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Abstract
The successful operations in the field of drilling requires high quality of the drilling fluids. The nanoparticle-based materi-
als can be used in a variety of ways in the oilfield such as drilling fluids to enhance the efficiency of system. Drilling fluids 
play crucial role during the drilling operations. Nanoparticles (NPs) depict significant performance in the enhancement of 
the drilling fluid properties. The current manuscript summarizes the various types of nano-based drilling fluids for drilling 
operations. Nano-based drilling fluids are a new kind of fluids that are used to enhance the performance of working fluids. 
Graphene-based drilling fluids, carbon nanotube–based drilling fluid, and nanocellulose and its derivative-based drilling 
fluids investigated by various researchers are summarized in this review. Different reviews have been published on nano-based 
drilling fluids in literature, but few studies reported on nanoparticle-based fluids in drilling industry. Therefore, this review 
especially highlights the recent advances of nanoparticle-based fluids in drilling fluid system. The thermal conductivity, 
density, viscosity, and specific heat capacity of the nano-based drilling fluids are also critically discussed in this manuscript. 
Finally, this review indicates some future directions about nano-based drilling fluids in oil and gas exploration which will 
also give direction to young researchers to explore new kinds of drilling fluids in the drilling field.
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Al2O3	� Aluminum oxide
AV	� Apparent viscosity
CuO	� Copper oxide
CNFs	� Cellulose nanofibers
CMC	� Carboxymethyl cellulose
CNTs	� Carbon nanotubes
CGN	� Carbon group nanoenhancer
CMQL	� Cryogenic minimum quantity lubrication
DFs	� Drilling fluids
DLS	� Dynamic light scattering
ENP	� Electrospun synthesized ZnTi O

3
 

nanoparticles
EG	� Ethylene glycol
EDAG	� Ethylene-diamine modified with graphene
FE-SEM	� Field emission scanning electron microscopy
Fe2O3	� Iron oxide
Glu-Gr	� Glucopyranose grafted with graphene
GNPs	� Graphene nanoplatelets
GBDF	� Glycol-based drilling fluids
HBN	� Hexagonal boron nitride
HTF	� Heat transfer fluid
HCl	� Hydrochloric acid
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HPHT	� High pressure and high temperature
PANC	� Polyacrylamide/clay nanocomposite
PAC	� Polyanionic cellulose
PVP	� Polyvinylpyrrolidone
PHPA	� Partially hydrolyzed polyacrylamide
MgO	� Magnesium oxide
MWCNTs	� Multi-wall carbon nanotubes
MQL	� Minimum quantity lubrication
MRM	� Material removing mechanism
NWBM	� Nanofluid-enhanced water-based drilling mud
NPs	� Nanoparticles
NS	� Nanosilica
NEBL	� Nano-enhanced biolubricant
NMQL	� Nanofluid minimum quantity lubrication
SDS	� Sodium dodecyl sulfate
SDS-Gr	� Sodium dodecyl sulfate modified with 

graphite
SWCNTs	� Single-walled carbon nanotubes
WBDFs	� Water-based drilling fluids
TEOS	� Tetraethyl orthosilicate
TiO2	� Titanium dioxide
ZrO2	� Zirconium dioxide
ZnO	� Zinc oxide

1  Introduction

The removal of drilled solids is the key to drill securely, 
quickly, and within less cost. Drilled solids raise drill 
expenses, harm reservoirs, and add to the expense of 
cleanup. Some of the issues with drilled solids are:

(1)	 Formations are harmed by filtrate,
(2)	 Limits on how fast you can drill,
(3)	 Issues with holes,
(4)	 Difficulties of stuck pipes,
(5)	 Complications with circulation,
(6)	 Direct expenses of drilling fluid, and
(7)	 Expenses of disposal rises.

The first most important purpose of a drilling mud 
is to reduce waste content around the drilling tool and 
throughout the hole. However, by doing so, the mud takes 
on the load of the clippings, and if the clippings are not 
cleared, the mud soon lacks the capacity to clear the hole, 
resulting in massive filter cakes. Clippings must always 
be continuously cleaned to allow on-site recyclability of 
the drilling mud. As the world develop, it prefers more 
modern, reliable, and eco-friendly processes as compared 
to classic old ones. 

Using nanofluids in drilling fluids is one of the best 
methods to improve the performance. A lot of research 
can be found on this topic, and everyone gives 5 to 10 

functions of drilling fluids/muds. But the major purposes 
that drilling fluids serve are as follows: (1) hold debris 
(drill materials); (2) extract waste from the bore’s base 
and well hole, and let these to the top; (3) ensure well-
bore strength while controlling pressure of formation; 
(4) permeable structures get sealed; (5) the drill unit is 
kept cool, lubricated, and supported; (6) fluid energy is 
transmitted to tools and bit; (7) reduce the amount of 
damage to the reservoir; (8) allow for proper assessment 
of formation; (9) corrosion is controlled; (10) allow for 
easier cementing and finishing; (11) reduce environmen-
tal effect as much as possible and stop the development 
of gas hydrates. The history chart of drilling fluids is 
shown in Fig. 1.

Hoelscher et al. [2] explained that in the last decade, 
nanotechnology has gained the attention of researchers, 
with various applications in a wide range of sectors. Hun-
dreds of nanotechnology-based items are available, with 
the majority of them being used in the medical, defense, 
and coating sectors.

Mansoor et  al. [3] studied that drilling issues are 
mostly solved by refining the properties related to fil-
tration and rheology of drilling fluids based on water 
(WDFs). Researchers looked at nanofluid, prepared by 
using organic aloe vera as base fluid and CuO as nano-
particles, in WDF, to help deal with the issues related to 
drilling. For this investigation, a two-step approach was 
employed to create the nanofluids; aloe vera was used as 
the base fluid with 3 separate wt% of CuO nanoparticles. 
The characteristics related to rheology and loss of filtrate 
for produced drilling fluids were evaluated at a variety 
of temperatures. For WDF, the viscosity decreased by 
around 61.7% when it was heated at temperature of 90 °C.

Farahbod [4] used digital densitometer, digital viscom-
eter, digital calorimeter, and portable electromagnetic 
handheld current meter to measure density, viscosity, heat 
capacity, and velocity respectively of nano-based drilling 
fluids. In this work, the thermal and the physical charac-
teristics of fluids used when drilling were altered using 
carbon nanotubes and titanium dioxide nanoparticles. The 
results demonstrated that particles of titanium dioxide 
showed size reduction 76 to 54 nm, and the quantity of 
specific heat increases by approximately 1.26%. Addi-
tionally, according to the findings of the experiments, 
mixing of carbon nanotubes in the drilling fluid had a 
convective heat to conductive heat ratio that was about 
30% greater as compared to the addition of titanium diox-
ide nanoparticles.

Moraveji et al. [5] studied the rheological properties of 
glycol-based drilling fluids (GBDFs) after the addition of 
amorphous silica nanoparticles in it. For the purpose of 
measuring the rheological characteristics at high tempera-
tures, an OFFITE E900 viscometer was also employed. 
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Fig. 1   Background of drilling fluids [1]
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After the nanoparticles were added, the glycol fluid’s 
apparent viscosity, plastic viscosity, yield point, and gel 
strength all rose. The characteristics of GBDF related 
to rheology got enhanced by increasing the percentage 
weight of nanoparticles. Perween et al. [6] investigated 
the impact of ageing on rheological and filtration capa-
bilities. The mud samples were aged in an oven at tem-
perature of 110 °C for 16 h in hot rolling test to measure 
thermal stability. The experimental findings demonstrated 
that ZnTiO3 nanoparticles have a considerable impact 
on the characteristics of drilling fluids, substantially 
reduced the loss of filtrate, thermally stabilized the DF, 
and enhanced the characteristics related to rheology.

The mud functions are to effectively block the flow of 
water in the wellbore. The approach of using traditional 
drilling fluid results in decrease fluid loss, or leak off 
cannot be utilized in shale formations. Like the Marcel-
lus, because of low permeability of the shale there is for-
mation of the filter cake. Nanoparticle’s suspensions in 
fluids are known as nanofluids that exhibit substantial 
property improvement even at low nanoparticle concen-
trations. The use of nanoparticles as a drilling fluids was 
shown to be useful by many researchers [7–14]. Hence, 
nanoparticle-based drilling fluids have been summarized 
in this review. Therefore, this paper introduces the various 
nano-based drilling fluids in detail to make drilling fluids 
more efficient along with thermal and mechanical proper-
ties. This review also gives some future recommendations 
to investigate new kinds of nanoparticles in drilling fluids 
which will help in fighting severe problems in the process 
of drilling operations.

2 � Nanoparticles in drilling fluids

Various types of nanoparticles have been investigated as 
drilling fluids by different authors. Vryzas and Kelessidis 
[15] specified that nanoparticles are regarded to be ideal 
choices for smarter drilling fluid composition, i.e., flu-
ids with tailored rheological and filtration characteristics, 
because of their distinctive physico-chemical character-
istics. Nevertheless, because of the high risk of adopting 
new technology, their use in the oil and gas sector has 
yet to be completely realized. Numerous researchers have 
investigated the use of different nanoparticles, ranging 
from commercial to user particles, to establish drilling 
fluids with improved properties that can resist extreme 
downhole climates, especially at high pressure and high 
temperature (HPHT) situations, over the last few years.

The kind, dimension, and form of nanoparticles, as well 
as the volumetric concentration, the inclusion of various 
surfactants, and the use of an external magnetic field, are 

all essential elements to consider. According to the findings 
of numerous research, nanoparticles offer a great deal of 
promise for usage as drilling fluid enhancers in order to solve 
difficult drilling issues. Nevertheless, in order to fully utilize 
the potential of these particles, there are still difficulties that 
must be defeated.

Rafati et al. [16] specified that improved drilling and 
recovery methods are required for nontraditional hydro-
carbon resources such as shale gas, shale oil, deep water, 
and arctic reservoirs. Moreover, it is important to reduce 
the ecological impact related to oil recovery procedures. 
Nanotechnology has proved to be a viable answer to these 
problems in the oil and gas sector. Several researchers have 
been performed to investigate the use of nanotechnology 
to improve drilling fluids. Improvement of rheological, fil-
tration, and heat transport characteristics, as well as fric-
tion minimization in drilling fluids, were studied in such 
research. Researchers further revealed that nanoparticles 
may enhance fluid’s thermal stability, lubricity, hole clean-
ing, and wellbore stability, as well as reduce the develop-
ment of hydrates in the fluid circulation system.

Mehdi et al. [17] studied that with the rising need for 
oil products, new hydrocarbon sources must be explored. 
This would need digging wells in unusual formations and 
under challenging circumstances. Drilling fluids are deter-
mined to account for 5 to 15% of total capital investment and 
frequently lead to the collapse of drilling operations. As a 
result, it is critical to adjust drilling fluid characteristics to 
the wellbore environment. As a result, extremely efficient 
and cost-effective drilling fluids are required. Drilling flu-
ids of the future must have improved rheological character-
istics, as well as greater temperature and filtration control 
characteristics. Durability of additives, severe fluid loss, and 
breakdown of polymers are just a couple of minor challenges 
that a drilling fluid may face, all of which can contribute to 
drooping of weighting forces and rock cutting.

There are several research articles available that show 
the improvement in the drilling fluids by application on 
nanofluids and particles in it. Aluminum oxide, magne-
sium oxide, titanium dioxide, and copper oxide have been 
introduced at 2 distinct percentages to a 7% bentonite 
water-based mud: 0.5 vol% and 1.5 vol% by Alsaba et al. 
[18]. The rheological characteristics of the drilling fluid, 
involving plastic viscosity, yield point, and gel strength, 
were measured utilizing a standardized viscometer and 
compared to a source drilling fluid containing 7% ben-
tonite to account for the effect of nanoparticle additions. 
Furthermore, quantitative research was carried out to help 
comprehend the effect of various parameters on hole clean-
ing efficiency, such as rheological characteristics, hole 
size, and flow rate. Aluminum oxide, magnesium oxide, 
titanium dioxide, and copper oxide have been introduced 
at 2 distinct percentages to a 7% bentonite water-based 
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mud: 0.5 vol% and 1.5 vol%. The rheological characteris-
tics of the drilling fluid, involving plastic viscosity, yield 
point, and gel strength, were measured utilizing a stand-
ardized viscometer and compared to a reference drilling 
fluid containing 7% bentonite to account for the effect of 
nanoparticle additions. Furthermore, quantitative research 
was carried out to help comprehend the effect of various 
parameters on hole cleaning efficiency, such as rheological 
characteristics, hole size, and flow rate. When rheological 
properties seem to be high, the effect of changing the flow 
rate seems to be minor, according to this research work. 
Furthermore, as compared to the base example having just 
7% bentonite, the effect of nanoparticles inclusion on hole 
cleaning was much more evident for bigger hole diameters 
with greater cutting sizes, demonstrating the potential of 
utilizing nanoparticles to improve hole cleaning.

Anoop et al. [19] investigated the rheological properties 
of natural oil-based nanofluids under HPHT. Mechanically 
dispersed commonly available SiO2 nanoparticles in a spe-
cially formulated paraffinic mineral oil (Therm Z-32) yielded 
nanofluids for this study. This research looks at mineral oil 
and nanofluids at 1 and 2 vol%. An HPHT viscometer is used 
to determine the rheological properties of the base fluid and 
nanofluids. The viscosity of the nanofluids is determined at 
pressures ranging from 100 kPa to 42 MPa, and tempera-
tures ranging from 25 to 140 ◦C , and at different shear rates 
during the performance of experiment. The study revealed 
that when the pressure was rose, the viscosity values of both 
nanofluids and the base fluid rose. Furthermore, at HTHP 
nanofluids exhibited non-Newtonian behavior.

The particle size distribution and morphology of silica 
nanoparticles were specified by Ghanbari et al. [20] used 
DLS analysis and FE-SEM after they were synthesized by 
using solgel technique inside an acidic environment com-
prising TEOS and HCl. The substance is extremely mono-
dispersed and made up of amorphous SiO2 nanoparticles, 
according to the findings. Following that, a simple method 
for nanoparticle’s dispersion in bentonite suspensions, low-
salinity, and high-salinity muds was described, and the 
stability of the dispersions was examined under various 
experimental circumstances. Lastly, the API filter press test 
was used to examine the influence of silica nanoparticles 
on rheological characteristics and fluid's filtration behavior. 
Under this investigation, the provided dispersion approach 
outperformed the prior dispersion approaches, and this 
method of dispersion must be used when adding nanoparti-
cles in drilling muds.

Abdo et al. [21] produced and checked sepiolite in drill-
ing muds in its nanoform to enhance the rheological char-
acteristics and fluid loss of the drilling fluids under usual 
and high-pressure and high-temperature conditions. The 
introduction of 4% by weight nanosepiolite of 30–60 nm to 
a base drilling mud enhanced its rheological characteristics 

and stabilized it under high-pressure and high-temperature 
conditions, according to the findings. When compared to 
base drilling fluids lacking nanosepiolite, fluid loss was con-
siderably reduced. The fluid loss was not affected by rais-
ing the temperature and pressure of the base drilling fluids 
containing nanosepiolite.

Thermal decomposition of biopolymers is among the 
most expensive drilling hazards, because it leads to addi-
tional maintenance issues including barite sag, fluid loss, 
pipe adhesion, drilling stoppage, and so forth. As a result, 
developing a drilling fluid capable of preserving biopoly-
mer characteristics under high-pressure and high-temper-
ature conditions is a major ongoing issue for the drill-
ing and petroleum industries. The study by Halali et al. 
[22] proposed CNTs as the required addition to meet this 
demand. The suitable surfactants were Tween 80, PMMA, 
and ACUMER, all of which exhibited excellent tolerance 
with the CNT. The level of reliability of these kinds of 
fluids determines their efficiency. As a result, “rheological 
characteristics, filtration, and zeta potential” were used to 
investigate fluid stabilization from several perspectives. 
The findings show that CNT can increase drilling fluid’s 
viscosity, particularly at lower shear rates, that is consist-
ent to fluid shear thinning in the presence of CNT. It also 
increases the exact value of “zeta potential,” which was 
previously under − 20 mV across all nanofluids. It may 
minimize filtering through over 93.3% under high-pressure 
and high-temperature settings, improved fluid thermal con-
ductivity by 12%, and increased shale recovery by 10.5%, 
adding to the CNT benefits.

The utilization of CuO and ZnO nanofluids made utiliz-
ing different base fluids like xanthan gum, PEG, and PVP to 
enhance the thermal, electrical, and fluid-loss characteristics 
of water-based mud which were studied by Ponmani et al. 
[23] The thermal and electrical characteristics of NWBM 
were improved with the addition of nanofluids, making them 
more suitable for sophisticated drilling operations. Through 
exploiting the development of composites and aggregates 
induced by the presence of nano-, micro-, and macroparti-
cles in the mud system, nanofluid-based drilling fluids can 
play an essential role in preventing lost circulation. The 
introduction of tiny quantities of nanofluids improves fluid 
loss and some other mud characteristics, demonstrating 
nanofluid-enhanced water-based drilling mud’s (NWBM’s) 
advantages in complicated settings. Microfluid-enhanced 
water-based drilling mud’s (MWBM’s) different character-
istics were also examined and compared to those of NWBM. 
Compared to MWBM and WBM, NWBM regularly out-
performed. Additional study concerning different aspects of 
nanofluid-based drilling fluids is required in order to better 
learn and improve their ability to perform in filtration control 
and pore plugging in porous medium.
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Aftab et al. [24] used ZnO nanoparticles with water as a 
base fluid. Experimentation was performed on low-pressure 
and low-temperature settings; then, same experiment was 
performed on high pressure and high temperature. Quantity 
of nanozinc oxide particles used for this purpose was 1 g in 
water-based drilling fluids. This addition helped in increas-
ing the rheological properties of DFs, reducing the loss of 
filtrate, and also decrease in friction coefficient occurred at 
high pressure and high temperature scenario.

According to Taraghikhah et al. [25], in comparison to 
typical shale inhibitors, the nanodrilling fluid with lower than 
1% wt/v nanoadditive has an effective shale recovering. Pore 
plugging as a physical shale inhibitory method is validated 
by SEM pictures of obtained shales, following shale recov-
ery tests. Regardless of the reality that pore plugging is the 
main method for shale inhibition in the presence of nanoaddi-
tives, the adhesive nature of nanosilica and the deposition of 
nanoparticles on the surface of shales define another mecha-
nism known as physisorption, in which nanosilica forms a 
hydrophobic layer on the shale’s surface to prevent water 
invasion. SEM scans also confirmed this feature. Lubricity 
tests revealed that this nanoadditive is an effective lubricant 
in addition to inhibiting shale. This nanoadditive improved 
other mud characteristics, including rheological characteris-
tics. It does, though, have a small impact on fluid loss man-
agement. As the concentration utilized in this experiment is 
just 1 wt%, so it was assumed to be cost-effective.

According to Akhtarmanesh et al. [26], Wellbore’s insta-
bility creates plenty of issues, such as the need for an expen-
sive drilling operation. Sloughing or swelling shales, as well 
as abnormally pressurized shale deposits, cause several well-
bore abnormalities. Pore pressure propagation and chemical 
evaporation are the major processes in shale disruptions, 
with various degrees of effect, in terms of physical and 
chemical characteristics of shale and thermodynamics condi-
tions. This article looks at these processes to see how impor-
tant they are in terms of wellbore stabilization. Pore throat 
physical blocking is a sensible method to minimize pressure 
rise around the wellbore for wellbore stability management. 
For this purpose, nanoparticles were utilized. Membrane 
Efficiency Screening Equipment (MESE) was utilized to test 
the behavior of various water-based drilling fluids (WBDFs) 
on pressure of pore. Three separate drilling fluids, each with 
its own set of additives, were tested in contact with the Gurpi 
formation, with and without the inclusion of nanoparticles. 
The Gurpi formation may be found in Iran’s western and 
southern sedimentary basins. The introduction of nanopar-
ticles resulted in much superior physical plugging, resulting 
in a drop in porosity and an increase in pressure. One of the 
nanoparticle-based mud compositions decreased “pressure 
increase” around the wellbore by up to 97%.

To reduce wellbore instability concerns in problem-
atic shale deposits, specific formulations of drilling fluids 
with high shale inhibitory properties are required accord-
ing to Jain and Mahto [27]. In this work, polyacrylamide/
clay nanocomposite (PANC) was employed as a drilling 
fluid additive after prepared. PANC outperformed partly 
hydrolyzed polyacrylamide in terms of shale encapsulation, 
according to the results of the experiments. As a result, it 
was recommended that synthesized nanocomposite can be 
utilized as a drilling fluid addition in a WBDF system that 
is inhibitive.

3 � Different types of nano‑based drilling 
fluids

Drilling fluids are important and crucial for drilling process 
and used as lubricant, for wellbore cleaning and for shale 
inhibition. Properties of drilling fluids were important for 
efficient drilling fluids application. Drilling fluids were used 
to lubricate and cool the drilling bit. Under high temperature 
and pressure, drilling fluids were unable to function prop-
erly. This problem allows the researchers to come up with 
the better ideas. Now, the research was being conducted to 
use such fluid along with drilling fluids that enhance the 
rheological properties of the fluid. So, nanofluids were used 
along with the drilling fluids. Different drilling fluids that 
were used for drilling of petroleum was carbon nanotubes, 
graphenes, and nanocellulose as shown in Fig. 2.

Fig. 2   Various types of nano-based drilling fluids



2253The International Journal of Advanced Manufacturing Technology (2024) 131:2247–2264	

1 3

3.1 � Graphene‑based drilling fluids

Graphene-based drilling fluids are widely used in petroleum 
industry and proved to be efficient in terms of performance. 
Naseer et al. [28] experimentally investigated the perfor-
mance of drilling fluids using nanoparticles. They observed 
that by the addition of nanoparticles, the rheological proper-
ties of drilling mud were modified under high temperature 
and pressure. Xuan et al. [29] carried out a study on the 
graphite oxide–based nanoparticles for fluid loss control. 
They studied the thermal stability of graphene oxide under 
high temperature and pressure. They observed that gra-
phene oxide was thermal stable at 150 ◦C . Taha et al. [30] 
studied the application of nanographenes in enhancing the 
performance of drilling fluids. They concluded that various 
laboratory tests show that nanographene has the ability of 
torque reduction round about 50%. Chai et al. [31] experi-
mentally investigated the properties of carbon nanotube/
graphene. They observed that by the adding nanomateri-
als, the thermophysical properties of drilling fluids were 
enhanced. Also, nanoparticles do not affect the quality of 
drilling fluid such as shear stress and viscosity.

Ho et al. [32] performed experimental investigation to 
study the rheological properties of drilling fluid (oil based) 
using graphene’s nanosheets. They concluded that the vis-
cosity of oil-based drilling fluids using graphene was higher 
as compared to hydrogenated oil-based drilling fluids. Chai 
et al. [33] studied thermophysical properties of drilling 
fluids using graphene nanosheets. They observed that by 
increasing the concentration of nanoparticles to a tempera-
ture of 50 ◦C , 14.4% enhancement in thermal conductivity 
was recorded. Paul et al. [34] reviewed the tribological per-
formance of drilling fluids using nanolubricants as well as 
its derivative. Also, nanolubricants provide greater stability 

while comparing it with micro-sized particles. Yuxiu et al. 
[35] performed experimental investigation on high perfor-
mance plunging agent using modified graphene. They used 
the ethylene-diamine modified with graphene (EDA-G). 
They observed that ethylene-diamine exhibits high perfor-
mance at volumetric concentration of 0.2% by weight. Rana 
et al. [36] studied the properties of glucopyranose grafted 
with graphene (Glu-Gr) as shale inhibitor. They observed 
that glucopyranose modified with graphene gives high-inhi-
bition durability and dispersion recovery while comparing 
it with traditional drilling mud. The mechanism of shale 
inhibition is shown in Fig. 3.

Zubaidi et al. [37] carried out experimental investiga-
tion to improve to improve the properties of drilling fluids 
using commercial bentonites and local clay. They mixed 
different nanomaterials like magnesium oxide, titanium 
oxide, and graphene in commercial bentonites. Different 
volumetric concentrations were used 0.4%, 0.2%, 0.1%, 
0.05%, 0.01%, and 0.05% respectively. They concluded that 
magnesium oxide gives better results as compared to other 
nanomaterials.

Aftab et al. [38] investigated enhancement of rheologi-
cal properties of water-based mud (WBM). They have used 
different nanoparticles like graphene nanoplatelet, carbon 
nanotube, and nanosilica. They concluded that graphene 
nanoplatelets performed better enhancement in water-based 
mud as compared to other particles. Ridha et al. [39] investi-
gated the performance filtration of water-based drilling fluid 
using graphene nanoplatelets (GNPs). Three different sam-
ples of water-based drilling fluids were prepared including 
nanosilica (NS), potassium chloride (KCL), and GNPs. They 
concluded that at high temperature and every concentration, 
graphene nanoplatelets indicate effective filtration for water-
based drilling fluids.

Fig. 3   Schematic representation for shale inhibition mechanism [36]
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 Rana et al. [40] studied the effect of surfactant addi-
tion modified with graphene to improve the rheological. 
They concluded that by using sodium dodecyl sulfate 
(SDS) as surfactant modified with graphene (SDS-Gr), 
there was control in fluid loss and rheology of drilling 
mud was modified.  Applications of drilling fluids using 
graphenes and its derivatives are shown in Table 1.

3.2 � Carbon nanotubes and its derivative‑based 
drilling fluids

Carbon nanotube–based various drilling fluids are also 
investigated in oil sector. Ibrahim et al. [41] investigated 
the rheological behavior of drilling fluids. They used the 
graphene nanoplatelets to improve the dispersion rate in 
the aqueous solution. They observed high dispersion of 
graphene nanoplatelets at higher shear rate.  Halali et al. 
[22] perform experimental investigation on stability of the 
polymeric fluids using carbon nanotubes (CNTs). They 
concluded that by using carbon nanotubes under high tem-
perature and high pressure, the filtration was reduced to 
93.3%. Also, 12% enhancement in thermal conductivity 
was recorded and shale recovery was increased to 10.5%.

Madkour et al. [42] investigated the performance of pol-
ymeric nanocomposites in oil-based drilling fluids. They 
used graphene nanoplatelets and multiwall carbon nano-
tubes (MWCNTs) and made nanocomposites using casting 
techniques. They concluded that polymeric nanocomposites 

show superior advantages in oil drilling and for lubricat-
ing purposes. Ismail et al. [43] investigated novel approach 
for enhancing the properties of water-based drilling fluids. 
They used glass bends, nanosilica, and multi-walled carbon 
nanotubes (MWCNTs) to improve the rheological behavior. 
They concluded that for water-based drilling fluid, MWCNT 
proved to be better rheological modifier.

Ahmad et al. [44] investigated the polymer-based nano-
composites using carbon nanotubes (CNT) under high 
temperature. They concluded that by using 2% volumet-
ric concentration of nanocomposites, shale reduction was 
reduced to 90%. Also, under high temperature, nanocom-
posites enhance the borehole stability, filtration character-
istics, and rheological properties of water-based drilling 
fluids. Rana et al. [45] investigated the modification in 
water-based mud using polyvinylpyrrolidone (PVP) and 
single-walled carbon nanotubes (SWCNTs) under low tem-
perature and low pressure. They concluded that by using 
(PVP/SWCNTs) composites, 89.5% dispersion recovery 
was achieved. Applications of the drilling fluids using 
carbon nanotubes and its derivatives are listed in Table 2.

3.3 � Nanocellulose‑based drilling fluids

Nanocellulose-based drilling was studied by differ-
ent authors. Li et al. [46] measured the performance of 
water-based fluid using cellulose nanoparticles. They 
concluded that by using cellulose nanocrystals, reduction 

Table 1   Various drilling fluids using graphenes and its derivatives

Concentration Type of nanoparticle Base fluid Experimental conditions Modified properties References

3% by weight Nanographite Water-based mud High temp, high pressure Control in fluid loss and rheo-
logical properties of the fluid

[28]

0.6% by weight Nanographite oxide Water-based mud High temp, high pressure Control in fluid loss [29]
3% by weight Nanographite modified with 

surfactant
Water-Based Mud High temp, high pressure Control in fluid loss, rheologi-

cal properties of the fluid and 
swelling inhibition

[30]

100 ppm Nanographene Vegetable oil Low temp, low pressure Shear stress and viscosity [31]
100 ppm Graphene nanosheets Vegetable Low temp, low pressure Thermal conductivity [33]
0.4% by weight EDA-G Water-based mud Low temp, low pressure Control in fluid loss and swell-

ing inhibition
[35]

0.85% by weight Glu-Gr Water-based mud Low temp, low pressure Swelling inhibition and rheo-
logical properties of the fluid

[36]

0.4% by weight MgO, TiO2, and graphene Water-based mud Low temp, low pressure Control in fluid loss and rheo-
logical properties of the fluid

[37]

0.1 ppb GNP Water-based mud High temp, high pressure Control in fluid loss, rheologi-
cal properties of the fluid and 
swelling inhibition

[38]

0.3 ppb GNP Water-based mud High temp, high pressure Control in fluid loss [39]
0.85% by weight SDS-Gr Water-based mud Low temp, low pressure Control in fluid loss, rheologi-

cal properties of the fluid, 
and swelling inhibition

[40]

100–500 ppm GNPs Water-based mud Low temp, low pressure Rheological properties of the 
fluid

[41]
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in fluid loss and enhancement in rheological properties 
of fluid were observed. Li et al. [47] also investigated 
the performance of water-based fluid using polyanionic 
cellulose (PAC) and cellulose nanocrystals (CNCs). They 
concluded that these nanoparticles produce the syner-
getic effect and enhance the performance of drilling mud. 
Song et al. [48] investigated the performance of ben-
tonite-based drilling fluid using cellulose nanoparticles 
(CNCs) and cellulose nanofibers (CNFs). They observed 
improvement in the rheological properties of the drill-
ing fluid using cellulose-based nanoparticles. Liu et al. 
[49] investigated the cellulose nanofibers (CNFs) and 
its application in filtration and rheological properties of 
fluid. They concluded that cellulose nanofibers (CNFs) 
have good rheological behavior and having better filtra-
tion properties.

Hall et al. [50] investigated performance of the water-
based fluid using nanocellulose. They concluded that by 
using nanocellulose along with its derivatives, reduction 
in fluid loss and enhancement in rheological properties 
of fluid were observed. Saboori et al. [51] investigated 
the filtration properties of drilling fluid using polystyrene 
core and nano carboxymethyl cellulose (CMC). They 
concluded that by using these nanoparticles, the filtration 
properties of drilling fluid were enhanced. Li et al. [52] 
performed an investigation on the performance of drilling 
fluid using cellulose nanocrystals. They concluded that 
filtration properties and rheological behavior of drilling 
fluid were improved. Liu et al. [53] investigated the drill-
ing fluid using poly-AMPS-DMA (PAD) composite. They 
concluded that because of Fe3+ linkage reaction, the stabil-
ity of nanocomposites was improved.

Hall et al. [54] investigated the performance of drilling 
fluid using biopolymer bends and nanocellulose. They con-
cluded that by using such nanoparticles, rheological behavior 

and loss of fluid control were improved. Li et al. [55] inves-
tigated the performance of drilling fluid polyanionic cellu-
lose (PAC) and cellulose nanofibers. They concluded that by 
these nanoparticles, novel rheological behavior as well as 
filtration properties were also improved. Villada et al. [56] 
investigated the performance of water-based mud by replac-
ing xanthan gum with cellulose nanofibers. They concluded 
that by using such nanoparticles, better thermal stability and 
good rheological behavior of drilling mud were observed. 
Heggset et al. [57] investigated the temperature stability 
using nanocellulose dispersion. They concluded that better 
temperature stability was recoded for cellulose nanocrystals 
at 140 ◦C . Zoveidavianpoor and Samsuri [58] investigated 
the filtration control of water-based mud using nanostarch. 
They concluded that 64.2% improvement in fluid loss was 
exhibited using nanostarch. The applications of drilling fluids 
using carbon nanocellulose and its derivatives are listed in 
Table 3.

3.4 � Other different types of nanoparticles used 
in drilling fluids 

The various other types of drilling fluids have been inves-
tigated by different researchers which are summarized in 
Table 4.

4 � Thermophysical properties of nano‑based 
drilling fluids

In a variety of heat exchange processes, heat transfer flu-
ids (HTFs) serve as the energy carrier [75–77]. Since it 
is readily available, inexpensive, and compatible with a 
wide range of materials and procedures, water or steam 

Table 2   Carbon nanotubes and its derivatives used as drilling fluids

Concentration Type of nanoparticle Base fluid Experimental conditions Modified properties References

0.6% by weight CNTs Water-based mud High temp and high 
pressure

Control in fluid loss and 
thermal conductivity

[22]

____ MWCNTs/polylactic acid Oil-based mud High temp and high 
pressure

Mechanical, electrical, 
and thermal stability 
with enhancement in 
rheological properties 
of the fluid

[42]

0.00285% by weight Nanocomposites (MWC-
NTs/SiO2)

____ Low temp and low pres-
sure

Control in fluid loss and 
viscosity

[43]

2% by weight/vol Nanocomposites (CNT/
polymer)

Water- and oil-based mud High temp and high 
pressure

Stability of bore hole, 
improvement in filtra-
tion, and rheological 
characteristics

[44]

0.85% by weight Nanocomposites 
(SWCNT/PVP)

Water-based mud Low temp and low pres-
sure

Control in fluid loss and 
shale inhibition

[45]
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is the most commonly used HTF [78–80]. Other HTFs, 
such as ethylene glycol (EG) and its water mixtures, as 
well as other oils, are used in specialized applications to 
extend the temperature range beyond that of water [81, 
82]. The most important considerations for evaluating 
the function and performance of HTFs are their ther-
mophysical parameters, such as thermal conductivity, 
density, heat capacity, and viscosity [83]. The improved 
thermophysical features of HTF enable a highly efficient 
heat transfer technique more specifically for waste heat 
recovery applications as part of an expanding industrial 
energy efficiency endeavor [78, 84–86]. Heat transfer in 
any heat transfer medium is limited by finite values of 
thermophysical parameters. These characteristics are cru-
cial in determining the degree of heat transmission. To 
modify the heat transfer performance, active and passive 

strategies are applied. Mechanical processes are examples 
of active approaches. Altering the fluid characteristics 
and modifying shape and surface area are examples of 
passive approaches. Passive approaches are less expen-
sive, more beneficial, and more effective than active 
techniques. The passive category includes increasing heat 
transfer by suspending nanoparticles in a base liquid [87]. 
The system’s performance should improve as a result of 
nanoparticles addition. The various thermophysical prop-
erties of nano-based drilling fluids are given in Fig. 4.

Table 5 enlists the thermophysical properties of fre-
quently used nanoparticles which show specific heat, den-
sity, and thermal conductivity values of nanoparticles that 
are independent from their particle sizes.

Multiple mathematical models have been investigated 
that depict the rheology of drilling fluids that include 

Table 3   Drilling fluid based on carbon nanocellulose and its derivatives

Concentration Type of nanoparticle Base fluid Experimental conditions Modified properties References

1% by weight CNCs Water-based fluid Low temp and low pressure Control in fluid loss and improve-
ment rheological properties of 
the fluid

[46]

0.5% by weight CNCs Water-based fluid Low temp and low pressure Improvement in rheological prop-
erties of the fluid

[47]

0.4% by weight CNCs, CNFs Water-based mud Low temp and low pressure Control in fluid loss and improve-
ment in rheological properties 
of the fluid

[48]

0.5% by weight CNFs Water-based mud Low temp and low pressure Control in fluid loss, shear thin-
ning, and improvement in rheo-
logical properties of the fluid

[49]

0.5% by weight CNFs and its derivatives Water-based mud Low temp and low pressure Control in fluid loss and improve-
ment rheological properties of 
the fluid

[50]

3% by weight CMC and polystyrene core Water-based mud Low temp and low pressure Control in fluid loss and improve-
ment rheological properties of 
the fluid

[51]

2% by weight CNCs Water-based mud Low temp and low pressure Control in fluid loss and improve-
ment rheological properties of 
the fluid

[52]

2% by weight PAD Fe3+ Water-based mud High temp and high pressure Control in fluid loss and improve-
ment rheological properties of 
the fluid

[53]

0.5% by weight CNFs Water-based mud Low temp and low pressure Control in fluid loss and improve-
ment rheological properties of 
the fluid

[54]

3% by weight CNFs/PAC Water-based mud Low temp and low pressure Control in fluid loss and improve-
ment rheological properties of 
the fluid

[55]

0.35% by weight CNFs Water-based mud Low temp and low pressure Control in fluid loss and improve-
ment rheological properties of 
the fluid

[56]

0.8% by weight CNP Water-based mud 110 − 140 ◦C Improvement in temperature 
stability

[57]

2.5% by weight Nanostarch Water-based mud High temp and high pressure Control in fluid loss and improve-
ment rheological properties of 
the fluid

[58]
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power law model, Bingham plastic model, Hershel-Buck-
ley model, and Casson model. The model that shows the 
shear stress-shear rate analysis is sine qua non for pressure 
drops and hydraulic calculation is best rheological model 
[89]. The two most vital rheological properties of drill-
ing muds are thixotropic and yield stress [90] and model 
that predict yield stresses are viscoplastic models or yield 

stress models. The yield power law also known as Her-
schel-Buckley rheological model accurately predicts mud 
rheology and offers many advantages over the Bingham 
plastic and power law rheological models because it more 
accurately characterizes mud behavior across the entire 
shear rate [91].

4.1 � Thermal conductivity

The thermal conductivity of fluids plays an important role 
in measuring thermal performance. The rate of heat trans-
port in a fluid is substantially determined by the thermal 
conductivity of the fluid [92–94]. The thermal conductivity 
of drilling fluids increases as the fraction of nanoparticles 
in working fluids increases. Furthermore, due to Brownian 
motion at higher temperatures, the thermal conductivity 
value of a nanofluid is reported to be greater [95]. The ther-
mal conductivity of working fluid is also improving as the 
surface area of nanoparticles increases. Smaller grain size 
nanoparticles will have a larger total surface area than nano-
particles with larger grain sizes in this situation. As a result, 
the area of contact between the nanoparticle surface and 
the base fluid will grow. Similarly, utilizing particle mor-
phologies that increase the conducting area would result in 
increased thermal conductivity for the same type of nano-
particles [96]. Table 6 shows thermal conductivity variation 
of several nanoparticles under different operating conditions.

It fits well with the Maxwell model in the low parti-
cle volume fraction because the particle volume fraction 
is unlimited [105–107]. The Wasp model, on the other 

Table 4   Different types of 
nanoparticle used in drilling 
fluids

Authors Types of nanoparticles Fluid loss 
volume (ml)

Initial gel 
strength (Pa)

10 min gel 
strength 
(Pa)

Gbadamosi et al. [59] Silica 5.1 7 8
Perween et al. [60] BiFeO3 7.8 13 20
Cheraghian [61] Silica 10 13 32
Zhang et al. [62] CaCO3 5.7 –- –-
Smith et al. [63] Al2O3 6 11 40
Lucky and Johnson [64] Yttrium oxide –- 15 16
Ghasemi et al. [65] Al2O3 –- 15 39
Jain et al. [66] Silica 7.2 3.5 6.5
Aftab et al. [67] ZnO 4.7 6 9
Mao et al. [68] Silica 4.8 –- –-
Dejtaradon et al. [69] ZnO 14 15 37
Abdo and haneef [70] Montmorillonite 7 –- 21.5
Abdo et al. [21] Sepiolite 8 –- –-
Kumar [71] MWCNT 5 –- 7
Ismail [72] Nanosilica 7 –- 6
Jain et al. [73] MWCNT 9 4.5 7
Husin et al. [74] Silver 2 –- –-

Fig. 4   Different vital thermophysical properties
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hand, is identical to the Maxwell model, albeit it does 
not specify a particle shape [106]. Thermal conductivity 
models are also described in the literature [108].

4.2 � Viscosity

The most significant thermophysical variables determining 
system pressure drop is viscosity [87]. Nanoparticles are 

dispersed in base fluids; the viscosity value increases in all 
circumstances. A high viscosity rating, on the other hand, is 
not appropriate for fluid systems. The viscosity change of drill-
ing fluids has been the subject of several investigations [109]. 
Mahbubul et al. [110]conducted a thermophysical investiga-
tion of the Al2O3-R141b nanorefrigerant. The studies were 
carried out in fractions of 0.1–0.4% at temperatures ranging 
from 5 to 20 ◦C . At a fraction of 0.4%, the greatest viscosity 

Table 5   Thermophysical 
properties of various 
nanoparticles [88]

Nanoparticle Purity (%) Size of Parti-
cle (nm)

Density (kg/m3) Thermal conductiv-
ity (W/m K)

Specific 
heat (J/kg 
K)

Al2O3 99.99 4 3900 40 880
99.5 78
95 48
99.95 136

TiO2 99.99 28 3900 8.4 692
99.99 45
99.5 200

CuO 99.5 77 6320 32.9 550.5
SiO2 98.5 55–75 2220 1.4 745
ZnO 99.5 30–50 5630 27.2 494
Fe2O3 99.6 28 5240 8.4 628
ZrO2 99.95 30 5560 1.85 456
MgO 99.5 18 3580 61.9 921
HBN 99.85 65–75 2100 400–751 795

99.7 790

Table 6   Thermal conductivity variations under different operating conditions

Authors Size of 
nanoparticle 
(nm)

Temperature (°C) Particle fraction Findings

Kedzierski et al. [97] 20–40 15–45 0.1–0.4
(vol. %)

The thermal conductivity was reported to be 0.2 W/m 
K

Ohunakin et al. [98] 13 29–32 0.2
(g/L)

Thermal conductivity values increased by 2.75% 
and 0.45% in TiO2-MO and SiO2 nanolubricants, 
respectively

Zawawi et al.[99] 13–30 30–80 0.02–0.1
(vol. %)

At 30 °C, the thermal conductivity of the 0.1% frac-
tion improved by 2.41%

Sanukrishn a and Prakash [93] 13 20–90 0.07–0.6
(vol. %)

At a concentration of 0.6% at 20 °C, the greatest ther-
mal conductivity value was 1.48 W/m K

Zawawi et al. [100] 13–100 30–80 0.02–0.1
(vol. %)

At 30 °C, the thermal conductivity of a 0.1% 
Al2O3-TiO2/PAG nanolubricant rose by 2.41%

Sanukrishna and Prakash [101] 21 20–90 0.07–0.8
(vol. %)

The thermal conductivity of 0.6% SiO2-PAG nanolu-
bricant is 1.31 times than pure lubricant

Gill et al. [102] 5–15 32 0.2–0.6
(g/L)

In varied percentages of TiO2-MO nanolubricant, the 
thermal conductivity gain varies between 14.37 and 
41.25%

Narayanasarma and Kuzhiveli [103] 5–20 25–100 0.01–0.2
(vol. %)

At 85 °C, the thermal conductivity of 0.2% SiO2-POE 
nanolubricant was calculated to be 1.109 W/m K

Alawi et al. [104] 15 10–35 1–4
(vol. %)

Thermal conductivity increased by 28.88% at 4% frac-
tion on 35 °C
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value was attained [95]. Several studies by various authors on 
viscosity presented in Table 7.

TiO2 and Al2O3 had viscosities about 3 and 200 times 
higher than the base liquid at higher concentrations (10%) 
[112]. The most commonly used viscosity models are also 
discussed in the literature [108] for viscosity calculations.

4.3 � Density

The heat transfer capabilities of drilling fluids are influenced 
by density [113]. In general, introducing nanoparticles to a 
base liquid lowers the specific heat and raises the density. 
The density variation has been the subject of several studies 
as presented in Table 8.

4.4 � Specific heat capacity

The amount of energy required to raise the temperature of 
a unit mass of matter by 1 °C is known as the specific heat 

capacity, represented in metric units as J/g K. Unfortunately, 
the addition of NPs to BF reduces the specific heat capacity 
of the resulting NF [96]. The specific heat capacity of various 
fluids is presented in Table 9.

5 � Mechanical properties

The mechanical properties of NP-based drilling fluids should 
be considered during its operation, and it includes rheologi-
cal properties and thermal and wellbore stabilities. Boyou 
et al. [115] used various concentrations of NPs of silica for 
drilling system to enhance the lift forces. They investigated 
different NPs and different concentrations of silica NPs. The 
study concluded that NPs enhanced the performance of drill-
ing system and cutting operations as well. Wang et al. [116] 
mixed magnesium, aluminum, and silicate NPs in drilling 
fluid to measure the performance. The rheological as well as 
thermal stabilities were checked. The results concluded that 

Table 7   Viscosity variation under various conditions for different nanoparticles

Authors Size of 
nanoparticle 
(nm)

Temperature (°C) Particle Fraction Findings

Kedzierski et al. [97] 20–40 15–45 0.1–0.4
(vol. %)

The viscosity of ZnO-POE dropped as the temperature increases

Ohunakin et al. [98] 13 29–32 0.2
(g/L)

In SiO2 and TiO2, viscosity values increased by 0.99% and 6.09%, 
respectively

Zawawi et al
[99]

13–30 30–80 0.02–0.1
(vol. %)

At 60 °C, viscosity augmented 9.71% for 0.1% particle fraction

Kumar et al
[111]

20 10–60 0.2–1
(wt. %)

At 60 °C, the viscosity value enhanced by 17% for 1% particle 
fraction

Zawawi et al
[100]

13–100 30–80 0.02–0.1
(vol. %)

20.50% increase in viscosity value observed

Sanukrishna
and Prakash
[101]

21 20–90 0.07–0.8
(vol. %)

Nanolubricant has a viscosity that is ten times higher than pure 
lubricant

Gill et al
[102]

5–15 32 0.2–0.6
(g/L)

The viscosity surged in the 0.2% particle fraction and continued to 
rise as the particle fraction was raised

Narayanasarma and 
Kuzhiveli [103]

5–20 25–100 0.01–0.2
(vol. %)

The nanolubricant’s viscosity has direct relation with particle frac-
tion and inverse with temperature

Alawi et al
[104]

15 10–35 1–4
(vol. %)

At 35 °C, the viscosity raised 12.63% for 4% particle fraction

Table 8   Density variation of drilling fluids at different conditions

Authors Concentration Temperature Nanoparticle 
size (nm)

Remarks

Alawi and Sidik [114] 1–5 (vol. %) 27–52 20 The density dropped as the temperature rose. The 
maximum density was found at 5%

Mahbubul et al. [110] 5 (vol. %) 10–35 15 Density augmented by 11%
Kedzierski et al. [97] 0.1–0.4 (vol. %) 15–45 20–40 The density dropped as the temperature was increased
Alawi et al. [104] 1–4 (vol. %) 10–35 15 At 35 °C, density increased by 11.54% at 4% fraction
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NP-based drilling fluids decreased use of traditional one. 
Pourkhalil et al. [117] investigated ZnO NPs in drilling fluid. 
The effect of ZnO on a shale core was checked by SEM as 
depicted in Fig. 5. They concluded that NP additives lead to 
blocking pore spaces in shale samples.

6 � Challenges

The benefits of NP-based drilling fluids have a great impact 
on enhancing the performance of drilling systems. However, 
there are also many issues related to it which should be kept 
in mind during its application. Some of the major issues are 
[118][118][118]:

•	 NP cost should be kept in mind while using it which 
have a great influence on the project execution.

•	 The preparation and production of NPs are also very costly, 
and this factor should be considered while making it.

•	 The various conditions that affect the properties of NPs 
are also kept in mind during field operation.

•	 The chemical composition can be changed during opera-
tion, and stability or changing of structure may occur 
which should be considered during operation.

•	 Very less studies have been found related to the analysis 
of NPs in filed operation, so safety hazards must be con-
sidered before using it.

7 � Conclusions and future recommendations

The major concluding remarks of this review are:

•	 Drilling fluids or muds were introduced that performed 
various tasks together with cooling. In petroleum engi-
neering, drilling technology is linked to issues including 
significant loss of fluid, inadequate cleanup of hole, and 
pipe clogging.

•	 Various types of nanoparticles used in literature like 
CNTs, graphene nanoplates, cellulose type, and other 
hybrid particles are used in drilling fluids to improve the 
performance of drilling fluids. The concentration of NPs 
used in the literature was approximately 3–5 %.

•	 Drilling fluids of different types are proved to be efficient 
in drilling industry as these fluids travel through the sys-
tem using pumps known as mud pumps.

•	 The different thermophysical properties like thermal con-
ductivity, viscosity, and specific heat capacity of drilling 
fluids are also discussed in this review to conclude the 
performance of drilling fluids.

•	 The enhancement in value of thermal conductivity was 
observed to be increased by 10–15 % . The increment 
in viscosity was measured to 8–12 % . The mechanical 
properties of NP-based drilling fluids also improve the 
performance.

•	 More various types of drilling fluids should be inves-
tigated in the future for better performance of drilling 

Table 9   Specific heat capacity of various fluids and particles

Specific heat, kJ/kg K

Common base fluids
  Distilled water (DI) 4.18
  Ethylene glycol (EG) 2.35
  Engine oil (EO) 1.88
  Silicon oil (SO) 1.51
  Ethylene glycol–water (1:1 vol.) 3.28

Common nanoparticles
  Magnesia MgO 0.955
  Aluminum Al 0.877
  Copper 0.385
  Silver 0.234
  Alumina 0.775
  Copper oxide 0.525
  Graphene 0.643–2.100
  Silica SiO2 0.680–0.745
  Titania TiO2 0.692–0.711

Fig. 5   SEM of shale cores a 
before NP additive and b after 
adding ZnO NPs [117]
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fluids. Hybrid combination could be proved to be more 
efficient than the used one.

•	 The production and manufacturing costs are also too high 
so low-cost nanoparticle-based drilling fluids should be 
explored by future researchers which will bring a signifi-
cant cost reduction and uptake the importance of drilling 
fluids.

Data availability  There is no data available for this work.
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