-LR
Types GEP LoF KH

Actual GEP 6 1 1
LoF 1 21 0
KH 1 3 5

Predicted

Table 6  Average defect classification accuracy and standard devia-
tion (in the parenthesis) of the k-NN classifiers using the LR-XCT, 
ALR-XCT, and HR-XCT morphological features to classify the larg-
est defects (major axis ≥ 50 µm)

Classifiers Predictors

LR-XCT ALR-XCT HR-XCT

k-NN 0.963(0.064) 0.963(0.064) 1(0.000)
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large-scale HR-XCT scanning is not feasible for most 
practical applications due to inherent limitations (long 
scanning time, limited scanned area, and high cost), the 
proposed framework can be an efficient but sufficiently 
accurate way for defect classification with LR-XCT scans.

It should be noted that KH, LoF, and GEP are the only 
three types of internal defects considered in this research. 
Some authors distinguish other possible types, such as 
unmelted powder particles or internal cracking [19, 53, 84]. 
For the samples manufactured in this study, such less often 
identified types were not present (as analyzed by the experts 
involved in labeling the defects). Hence, we believe that this 
choice does not significantly limit our conclusions. At the 
same time, it may pose a challenge for application of the 
proposed methodology to other datasets with other defect 
types present. Specifically, as defined, the algorithms pro-
posed here are not restricted to the three defect types consid-
ered. Indeed, as long as the defect types can be distinguished 
based on morphological features, the proposed ML methods 
can be expected to retain some level of the predictive power, 
and augmenting LR-XCT with HR-XCT can be expected to 
improve accuracy. For example, internal cracking is reported 
to be irregularly shaped, and both longer and more elongated 
than other types of defects with a larger major axis and lower 
aspect ratio [85–87]. Consequently, if such cracking is pre-
sent in the training dataset (and appropriately labeled), then 
a new 4-class (KH, LoF, GEP, and internal cracking) k-NN 
classifier, which can distinguish the internal crack from other 
types of defects by a combination of morphological features, 
can be trained according to the framework described here. 
However, it is difficult to establish a priori whether such a 
classification problem may be more difficult than the 3-class 

classification considered so far, and hence, whether the pro-
posed classification method will retain the high accuracy 
observed here. Given the reported distinct morphological 
features of cracking, we can surmise that in principle, the 
approach may be expected to perform well, but ultimately, 
further experiments are needed to reveal the accuracy in 
cases where other types of defects are of interest.

In addition to expanding the types of defects consid-
ered, a number of other promising future research direc-
tions can be proposed, including.

1. Evaluate the proposed framework by the defect classi-
fication accuracy with a large number of defects in the 
newly fabricated L-PBF parts.

2. Enhance the accuracy of the algorithmic defect match-
ing model by filtering the target defects in the LR-XCT 
scans and the features augmentation models by using 
more features extracted from the XCT scans.

3. Apply the proposed framework to search for the optimal 
fabrication conditions of L-PBF parts through the defect 
classification results.

Appendix

The discussion of incorrect defect matches by the algorith-
mic defect matching model.

The incorrect matches computed by the algorithmic defect 
matching model to the target defects (TDs) are investigated 
individually for potential improvement of the model. Since 
the reasons (e.g., unable to be verified, different scanned 

Fig. 8  Illustrations of four 
mismatched pairs of defects 
computed by the algorithmic 
defect matching model
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areas, scanning problems) for the mismatched pairs are not 
directly caused by the algorithmic defect matching model, 
we will temporarily stick to the current model and leave the 
potential improvement in future work.

Only one pair of defects is incorrectly matched for the 
defects in part L. As shown in Fig. 8 (a), two possible 
matches have similar positions in the Z-axis and relative 
positions to reference defect 1 (RD 1) and reference defect 
2 (RD 2) with the TD. Hence, they cannot be verified by 
manual inspection and are deemed as incorrect matches.

Besides, six pairs of defects are incorrectly matched for 
the defects in part K due to three different reasons. First, 
four TDs are at the edge of the LR-XCT scan, and their HR 
counterparts may not be in the scanned area of the HR-XCT 
scan. For example, as shown in Fig. 8 (b), no possible match 
is found to have a similar position in the Z-axis and relative 
positions to three reference defects. Therefore, the matches 
to these four TDs are deemed incorrect. Second, as shown in 
Fig. 8 (c), one TD in the LR-XCT scan is a connected defect 
of two separate defects in the HR-XCT scan. Therefore, the 
match to this TD is deemed incorrect. Another mismatched 
pair is caused by a close distance between two defects. As 
shown in Fig. 8 (d), the RD 1 in HR-XCT is simultaneously 
matched to the RD 1 and TD, which are close to each other 
in the LR-XCT scan, leading to one mismatched pair.
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