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Abstract
Optimization of flank wear width (VB) progression during face milling of Inconel 718 is challenging due to the synergistic 
effect of cutting parameters on the complex wear mechanisms and failure modes. The lack of quantitative understanding 
between VB and the cutting conditions limits the development of the tool life extension. In this study, a Gaussian kernel ridge 
regression was employed to develop the VB progression model for face milling of Inconel 718 using multi-layer physical 
vapor deposition-TiAlN/NbN-coated carbide inserts with the input feature of cutting speed, feed rate, axial depth of cut, 
and cutting length. The model showed a root mean square error of 30.9 (49.7) μm and R2 of 0.93 (0.81) in full fit (5-fold 
cross-validation test). The statistics along with the cross-plot analyses suggested that the model had a high predictive ability. 
A new promising condition at the cutting speed of 40 m/min, feed rate of 0.08 mm/tooth, and axial depth of cut of 0.9 mm 
was designed and experimentally validated. The measured and predicted VB agreed well with each other. This model is thus 
applicable for VB prediction and optimization in the real face milling operation of Inconel 718.
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1 Introduction

Inconel 718 constitutes more than 50% of modern aircraft 
engines’ structural components [1]. Due to its superior prop-
erties, such as creep, oxidation, hot corrosion resistance, and 

high hot hardness, it withstands vigorous operating condi-
tions in high-temperature engine cores [2]. The machining 
process for Inconel 718 includes drilling, face milling, and 
turning. Among the all, face milling is known for a high-
quality surface finish, producing more precise components 
for very minimal dimensional tolerance applications [3]. 
However, the typical machinability rating of Inconel 718 is 
between 0.09 and 0.3, which is less than 0.4, 1.2, and 1.9 for 
stainless steel 304, Al 6061, and 7075 alloys, respectively 
[4]. Hence, Inconel 718 is considered a hard-to-machine Ni-
based alloy because of the high affinity to form a built-up 
edge (BUE), to react with tool’s elements, and to undergo 
precipitation hardening [5]. Such complex metallurgical 
properties facilitate tool wear mechanisms, which mainly 
include adhesion, abrasion, diffusion, and oxidation [6]. 
These mechanisms cause rapid tool deterioration, covering 
a spectrum of damage scales from micro-chipping to gross 
fracture [7]. More details of wear mechanisms and failure 
modes during face milling of Inconel 718 have been pur-
sued in Ref. [8]. Flank wear is considered a dominant failure 
mode that determines the tool life when face milling Inconel 
718, and is primarily caused by the abrasion wear mecha-
nism [9]. It evolves in three stages, namely early rapid wear, 
uniform wear, and failure region [10]. The unprecedented 
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failure modes in the failure region, such as chipping, flak-
ing, BUE, and notching, affect the surface finish and dimen-
sional tolerance of the components. As such, an optimal face 
milling process allows flank wear retaining in the uniform 
region and minimizes these unprecedented failure modes. 
The uniform flank wear width (VB) ranging between 200 
and 500 µm is thus considered minimum and maximum tool 
life, as presented by ISO 8688–1 standard.

Currently, the modern multi-layer-coated tools are widely 
applied to avoid rapid VB progression because they have 
a high hardness, elastic modulus, and plasticity [11], and 
thus replace uncoated or single-layered coated tools [12]. 
The multi-layer-coated inserts with fine-crystalline TiAlN 
primary layers are known for Inconel 718 face milling opera-
tion [13]. On top of that, cutting condition optimization is a 
key to achieve the highest tool performance [14]. Research 
suggested that parameters of the cutting speed, feed rate, and 
axial depth of cut (ADOC) significantly affect tool perfor-
mance in the Inconel 718 face milling operation [15]. Never-
theless, these parameters have synergistic effect to VB [16]. 
Owing to the lack of the physically based mathematical cor-
relation between the cutting parameters and VB, modulating 
these parameters via empirical methods is time-consuming 
and costly [17]. It is thus necessary to build up a model to 
predict VB progression in order to avoid unprecedented tool 
failure.

Indirect tool condition monitoring (TCM) uses sensors 
to collect tool wear data during machining [18, 19]. This 
data is then analyzed using techniques such as statistical 
analysis, wavelet transform, and time–amplitude analysis, 
to extract features that correlate with VB progression. For 
example, Gao et al. [20] used wavelet transform to convert 
force signals into more sensitive statistical features that 
accurately reflected wear states. On the other hand, direct 
TCM methods use machine and computer vision technol-
ogy to acquire and extract geometric, textural, and fractal 
features [21]. These features are then combined with pro-
cess parameters to develop predictive models, such as fuzzy 
logic, and regression analysis [22]. However, the combined 
effect of various process parameters on failure modes can 
result in multicollinear data, making it difficult for predic-
tive models to accurately extrapolate VB progression under 
unknown processing conditions and with limited training 
dataset. This can lead to classical models performing poorly 
or failing altogether during TCM.

Recently, deep learning (DL) and machine learning (ML) 
model are considered powerful methods to decipher and 
explore the complex underlying physics of the materials 
science and engineering [23], including quality prediction 
in manufacturing [24], effective charge in electromigra-
tion effect [25], dielectric constant and dissipation factor 
in low-temperature co-fired ceramics [26], and irradiation 
embrittlement in steel [27]. More relevantly, direct tool wear 

detection of physical vapor deposition (PVD)–coated carbide 
inserts by using a convolution neural network (CNN) model 
using image features is one of the approaches to characterize 
failure occurrence [28]. In pursuing a direct VB prediction 
during facing milling, Kaya et al. [29] applied an artificial 
neuron network (ANN) model to predict VB of single-lay-
ered PVD-TiAlN coated inserts (i.e., R390-11 T3 08 M-PL 
1030) using the input features of cutting speed, feed, ADOC, 
time, force, and torque of a 5-axis CNC milling center. The 
model achieved a correlation coefficient (R2) of 0.99, and a 
mean relative error of 5.42% in testing the validation data set 
not used in fitting the model. Although it is shown that ML 
method is applicable in predicting VB, the model was built 
based on data where a single-layer-coated tool was used. To 
the best of the authors’ knowledge, there have been very few 
studies in developing VB prediction model using ML meth-
ods for PVD-multi-layer-coated inserts during face milling 
of Inconel 718. On the other hand, the existing physically 
based models can neither decipher the underlying curvature 
of VB progression nor design better cutting conditions to 
minimize rapid tool failure [30]. Therefore, this research 
focuses on developing a ML model to extrapolate the VB 
progression of multi-layer PVD-TiAlN/NbN-coated carbide 
inserts during face milling of Inconel 718. Unlike the NN-
based models presented in previous research, the ML model 
used in this work was the Gaussian kernel ridge regression 
(GKRR) model, which is powerful in predicting unknown 
data with the information of the vicinity data in the train-
ing data set, to predict the VB progression. In addition, less 
hyperparameters are used in GKRR than conventional NN-
based models, and therefore would help to eliminate overfit-
ting issue over a small dataset and in the meantime speed up 
the training process. The present ML model was applied to 
design a new promising cutting condition which exhibited a 
good cutting efficiency. The model is thus applicable in both 
predicting and optimizing the tool performance for Inconel 
718 face milling real operation, demonstrating the poten-
tial contribution to the intelligent manufacturing systems 
according to industry 4.0.

2  Methodology

2.1  Materials and machining process

Inconel 718 was purchased from Jiangsu DZX Technology 
Company Co., Ltd, China. Surface milling of Inconel 718 
was carried out on a 14 kW DMC 835 V-DECKEL MAHO 
CNC vertical milling machine using the down-milling 
operation, where a 4-bar mineral oil–based (85% mineral 
oil and 15% additives) flood coolant was applied to minimize 
heat and friction on the tool-workpiece contact zone dur-
ing machining. Multi-layer PVD-TiAlN/NbN-coated inserts 
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manufactured by SECO Tools, Sweden, with a cutter desig-
nation of R220.53–0032-09-4A arbor mounting, were used 
in the machining process. Four inserts were installed onto 
the cutter for the machining process, as shown in Fig. 1. 
Details of Inconel 718, cutting tools, and machining process 
can be found in supplementary information (SI) Section S1.

2.2  Data collection

The flow chart of the research process is summarized in 
Fig. 1. The first step involved VB data collection during 
experiments. This step included a full factorial design of 
experiment (DoE), and VB measurement. Table 1 sum-
marizes the DoE applied in this research (see details in SI 
section S1). The cutting conditions varied in terms of cut-
ting speed  (Vc), feed rate ( ft ), and ADOC ( ap ). Data were 
collected at 200 to 400 mm cutting length intervals. After 
cutting with a given cutting length interval, the cutting tools 
were removed from the cutter and placed onto an optical 
microscope (Olympus U-MSSP4, BX53M, 1000 × magni-
fication, Tokyo, Japan) for VB measurement on the flank 
face of the cutting edge. VB of 500 µm was set as the fail-
ure criterion of tools based on the ISO 8688–1 standard to 
determine the maximum tool life in this research and it was 
also used in [31]. The experimental measurement error of 
VB was 0.58 µm. The machining process was stopped when 
any of the four cutting inserts reached or exceeded the cri-
terion of 500 µm. VB data used in the ML model training 

was thus the average value of the four inserts. The average 
and standard deviation of the measured VB was 223.6 and 
174 μm, respectively.

2.3  Machine learning modeling

The second step of the current research was to develop the 
ML model based on the VB data collected. The ML model 
used in this study was the GKRR model, which is a ridge 
regression–type ML model with a radial basis function, as 
shown in Eq. (1). Radial basis function determines the dis-
tance between feature vectors xi and xj:

where γ is a hyperparameter that represents the length scale 
between two given features. The loss function for training 
the GKRR ML model is shown in Eq. (2):

where Y  is the target feature, K is the Gaussian kernel, � 
is the coefficient, and � is the coefficient of the L2-norm 
penalty used to penalize the fitting coefficients. The input 
features were cutting speed, feed rate, ADOC, and cutting 
length. The output feature was VB. Table 2 tabulates the 
statistics of each feature. The data set used in the study con-
sists of the experimentally measured VB data as well as the 
boundary condition data. The boundary condition data was 

(1)kij = exp
�
−�‖xi − xj‖2

�

(2)Loss function = ||Y − K�||2
2
+ ��TK�

Fig. 1  Flow chart of the research methodology

937The International Journal of Advanced Manufacturing Technology (2023) 126:935–945



1 3

introduced in order to force the ML model to have correct 
performance at the conditions where VB should be zero. 
These conditions refer to the ones at zero cutting speed, feed 
rate, ADOC, and/or cutting length inputs. The total data 
were 740, which included 137 experimentally determined 
and 603 boundary condition data. The hyperparameters (ɑ, γ) 
of the ML model were optimized using a genetic algorithm 
(GA) with a custom cost function taking the leave out (LO) 
group cross-validation (CV) average root mean square error 

(RMSE) as the scoring metric. A set of data with the same 
cutting speed, feed rate, and ADOC was considered a group. 
In a given group, cutting length remained as variables. For 
instance, cutting speed = 80 m/min, feed rate = 0.07 mm/
tooth, and ADOC = 1 mm with cutting length ranging from 
400 to 1200 mm were one group. The model analysis and 
exploration were primarily performed with the MAterials 
Simulation Toolkit for Machine Learning (MAST-ML) [32], 
an open-source Python package with scikit-learn [33] library 
to automate ML workflows and model assessments. A 5-fold 
CV and cross-plot analyses were carried out to assess the 
model. The 5-fold CV test was repeated 20 times in this 
work, and the CV RMSE was given as the average of the 
fold-average RMSEs. Details of the CV methods and the 
cross-plot analyses can be found elsewhere [27].

2.4  Characterization of wear mechanism

When VB of a given inserts exceeded the failure criterion 
(i.e., 500 μm), tools were soaked in hydrogen chloride acid 
and placed in an ultrasonic bath for 15 min to remove the 
Inconel 718 adhesive particles and wear debris. Then, they 
were soaked again in acetone and placed in the ultrasonic 
bath for 10 min to remove the remaining acid on the tool’s 
cutting edge. Field-emission scanning electron microscope 
(FESEM, FEI Quanta 400 F, USA) was primarily used in 
observing dominant failure modes and wear mechanisms 
of the tools. Tool samples were mounted on metal stubs 
with carbon adhesive tape, oriented at 45° angle, allowing 
FESEM to view the insert's cutting edge.

3  Results and discussion

3.1  Machine learning model analysis

3.1.1  Cross plots

Model evaluation from full-fit (RMSE = 30.9  μm and 
R2 = 0.93) and 5-fold CV test (RMSE = 49.7  μm and 
R2 = 0.81) suggested that the model had some predictive 
ability (see details in SI section S2). We further evaluated the 
fitting quality by using cross-plot analysis, which visualizes 

Table 1  The full factorial design of experiment

Experimental 
run

Cutting speed 
 (Vc)
(m/min)

Feed rate  (ft)
(mm/tooth)

Axial 
depth of 
cut  (ap)
(mm)

1 40 0.07 0.5
2 40 0.07 0.75
3 40 0.07 1
4 40 0.1 0.5
5 40 0.1 0.75
6 40 0.1 1
7 40 0.13 0.5
8 40 0.13 0.75
9 40 0.13 1
10 60 0.07 0.5
11 60 0.07 0.75
12 60 0.07 1
13 60 0.1 0.5
14 60 0.1 0.75
15 60 0.1 1
16 60 0.13 0.5
17 60 0.13 0.75
18 60 0.13 1
19 80 0.07 0.5
20 80 0.07 0.75
21 80 0.07 1
22 80 0.1 0.5
23 80 0.1 0.75
24 80 0.1 1
25 80 0.13 0.5
26 80 0.13 0.75
27 80 0.13 1

Table 2  The statistics of each 
feature used in the present study

Feature Maximum Minimum Average Standard 
deviation

Unit

Flank wear (VB) 674 0 41.4 114.5 μm
Cutting speed  (Vc) 100 0 41.0 27.5 m/min
Feed rate  (ft) 0.15 0 0.07 0.05 mm/tooth
Axial depth of cut  (ap) 1.5 0 0.6 0.4 mm
Cutting length (L) 5400 0 1179 1199 mm
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the relationship between multi-variables. Figures 2, 3, and 
4 show the cutting length cross plots at cutting speed of 40, 
60, and 80 m/min, respectively. Values in parenthesis, i.e., 
(X,Y,Z), shown in the each plot represents cutting speed, feed 
rate, ADOC, respectively, which were held as constant vari-
ables when performing the cross-plot analysis. For instance, 
(40, 0.07, 0.5) shown in Fig. 2 represents that cutting speed 
of 40 m/min, feed rate of 0.07 mm/tooth, and ADOC of 
0.5 mm were held and we observed VB profile in terms of 
cutting length. The scattered point and the solid line in the 
plot represent the measured VB data and ML predicted VB 
data, respectively.

In general, all the predicted data agreed well with the 
measured one. At the lowest cutting speed of 40 m/min and 
the lowest feed rate of 0.07 mm/tooth (Fig. 2), the VB profile 
exhibited three stages—(1) rapid VB formation due to break-
in of the tools when cutting initializes, (2) a slow increase 
in VB in the middle of the cutting length due to minimum 
plastic deformation and wear mechanisms, and (3) a rapid 

increase in VB due to unprecedented wear mechanisms as 
the tools approach the failure criteria. This profile seems 
consistent with the literature finding that flank wear evolves 
in three stages, namely early rapid wear, uniform wear, and 
failure region [10]. While increasing the feed rate from 0.07 
to 0.13 mm/tooth, the abovementioned stage 2 gradually 
vanished. In this case, VB accelerated into the rapid failure 
region after the initial break-in, indicating a high tool dete-
rioration rate caused by severe wear mechanisms and failure 
modes. Similar VB profiles are found in Figs. 3 and 4. When 
the cutting speed was increased to 80 m/min (Fig. 4), all the 
VB profiles exhibited the type in which only stage 1 and 
stage 3 existed even at the lowest feed rate. These profiles 
suggest that face milling of Inconel 718 at such a high speed 
would cause severe unprecedented wear mechanisms and 
failure modes on the tool’s cutting edge, which was not fea-
sible for real applications. This viewpoint is consistent with 
literature findings, but this is the first time that a quantitative 
VB profile of PVD-TiAlN/NbN-coated carbide tools was 

Fig. 2  Cutting length cross plot at cutting speed = 40 m/min. The error bar shown in the plots was the standard deviation of VB from the four 
inserts. The red dotted line represents VB criteria of 500 μm based on ISO 8688–1 standard
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possible in terms of the multiple cutting parameters. A more 
detailed mechanistic study of these VB profiles is pursued 
in our ongoing projects.

3.1.2  VB contour diagram

It has been pointed out that when ADOC was less than 
0.75 mm, a more localized chipping on the depth of cut 
(DOC) line was caused due to a high shear force on the 
precipitation-hardened layer. It is thus we selected a new 
ADOC condition at 0.9 mm to plot the VB contour dia-
gram at various cutting speed, feed rate, and cutting length. 
Figure 5 a to f show the VB contour diagrams at cutting 
speed of 30, 40, 50, 60, 70, and 80 m/min, respectively. The 
red hollow circle represents VB < 500 μm at the given cut-
ting condition. The black solid line represents the cutting 
time in the unit of minutes. The blue solid line represents 
the removed depth from the cutting process in the unit of 
millimeter. The convenience of the VB contour diagram is 

to visualize the promising cutting condition space where 
the minimum VB, minimum cutting time, and maximum 
removed depth could be achieved. For instance, at ADOC of 
0.9 mm, cutting speed of 30 m/min, and feed rate of 0.1 mm/
tooth, removed depth of 50 mm with cutting time of ca. 
60 min was required and VB was less than the 500 μm cri-
teria. On contrary, at ADOC of 0.9 mm, cutting speed of 
80 m/min, and feed rate of 0.05 mm/tooth, removed depth 
of < 15 mm and VB exceeded the 500 μm criteria. In the 
following section, we will discuss a promising designed cut-
ting condition from this contour diagram and performed an 
experiment for validation.

3.1.3  Promising cutting condition design, validation, 
and its wear mechanisms

Based on the contour property plot shown in Fig. 5, we 
designed a promising cutting condition at cutting speed 
of 40 m/min, feed rate of 0.08 mm/tooth, and ADOC of 

Fig. 3  Cutting length cross plot at cutting speed = 60 m/min. The error bar shown in the plots was the standard deviation of VB from the four 
inserts. The red dotted line represents VB criteria of 500 μm based on ISO 8688–1 standard
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0.9 mm because the ML model predicted that cutting at 
this condition can yield a high tool performance, achiev-
ing the cutting depth of 43 mm within 50 min before VB 
reached 500 μm. A parallel experiment was performed to 
validate the designed cutting condition. Figure 6 shows the 
VB progression with respect to the cutting length diagram. 
The scatted points are the measured VB while the solid line 
is the ML predicted VB. There were some discrepancies 
between the measured and the predicted data. Before the 
cutting length of 3000 mm, the prediction was underesti-
mated, while after that, the prediction was overestimated. 
It was until cutting length of 4400 mm that the prediction 
agreed well with the measured one. Although there was an 
error of ca. 100 μm at cutting length of 4000 mm, overall, 
these errors were considered minor. In general, the model 
could capture the VB progression profile at an unknown 
cutting condition. The model could also capture the correct 
cutting length to reach the 500 μm criteria. We believed 
the model was able to capture this condition because in 

the vicinity there was data at cutting speed of 40 m/min, 
feed rate of 0.07 mm/tooth, ADOC of 1 mm, and cutting 
length of 4400 mm. The measured VB, removed depth, 
and time at this condition were 540.8 μm, 44 mm, and 
51.7 min, respectively. After the experimental validation, 
we confirmed that the newly designed cutting condition 
yielded a removed depth of 42 mm with 47 min and VB 
reached 551 μm.

Figure 6 shows that there were also three stages of VB 
progression from low to high cutting length. These three 
stages may attribute to early rapid wear, uniform wear, 
and failure region. It seems thus straightforward to further 
study the wear mechanism underlying the design cutting 
condition. Figure 7 shows the microstructure of the tool’s 
cutting edge after facing milling up to 4600 mm cutting 
length. Figure 7a shows the optical micrograph of the 
tool exhibiting the uniform flank wear at cutting length 
of 1200 mm. When the cutting length reached 4000 mm, 
a progressive chipping occurred in the failure region as 

Fig. 4  Cutting length cross plot at cutting speed = 80 m/min. The error bar shown in the plots was the standard deviation of VB from the four 
inserts. The red dotted line represents VB criteria of 500 μm based on ISO 8688–1 standard
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shown in Fig. 7b. It was attributed to synergistic effect of 
abrasion and cyclic adhesion on the tool’s cutting edge 
[11]. BUE or built-up layer (BUL) formation accelerated 
progressive chipping as BUE got plucked by the subse-
quent cut [34], as shown in Fig. 7c and d, when the cut-
ting length reached 4400 and 4600 mm, respectively. The 

small chip load also reduced the cutting force and cyclic 
adhesion by BUE or BUL formation. Figure 7 e and f show 
secondary electron image (SEI) of the dotted-line region 
in Fig. 7c and d, respectively. The microstructure revealed 
that the localized chipping in the failure region was caused 
by abrasion and cyclic adhesion.

At ADOC of 0.9 mm, the tools cut a large workpiece 
depth free from precipitation hardening layer, thereby 
minimizing the severe abrasion that caused progressive 
chipping and mechanical cracks [34]. In addition, a low 
cutting speed also caused low temperature and stresses, 
reducing chip deformation, and producing a thin BUL layer 
that stuck to the flank wear region [35]. Moreover, BUL 
at the lowest speed experienced negligible precipitation 
hardening effect due to low cutting temperature. Therefore, 
cutting at a low speed of 40 m/min led to a low adhesive 
strength that caused less tool particles removed together 
with the BUL in the subsequent passes, minimizing chip-
ping and flaking of the tool’s flank face [15]. On the other 
hand, the lowest feed rate, less than 0.08 mm/tooth, mini-
mized the chip load that caused high friction force, rubbing 
action, and abrasion on the tool’s cutting edge [36]. Even 
though the present ML model was not informed by any 
microstructure information, the fact that the model could 
predict a promising cutting condition in minimizing the 
rapid VB progression was quite remarkable. It is also worth 
noted that the present study used only a small data set, 
including only 137 experimentally determined data. The 

Fig. 5  Cutting length vs. feed rate plot at ADOC of 0.9 mm and cut-
ting speed of (a) 30, (b) 40, (c) 50, (d) 60, (e) 70, and (f) 80 m/min. 
The red hollow circle represents VB < 500  μm at the given cutting 

condition. The black solid line represents the cutting time in the unit 
of minutes. The blue solid line represents the removed depth from the 
cutting process in the unit of millimeter

Fig. 6  Validation at the cutting condition of ADOC = 0.9  mm, feed 
rate = 0.08  mm/tooth, and cutting speed = 40  m/min. The red solid 
circle represents the measured VB which did not include in the train-
ing data set. The error bar shown in the plots was the standard devia-
tion of VB from the four inserts. The black solid line represents the 
ML predicted VB
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success of the cutting condition design suggests the power 
and potential in using ML modeling method to predict and 
optimize VB progression during face milling of Inconel 
718 for real applications.

4  Conclusion

This research employed the GKRR ML method to develop 
the VB prediction model for face milling Inconel 718 using 

Fig. 7  Optical micrograph of TiAlN/NbN-coated carbides inserts at 
40 m/min, 0.08 feed/tooth, and 0.9 mm ADOC after cutting length of 
(a) 1200, (b) 4000, (c) 4400, and (d) 4600 mm. Secondary electron 

images of the dotted-line region in (c) and (d) showing the localized 
chipping caused by abrasion and cyclic adhesion after cutting length 
of (e) 4400 and (f) 4600 mm
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TiAlN/NbN-coated carbide inserts with the input feature 
of cutting speed, feed rate, ADOC, and cutting length. The 
model showed a RMSE of 30.9 (49.7) μm and R2 of 0.93 
(0.81) in full fit (5-fold CV test). The statistics along with 
the cross-plot analyses suggested that the model had some 
predictive ability. The model captured the correct VB profile 
evolution although it was not informed by any microstructure 
information. These profiles were consistent with the exist-
ing findings which qualitatively suggest the early rapid wear, 
uniform wear, and failure regions, whereas this study provides 
a quantitative VB progression prediction. The present ML 
model was further applied to extrapolate to unknown cutting 
conditions. A new promising condition at cutting speed of 
40 m/min, feed rate of 0.08 mm/tooth, and ADOC of 0.9 mm 
was designed. The designed cutting condition was experimen-
tally validated. When the cutting length reached 4000 mm, a 
progressive chipping occurred in the failure region based on 
the microstructure analysis. The designed condition yielded 
a removed depth of 42 mm for 47 min with VB of 551 μm. 
The measured and predicted VB agreed well with each other. 
The complexity of the present ML model primarily includes 
predicting VB in a high dimensional space where the practical 
processing parameters of cutting speed, feed rate, ADOC, and 
cutting length were used. Even though the present ML model 
was only informed by the cutting conditions with a small 
amount of data, it can predict correct VB, and deciphering 
its complex physics. This model is thus believed applicable 
in real face milling operation of Inconel 718, demonstrating 
the potential contribution to the intelligent manufacturing 
systems, including tool performance prediction, control, and 
optimization, according to industry 4.0.
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