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Abstract
Accurate prediction of the machining quality such as the surface roughness is one of the main objectives of the intelligent
manufacturing research. In this study, we investigate the feasibility of combining milling stability analysis and a back
propagation (BP) neural network model to predict the surface roughness of aerospace aluminum alloy 7075Al in high-
speed precision milling. The difference between the critical depth of cut obtained from the milling stability lobe diagram
(SLD) and the actual depth of cut (termed the “chatter stability feature”) was used as a critical input variable of the neural
network model, thereby improving its prediction performance. It is demonstrated that the proposed chatter stability feature
has a strong correlation with the surface roughness, making it an information-rich input feature of the prediction model. The
experimental results show that the prediction accuracy can be improved by 7.8% compared with a neural network model
that only uses the cutting parameters (i.e., spindle speed, feed rate, depth of cut, and feed rate per tooth) as predictors. In
addition, univariate and multivariate sensitivity analysis results suggest that the performance of the proposed approach is
robust to errors in the SLD measurements. Compared to conventional methods which only consider the cutting parameters,
an improvement in prediction accuracy can be expected with up to 10% errors in modal parameters.

Keywords Precision milling · Surface roughness · Chatter stability analysis · SLD · BP neural network

1 Introduction

High-speed milling and precision milling are widely used
in manufacturing to satisfy the increasing requirements
imposed on machined parts. Surface roughness is an
important measure of the surface finish quality and has

� Jianfeng Xu
jfxu@hust.edu.cn

Long Bai
bailong@hust.edu.cn

Xin Cheng
m202070537@hust.edu.cn

Qizhong Yang
m202070502@hust.edu.cn

1 State Key Laboratory of Digital Manufacturing Equipment
and Technology, School of Mechanical Science
and Engineering, Huazhong University of
Science and Technology, Wuhan, 430074, China

2 Wuhan Digital Design and Manufacturing Innovation Center
Co., Ltd, Wuhan, 430074, China

a significant impact on different aspects of a machined
product, including wearing, surface friction, and the ability
to resist fatigue and heat transmission [1]. 7075 aluminum is
widely used in the aerospace, transportation, and machinery
manufacturing industries due to their low density, high
specific strength, and good workability [2]. Due to the
importance of the surface roughness of the machined
parts, its prediction is an active research topic in the
intelligent manufacturing community. There have been lots
of analytical methods to evaluate the surface roughness
of milling. For example, Quintana et al. [3] established a
theoretical surface roughness model for ball end milling.
They studied the influence of the geometric characteristics
of ball end mill cutter on the surface roughness generation
and analyzed the effect of the machining parameters on
material removal rate. Bachrathy et al. [4] predicted surface
errors based on the motion of the helical tool, in which
they considered the influence of the tool parameters.
However, since it is difficult to consider all the relevant
factors affecting the surface roughness in a single physical
model, researchers also explored the use of deep learning
and neural network models for improving the prediction
accuracy. Karayel [5] utilized the cutting speed, feed rate,

/ Published online: 10 March 2023

The International Journal of Advanced Manufacturing Technology (2023) 126:1347–1361

http://crossmark.crossref.org/dialog/?doi=10.1007/s00170-023-11133-6&domain=pdf
mailto: jfxu@hust.edu.cn
mailto: bailong@hust.edu.cn
mailto: m202070537@hust.edu.cn
mailto: m202070502@hust.edu.cn


and depth of cut to train an artificial neural network
(ANN) model and used it to control the surface roughness
of the workpiece. Asiltürk et al. [6] combined the ANN
and multiple regression methods to predict the surface
roughness of AISI1040 under different combinations of
cutting parameters. Bajić et al. [7] established a surface
roughness model and optimized the cutting parameters
for face milling. Groove [8] studied the effects of three
factors–feed rate, tool nose radius, and cutting edge angle–
on surface roughness. Lela et al. [9] adopted regression
analysis, support vector machine, and Bayesian neural
network to analyze the effects of cutting parameters on the
surface roughness in end milling. As observed, the above
research mainly focused on the use of static features, such
as cutting parameters and cutter information, for predicting
the roughness of the machined surface.

The use of features extracted from dynamic process
data for predicting the machining quality of products can
also be found in the literature. Abu-Mahfouz et al. [10]
used the summary statistics of the vibration signal, such
as the mean, standard deviation, kurtosis, and skewness, to
predict the surface roughness of a workpiece in end milling.
Tangjitsitcharoen et al. [11] developed a practical model to
realize in-process prediction of surface roughness in ball-
end milling by utilizing the dynamic cutting force ratio and
processing parameters. Lou et al. [12] proposed a statistical
model for predicting surface roughness using a neuro-fuzzy
system and adopted an accelerometer to measure vibrations
induced by cutting forces during milling operations. As a
classic deep learning architecture, BP neural networks were
shown previously to achieve satisfactory performance on
surface texture prediction. Pan et al. [13] adopted BP neural
networks to predict the surface roughness during grinding
and studied the effect of different activation functions on
the prediction accuracy. Markopoulos et al. [14] utilized BP
and RBF neural networks with different training algorithms
to study the prediction accuracy of the surface roughness
in end-milling. Kao et al. [15] adopted multivariate linear
regression and generalized regression neural networks to
establish the relationship between the cutting forces and
surface roughness.

The roughness prediction accuracy can be improved
by considering real-time process data such as force and
vibration. However, in an actual milling process, installing
many sensors for online monitoring can be problematic
considering the practical limitations of the machine tool
and workpiece. In addition, training a model using a large
amount of data collected during the milling process is time-
consuming and prone to overfitting. On the other hand, the
completeness of information contained in the training data is
critical to the prediction accuracy when building a predictive
model. In the absence of dynamic sensor signals, the
commonly used cutting parameters and cutter information

do not account for the structural stiffness characteristics
of the machine tool or the contact characteristics between
the cutter and workpiece. For this reason, researchers have
also shown significant interest in studying milling dynamics
and milling stability lobe diagram (SLD). Quintana et al.
[16] divided vibrations in machining into free, forced, and
self-excited vibrations and proved that strong vibrations
that occur in machining processes can seriously affect the
machining accuracy and surface quality. Özşahin et al. [17]
proposed a new method using revised bearing parameters to
determine the tool point frequency response function (FRF)
and used the accurate stability diagrams to avoid chatter
vibrations. Wang et al. [18] investigated the harmful effects
of self-excited regenerative chatter on workpieces and
machine tool structures by studying the interaction between
machine tool and thin-walled workpieces. Altintas et al. [19]
established a classic linear milling dynamics model based
on the regeneration effect and solved the milling SLD using
a zero-order approximation method. Modal impact testing
is a typical approach for obtaining the FRF of a tool-nose
point [20], and Nguyen et al. [21] proposed a statistical
approach to predict the pose-dependent FRFs for robotic
milling.

Although current research on milling dynamics has
covered many aspects to meet different practical needs, the
quantitative relationship between the chatter stability and
milling quality has not been fully investigated (particularly,
when chatter has not yet occurred). According to the theory
of the SLD and milling dynamics, the critical depth of
cut (for a given spindle speed) is related to the modal
parameters and the milling force coefficients, which define
the dynamic characteristics of the milling system. In this
study, we improved the vibration measurement in a modal
experiment for high-speed precision milling to obtain more
accurate FRFs. Based on this result, we introduce a new
feature calculated from the SLD that considers the physical
properties of the entire milling system, and hypothesize that
the roughness prediction accuracy can be improved by using
this feature. Even for practical industrial settings in which
process data such as cutting forces and vibration signals are
unavailable, the newly introduced chatter stability feature
can still be used in combination with a simple back
propagation (BP) neural network for fast online prediction
of the roughness. The remainder of this paper is organized as
follows. Section 2 introduces SLD and BP neural networks.
The experimental work performed to acquire the data
needed for the SLD calculations and the data used as the
training and test datasets of the BP neural network are
described in detail in Section 3. In Section 4, we compare
the performance of the different methods on experimental
data and demonstrate that the prediction accuracy can be
improved by adopting the proposed approach. Finally, we
conclude the paper in Section 5.
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2Methodology

2.1 Milling chatter stability analysis

As shown in Fig. 1, the milling cutter can be modelled as
a linear system with two orthogonal degrees of freedom.
Based on this model, the average cutting force per tooth
cycle can be obtained as [19]:

F̄x = −Nap

4
Krcfz − Nap

π
Kre, (1)

F̄y = Nap

4
Ktcfz + Nap

π
Kte, (2)

where N is the number of teeth of the milling cutter, ap

is the depth of cut, and fz = f/nN (n is the spindle
speed) is the feed rate per tooth. The tangential (Ktc, Kte)
and radial (Krc, Kre) milling force coefficients (denoted
with the subscript “c”) and edge force coefficients (denoted
with the subscript “e”) can be calculated from Eqs. (1)
to (2) by performing milling experiments with different
combinations of cutting parameters and measuring the
average milling force in each experiment.

Modal impact tests are often conducted to analyze the
structural behavior of machining systems under specific
installation conditions. The FRF of the structure can be
measured using a modal impact test from which the modal
parameters are identified, including the natural frequency,
damping ratio, stiffness, and modal shape. A schematic of
the hammer vibration test is shown in Fig. 2.

According to the chatter stability theory proposed by
Altintas et al. [19], the critical depth of cut and the
corresponding spindle speed can be calculated using the

Fig. 1 Two-degree-of-freedom milling dynamics model

Fig. 2 Schematic of the modal impact test

structural parameters of the machine tool-cutter system and
milling force coefficients as follows:

aplim = −2π�R

NKtc

[
1 +

(
�I

�R

)2
]

, (3)

where �I and �R are the imaginary and real parts,
respectively, of the eigenvalues of the characteristic
equation of the machine tool-cutter system. For a given
chatter frequency fc, the corresponding spindle speed n (in
r/min) can be calculated by determining the tooth period T

(in s), that is,

n = 60/(NT ), (4)

where

T = 1

fc

(π − 2θ + 2kπ). (5)

In Eq. (5), k is the number of lobes and θ is the rotation
angle of the milling cutter.

The milling force model and dynamic milling model
can be established given that the transfer function of the
machine tool-cutter system, cutting parameters, and milling
force coefficients are known. The critical depth of cut and
the corresponding spindle speed can then be calculated
following an analysis of the chatter stability, as discussed
above.

2.2 BP neural networkmodel

The BP neural network is a feedforward neural network
that has a multilayer structure and works by an error
backpropagation algorithm [22]. Owing to its simplicity,
fast convergence speed, and good prediction performance
when dealing with nonlinear problems, it is widely used
in the field of intelligent manufacturing [23]. As shown in
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Fig. 3, the BP neural network algorithm mainly includes two
processes: forward propagation and error back-propagation.
Considering the three-layer BP neural network in Fig. 3
as an example, the forward propagation procedure can be
expressed as:

Hj = f1

(
n∑

i=1

wijXi − b
(j)
h

)
, j = 1, 2, . . . , l, (6)

Yk = f2

⎛
⎝ l∑

j=1

wjkHj − b(m)
o

⎞
⎠ , k = 1, 2, . . . , m. (7)

where Xi represents the input data, and Hj and Yk are
the outputs of the hidden layer and the final predicted
value, respectively. wij and wjk are the weights between the
input and hidden layers and the hidden and output layers,
respectively, and b

(j)
h and b

(m)
o are the corresponding biases.

f1 and f2 are the activation functions of the hidden and
output layers, respectively.

The prediction error can be calculated as Em =
1
2

∑m
k=1(Yk − Tk)

2 (Tk is the true value), which can then
be used to update the network weights and biases (i.e.,
back-propagation) as follows:

w+
ij = wij − η

∂Em

∂wij

, (8)

b
(j)+
h = b

(j)
h − η

∂Em

∂b
(j)
h

. (9)

In Eqs. (8)–(9), w+
ij and b

(j)+
h are the weights and biases,

respectively, after the update. ∂Em

∂wij
and ∂Em

∂b
(j)
h

are the error

gradients against the weights and biases, respectively, and η

is the learning rate.

Table 1 Specifications of the tungsten carbide milling cutter used in
experiments

Parameters Value

Radius of cutter blade 4 mm

Length of cutter blade 12 mm

Total length of cutter 50 mm

Radius of cutter handle 4 mm

Number of cutter blade 4

Helix angle 45◦

3 Experiments and data collection

3.1 Modal impact test

In the modal impact test performed in this study, a
cylindrical flat-bottom milling cutter was installed on the
tool holder, and the tool overhang length was set to 20 mm.
The cutter parameters are listed in Table 1. Owing to the
small size of the cutter used in the experiments, vibration
sensors could not be installed at the cutter tip. Note that
installing a vibration sensor at the tip of the cutter using an
additional device would also affect the structural properties
of the original machine tool-cutter system. Considering that
the rigidity of the cutter-toolholder system is smaller than
that of the spindle and the vibration is more intense, the
vibration sensor that should have been installed at the cutter
tip point is often installed on the plane where the tool holder
and spindle are connected.

To address this issue, two vibration acceleration sensors
(DYTRAN 3263A2, USA) were arranged in the same plane,
where the cutter-toolholder combination and spindle were
connected in an orthogonal direction. The input force and
output vibration signals were measured and transmitted
to the PC using a vibration and noise testing system

Fig. 3 The three-layer BP
neural network structure
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(LMS Test Lab & LMS SCADAS III, SIMENS, Germany).
Figure 4 shows the experimental configuration of the modal
impact test. Two contact accelerometers were mounted in
the X- and Y-axis directions, respectively, and they were
attached to the milling cutter shank with glue. In each
hammering experiment, the hammer struck five times along
the direction in which the vibration accelerometer was
installed (X or Y), and the FRF of the corresponding
direction was obtained.

Figure 5a and 5b show the FRFs in the X- and Y-
directions of the cutter tip point measured in one test. The
modal parameters of the cutter-toolholder-spindle system
were calculated by averaging the FRFs obtained from three
separate experiments. Because the toolholder system is a
revolving body, its structure in the X- and Y-directions is
symmetrical, and the obtained FRFs shown in Fig. 5 can
also reflect this. The main frequencies corresponding to the
positions where the amplitude peaks appeared were also
shown to be similar in these results. The natural frequency
and damping ratio of the cutter-toolholder system in the
main mode can be obtained based on the FRF results. The
modal parameters obtained at two response points A and B
(see Fig. 4) in each of the three hammering experiments in
the X- and Y-directions are summarized in Table 2.

Considering that the above method adopted a compro-
mised vibration sensor arrangement owing to the size limita-
tion of the milling cutter, the obtained structural parameters
are characteristics of the entire system, which consists of
the tool nose point and the connection between the tool-
holder and the spindle. However, only the vibration response
of the tool nose point is needed for chatter stability analy-
sis, and in this study, a pair of Doppler optical vibrometers
(PNV-RD-AVDI, HoloBright, Singapore) was used for its

measurement. As shown in Fig. 6, the contact vibration sen-
sors were replaced by two non-contact Doppler vibrometers,
which can avoid the size constraint of the milling cutter. The
two Doppler vibrometers were placed in the X and Y direc-
tions, respectively. The distances between the vibrometers
and the milling cutter were approximately 40 cm, and focus
was achieved at the milling cutter tip by adjusting the focal
length. Based on the experimental configuration shown in
Fig. 6, the modal parameters can be obtained by following
the procedure described in Section 2.

Because the laser vibrometer can only measure the
vibration in one direction, the modal parameters of the
cutter tip were obtained in separate experiments for the X-
and Y-directions. As shown in Fig. 7, the FRFs in these
two directions of the cutter tip are again similar, and the
main frequencies of the responses can be identified from
the mode shapes. By adopting this improved experimental
design, the difficulty in installing the sensor on the small
tool tip and the need to analyze the complex coupling
behavior of the cutter nose point and vibration sensor can be
addressed. The stiffness of the milling cutter was calculated
based on the cantilever beam theory [24], and the obtained
modal parameters are listed in Table 3. By comparing the
results of Tables 2 and 3, it can be seen that there is
a considerable difference between the modal parameters
(especially the main frequencies) measured using contact
accelerometers and non-contact vibrometers. Because the
contact accelerometers were attached on the tool-holder
(instead of the small tool tip) due to its size constraint, the
results of the contact measurements are believed to be less
accurate. As will be discussed in Section 4, the prediction
accuracy can be improved by adopting SLDs that are more
accurate.

Fig. 4 Modal impact test
configuration. ( Hammer with
force sensor; and :
Vibration acceleration sensors in
the X- and Y-directions; LMS
equipment.)
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Fig. 5 FRFs of the cutter-toolholder system. (a X-direction; b Y-direction)

3.2 Milling dynamics analysis

It is necessary to collect milling force data to calculate
the milling force coefficients using Eqs. (1)–(2). We
performed trial cutting experiments under two sets of
different cutting parameters, and the cutting forces shown
in Fig. 8 were measured using a dynamometer (Kistler
9129AA, Switzerland) during these experiments. The
cutting parameters can be arbitrarily selected in trial cutting
experiments without considering the process conditions of
the actual parts. The cutting parameters and milling force
coefficient results are listed in Table 4. The milling SLDs
of the cutter-toolholder and milling cutter tip point can be
obtained by combining the milling force coefficients and
modal parameters of the machine tool-cutter system based
on the analysis in Section 2.1, and the results are shown in
Fig. 9.

After obtaining the SLD, the difference between the
depth of cut ap adopted in an actual milling experiment and
the critical depth of cut aplim at the corresponding spindle

speed is calculated as a new input feature of the neural
network model as follows:

�a = aplim − ap. (10)

Based on the physical interpretation of the milling
SLD, it can be concluded that as the actual depth of cut
ap approaches the limit depth of cut aplim, the milling
status changes from “stable” to “chatter.” While it is well
understood that chatter vibration qualitatively affects the
machining quality, we hypothesized in this study that
�a also has a quantitative impact on roughness even
for cases in which chatter has not actually occurred.
As will be discussed below, this chatter stability feature
can effectively improve the prediction accuracy of neural
network models. The important implications of the newly
introduced predictor of roughness can be summarized as
follows. First, the performance of the predictive model can
be improved compared to traditional approaches which only
make use of the cutting parameters. Second, �a can still be

Table 2 Cutter-toolholder
modal parameters (main
frequency fc and damping ratio
ξ ) obtained in three hammering
experiments in the X- and
Y-directions

fc (Hz) ξ

Direction Test No. Point A Point B Point A Point B Mean of fc (Hz) Mean of ξ

X 1 86.2874 86.1849 1.84% 1.79% 86.3087 1.40%

2 86.4192 85.9878 1.23% 1.55%

3 86.5354 86.4373 0.98% 1.02%

Y 4 85.9953 86.0024 2.01% 1.98% 85.9641 1.94%

5 86.1776 86.7343 1.68% 1.99%

3 84.9985 85.8767 2.12% 1.76%
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Fig. 6 Experimental configuration of the non-contact vibration
measurement. ( : Milling cutter; : Vertically arranged Doppler
vibrometers; : Hammer vibration test; : Data acquisition system.)

used as a chatter stability feature even if process data such
as cutting force and vibration are unavailable in practical
industrial settings. Third, the computational burden of the
proposed method is significantly reduced compared to the
neural network models that train directly on milling force
and vibration data.

3.3 Milling experiments and data preparation

To prepare the training and test data for the predic-
tive model, aluminum alloy 7075Al workpieces were
machined on a Mikron vertical five-axis machining cen-
ter. The size of the workpiece was 110×90×10 mm3,
and the size of the machined slots was 13×4 mm2 (see
Fig. 10).

Table 3 Experimentally measured modal parameters (main frequency
fc, damping ratio ξ , and stiffness K) of the milling tool tip

Direction fc (Hz) ξ (%) K (N/m)

X 373.842 4.661 9.425×107

Y 392.373 3.751 9.425×107

The cutting parameters used in the milling experiments,
including spindle speed, feed rate, depth of cut, and feed per
tooth, are summarized in Table 5. Three workpieces (each
containing 70 slots) were machined, which gave 70×3=210
experimental data samples in total. After the milling
experiments were completed, a white light interferometer
(Zygo Newview 9000, USA) was used to measure the
roughness of the machined surface of the slots and calculate
the ground-truth data for training the neural network model,
as shown in Fig. 11. In this study, the arithmetic mean
deviation of the contour (Ra) was used as a measure of
machined surface roughness. The entire surface area of the
slot was scanned, and Ra of the full-length topography
of the machined feature was measured. The critical depth
of cut corresponding to different spindle speeds can be
calculated using the previously calculated milling SLD. We
then calculated the difference between the critical depth of
cut and actual depth of cut (i.e., the chatter stability feature).
Examples of the experimental dataset containing both the
input and target variables are listed in Table 6.

The roughness measurement results showed that 14 out
of 210 machined slots had significantly higher Ra values
than the rest, which are believed to be caused by chatter.
As our main focus is to predict the surface roughness when
the machining system is still in the “stable” state (it is
desirable to avoid chattering in practical situations), these

Fig. 7 FRFs of the milling cutter nose point. (a X-direction; b Y-direction)
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Fig. 8 Milling forces measured under specific cutting parameters, where a and b are milling forces of X- and Y-directions in test No.1; c and d
are milling forces of X- and Y-directions in test No.2

outliers were removed from the experimental dataset. The
remainder of the samples were then divided into training
and test sets, and the numbers of samples used for training
and performance evaluation (i.e., test) were 138 (70%) and
58 (30%), respectively.

4 Results

To demonstrate the performance improvement achieved
by adopting the proposed approach, we trained three
different BP neural network models and compared their
prediction performances. More specifically, model 1 only

used traditional cutting parameters, including the spindle
speed, feed rate, depth of cut, and feed per tooth. In
addition to these static predictors, the input data of model
2 also contained the chatter stability feature �a (Eq. (10))
obtained via modal impact tests with contact vibration
sensors (Fig. 4). In comparison, model 3 was trained
using the static features as well as the chatter stability
feature obtained using the non-contact measurement method
proposed in this study (Fig. 6). Detailed information
regarding the BP neural network models adopted in this
study, including the network structure, loss function, and
optimizer, can be found in Table 7. The input and output
variables of models 2 and 3 are also shown in Fig. 12. The

Table 4 Cutting parameters (spindle speed n, feed rate f , depth of cut ap , and feed rate per tooth fz) used in the trial cutting and the obtained
milling force coefficients

Test No. n (rpm) f (mm/min) ap (mm) fz (mm/z) Ktc (N/mm2) Krc (N/mm2)

1 7000 300 0.2 0.0107 1482 889

2 8000 300 0.2 0.0094
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Fig. 9 Milling SLDs of the cutter-toolholder system and cutter tip

performance of the three models for roughness prediction
was evaluated quantitatively in terms of the prediction
accuracy, which is defined as:

accuracy = 1 − 1

N

N∑
i=1

∣∣∣∣yi − ŷi

yi

∣∣∣∣ , (11)

where N is the number of samples, yi is the experimentally
measured roughness value Ra , and ŷi is the prediction
result given by the BP neural network model. The iteration
diagrams of the accuracy and loss functions of the three
models are shown in Fig. 13a–c, and Fig. 14 shows the

Fig. 10 Milling experiments (wet cutting) carried out on a Mikron
vertical five-axis machining center. ( : Workpiece with the machined
features.)

scatter plot (the predicted values versus the true values) of
model 3 obtained on the test set. It can be observed from
Fig. 13 that model 3 has significantly improved the accuracy
of prediction with the addition of the chatter stability feature
�a introduced in this study, when other factors of the
experiment remain the same.

Table 8 summarizes the prediction accuracy of the
three models for the training, validation, and test sets
(10% of the samples were used for validation during
training). It can be observed from Table 8 that model
1 had an accuracy of 84.34% on the training set, and
its accuracy was only 78.39% on the validation set. The
neural network models built with the addition of the
chatter stability feature improved the prediction accuracy
for both the training and validation sets. The training
accuracy of model 2 increased to 87.32% and its validation
accuracy was 82.99%. Importantly, model 3 achieved the
highest training accuracy of 93.16% and the validation
accuracy reached 88.59%, confirming the effectiveness of
the proposed approach. For all predictive models, the test set
accuracy was close to the validation accuracy, showing that
the trained neural network models were generalizable. As
shown in Fig. 15, the prediction errors of the three models
were mainly distributed between −0.06 and 0.06 μm, and
the prediction errors of model 3 had the smallest variance. In
addition, the maximum prediction errors of models 1 and 2
exceeded 0.09 μm, whereas the maximum prediction error
of model 3 was within 0.09 μm, suggesting that model 3
can effectively reduce large prediction errors.

The results in Table 8 suggest that an accurate SLD is
desirable for obtaining satisfactory prediction performance.
To further study the influence of the accuracy of the
SLD, univariate and multivariate sensitivity analysis were
performed on the modal parameters based on a uniform and
Sobol sampling scheme [25], respectively. Considering that
the spindle, tool, and the tool holder are all rotary structures,
the mean values of the main frequency, damping ratio, and
stiffness in the X- and Y-directions (see Table 3) were
calculated and considered as the benchmark values. In the
univariate sensitivity analysis, the three modal parameters
were changed to 90%, 95%, 105%, and 110% of the
benchmark values, obtaining 12 new sets of parameters as
shown in Table 9. For each set of the modal parameters,
a “degraded” version of the SLD was calculated, based on
which the chatter stability feature values were extracted
for the training and test samples. Table 9 summarizes the
prediction accuracy obtained on these new datasets, from
which it can be seen that the prediction performance of
the BP model has deteriorated as a result of inaccurate
SLDs. Among the three modal parameters, the prediction
accuracy was shown to be least affected by the change of the
damping ratio ξ , while the main frequency fc and stiffness
K exhibited similar influences. Importantly, all the accuracy
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Table 5 Cutting parameter settings in the milling experiments

Cutting parameters Values

Spindle speed (r/min) 5000, 6000, 7000, 8000, 9000, 10000, 11000, 12000, 13000, 14000

Feed rate (mm/min) 200, 300, 400

Depth of cut (mm) 0.2, 0.5, 0.7, 1, 1.5, 2, 2.5

Feed rate per tooth (mm/z) 0.0054, 0.0058, 0.0063, 0.0069, 0.0075, 0.0083, 0.0094, 0.011, 0.0125, 0.015

Fig. 11 Roughness
measurement (a white light
interferometer; b 2D surface
topography)

Table 6 Part of the
experimental dataset including
the chatter stability features

n (rpm) f (mm/min) ap (mm) fz (mm/z) �a (mm) Ra (μm)

5000 300 0.2 0.0150 3.1248 0.198

6000 300 0.2 0.0125 3.1405 0.211

7000 300 0.2 0.0107 3.1212 0.182

8000 300 0.2 0.0094 3.4212 0.171

9000 300 0.2 0.0083 3.7176 0.125

10000 300 0.2 0.0075 3.1776 0.132

Refer to Table 4 and Eq. (10) for explanations of the variables

Table 7 Details of the BP
neural network models Property Value

Number of input features 4 (model 1), 5 (models 2 and 3)

Number of hidden layers 2

Number of nodes in hidden layer 1 12

Number of nodes in hidden layer 2 8

Loss function Mean absolute error (MAE)

Activation function Relu

Optimizer Adam

Learning rate 0.0005
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Fig. 12 The network structure
of roughness prediction models
2–3

values listed in Table 9 are larger than that of model 1
(i.e., 78.86%—see Table 8), demonstrating the robustness
of the proposed approach to errors of the modal parameters.
For the purpose of multivariate sensitivity analysis, the
Sobol sampling method, which is capable of covering multi-
dimensional space with a limited number of samples [25],
was adopted. In total, 50 sets of the modal parameters
were obtained using this approach in three-dimensional
parameter space, and the considered parameter ranges were
the same as those in the univariate case. The training and test
samples were also prepared following the same procedure
as in the univariate case, and Fig. 16 shows the histogram
plot of the prediction accuracy for these new sets of the
modal parameters. It can be seen from Fig. 16 that when
the modal parameters deviated from the benchmark values,
the accuracy of the roughness prediction model was lower
than that of the accurate model (i.e., 86.62% for model
3). However, in most cases (48 out of 50), the prediction
accuracy was still higher than that of the conventional
method which does not consider the chatter stability feature
(i.e. model 1).

Finally, correlation analysis was performed to study the
relationship between the input and target variables of the
predictive model [26]. The Pearson correlation coefficient
was selected for this purpose, which is defined as

r =
∑N

i=1(Xi − X)(Yi − Y )√∑N
i=1(Xi − X)2

√∑N
i=1(Yi − Y )2

. (12)

In Eq. (12), Xi , Yi are the input and target variables,
respectively, and X, Y denote their mean values.

Table 10 summarizes the Pearson correlation coefficients
between the roughness value (i.e., the target variable) and
different input variables of the predictive model. The results
in Table 10 show that the spindle speed was negatively
correlated with roughness. The feed rate, depth of cut,
and feed rate per tooth were positively correlated with
roughness. While these results could reveal the underlying
relationships between the cutting parameters and the
roughness to some extent, the absolute values of the Pearson
correlation coefficient were shown to be small. Even for the
depth of cut and feed rate per tooth, the Pearson correlation
coefficient was below 0.3, which implies that the roughness
value cannot be efficiently predicted using only these
static cutting parameters. The chatter stability feature �a

(Eq. (10)) quantifies the difference between the limit depth
of cut and the actual depth of cut. Based on the hypothesis
of this paper, the machining process is more stable and the
value of the machined surface roughness is smaller when
�a becomes larger. It can also be confirmed from Table 10
that �a has a strong negative correlation with surface
roughness. Among the input features of the predictive
model studied in Table 10, the chatter stability feature
�a2 (Eq. (10)) achieved the highest correlation coefficient
of 0.3730 (absolute value) with the target variable, which
explains why model 3 yielded the highest accuracy for the
prediction of roughness. Note that the Pearson correlation
coefficient of the chatter stability feature �a1 used in model
2 is only 0.0463 (absolute value). This confirms that the
non-contact vibration measurement method adopted in this
study can be used to obtain a more informative predictor of
roughness, which is crucial for improving the accuracy of
the BP neural network.
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Fig. 13 Change of the accuracy
and loss in the training process
of: a model 1, b model 2, and c
model 3

5 Conclusion

In this study, we analyzed the milling dynamics model
of the machine tool-cutter system and adopted a non-

Fig. 14 Prediction results of model 3 on the test set

contact vibration sensor to obtain the FRF of the milling
cutter tip point for the calculation of the milling SLD. To
predict the roughness of the machined surface, we further
quantified the milling SLD and introduced a chatter stability
feature defined as the difference between the actual and
critical depths of cut for a given spindle speed. Through
milling experiments, it was demonstrated that the BP neural
network model based on this chatter stability feature can
improve the prediction accuracy by 7.8% compared with
that using only conventional predictors, such as the static
cutting parameters. The sensitivity analysis involving the

Table 8 Prediction accuracy of models 1–3 in training, validation, and
test sets

Model No. Training Validation Test

1 84.34% 78.39% 78.86%

2 87.32% 82.99% 81.23%

3 93.16% 88.59% 86.62%
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Fig. 15 Error histogram of models 1–3

Table 9 Prediction accuracy
results of the univariate
sensitivity analysis

No. fc (Hz) ξ (%) K (N/m) Prediction accuracy (%)

1 344.797 4.206 9.425 79.64

2 363.953 4.206 9.425 80.57

3 402.263 4.206 9.425 81.15

4 421.419 4.206 9.425 81.50

5 383.108 3.785 9.425 82.13

6 383.108 3.996 9.425 83.81

7 383.108 4.416 9.425 84.29

8 383.108 4.627 9.425 84.44

9 383.108 4.206 8.483 80.65

10 383.108 4.206 8.954 81.88

11 383.108 4.206 9.896 81.19

12 383.108 4.206 10.368 80.33

Fig. 16 Histogram plot of the
prediction accuracy obtained in
the multivariate sensitivity
analysis
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Table 10 Pearson correlation coefficients between different input
features and the target variable

Input feature Correlation coefficient

n (rpm) −0.0528

f (mm/min) 0.0154

ap (mm) 0.2080

fz (mm/z) 0.1730

�1 (mm) −0.0463

�2 (mm) −0.3730

Refer to Table 4 and Eq. (10) for explanations of the variables

use of inaccurate SLDs demonstrated that performance
improvement can still be achieved by adopting the proposed
approach when the modal parameters are determined with
(up to) 10% errors. Pearson correlation analysis further
confirmed that the newly introduced feature had a strong
correlation with the roughness.

Owing to the small size of the precision milling cutter,
the vibration sensor could not be mounted at the cutter
tip point during the modal test. An optical non-contact
vibrometer was used to measure the vibration signals,
and a more accurate critical depth of cut was calculated,
which was shown to improve the predictive power of the
chatter stability feature. By adopting the proposed approach,
the prediction accuracy of the BP neural network can be
improved without using a large amount of process data, and
hence, it is readily applicable to existing machine tools (i.e.,
there is no need to install external sensors except for trial
cutting). Future work will aim to explore the application
of the proposed approach for quality prediction of different
cutting methods, such as turning, grinding, and drilling.
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