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Abstract
Linear tool path with the inherent shortcoming of tangential and curvature discontinuities leads to poor machining efficiency 
and surface finish. A lot of local corner smoothing methods which inset a tiny spline curve at the corners have been proposed 
in literature. However, there exists potential overlap of the two adjacent spline curves while smoothing, and still no optimal 
solution to fully use the segment length of each corner while eliminating the overlaps. To optimally eliminate the overlaps 
and smooth the transition curve curvature in real time, a symmetrical non-uniform rational B-spline (NURBS) curve transi-
tion based on look ahead optimal method is proposed in this paper, by scanning a set of unconstrained pre-cornering transi-
tion curve information, analysing the overlap type and backward determining the optimal transition length with curvature 
extreme smoothness in consideration, thus fully use the linear segment length of each corner and fully increasing the feedrate 
at the corners. G2 continuity, analytical expression of the curvature extreme, approximation error constraint, and real-time 
performance are considered simultaneously in this paper. Simulation and real machining experiments are made to compare 
with the existing symmetrical rounding algorithms, the results show that the proposed method has a significant curvature 
decrease of 17.64% and 4.44% improvement of efficiency, and the curvature distribution of the adjacent curves are balanced, 
thus improved the machining velocity smoothness. In addition, the real machining experiment results validate the proposed 
method can work well in 125 μs real-time control period CNC system.
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Nomenclature
Li
left

	� The remained length of ith 
segment after transition

di,0	� Length of control polygon
ai,0, ai,1	� Unit tangential vector
β	� Corner angle of two adjacent 

linear segments
km	� Curvature extreme of the ith tran-

sition curve

εi	� Geometric error of the ith transi-
tion curve

Ci(u)	� Transition curve
Pi−1,Pi,Pi+1,Pi+2	� Point of linear tool path
Qi,0,Qi,1,Qi,2,Qi,3,Qi,4	� Control points of NURBS curve
wi,0,wi,1,wi,2,wi,3,wi,4	� The weights of control points of 

NURBS
Li,0, Li,1, Li+1,0	� Transition lengths of transition 

curve
�m	� The maximum allowed geometric 

errors

1  Introduction

With the rapid development of modern aviation, aerospace, 
and model industries, a large number of complex curve and 
surface modelling are used in the parts design. The para-
metric curves, such as polynomial splines, Bézier, B-spline, 
and NURBS, are usually used to describe these mechanical 
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parts in computer aided design (CAD) software, which are 
also the ideal representations of the tool paths in free-form 
machining. However, most of tool paths are still represented 
as series of linear segments (G01) and circular segments 
(G02 or G03) which discretizing the parametric curves under 
the predefined tolerance in computer aided manufacturing 
(CAM) software [1]. Due to the tangency and curvature dis-
continuities of the linear and circular tool paths at the joint 
points, frequent decelerations and accelerations may lead to 
poor machining efficiency and accuracy [2]. To solve these 
problems, smoothing the discontinuous linear segments is 
very significant for ensuring the high order geometric conti-
nuity of the tool paths and then achieving good surface qual-
ity together with high processing efficiency [3]. The toolpath 
smoothing methods can be classified into local smoothing 
[4, 5] and global smoothing [6, 7] according to the smooth-
ing scope, but in practical, local smoothing is much more 
stable, the approximation can be control accurately, and real-
time implementable compared to global smoothing.

Typically, the local curve–based methods, which inset a 
tiny parametric curve, to blend the adjacent linear segments, 
such as Bézier splines [8, 9], B-spline [10, 11], NURBS 
spline [5, 12], Pythagorean-Hodograph (PH) spline [3, 13], 
Clothoid curve [14], airthoid spline [15]. According to the 
shape of the inserted curve, the local smoothing can be clas-
sified into symmetrical methods and asymmetrical meth-
ods. However, when smoothing the short-segmented tool 
paths with local curve–based methods, the overlap between 
the two adjacent transition curves is inevitable. Most of the 
symmetrical methods are imposing excessive constraints 
on the transition lengths or by reducing proportionally their 
approximation error to the corners with curvature increas-
ing sacrifice, thus, to overcome the potential overlaps, while 
the asymmetrical methods, which can adjust independently 
the transition lengths on both sides of a corner, to eliminate 
the overlaps and achieve a smoother tool path, but without 
analytical solution to obtain the curvature extreme makes it 
difficult to implement in real-time CNC machining.

Jin et  al. [9] proposed a double G2 continuous cubic 
Bézier curves for five-axis linear tool path to overcome the 
first-order discontinuity at the corners of linear segments, 
with the approximation error constraint, the parameterized 
synchronization constraint, and continuous curvature con-
straint into consideration; however, the transition length is 
limited no more than half the length of the corresponding 
segment, which is the so called fixed-length constrained 
rounding (FLCR) method. With the same FLCR method, 
Zhao et al. [16] developed an analytical decoupled cor-
ner smoothing method by inserting an asymmetric cubic 
B-spline for tool tip position. Zhang et al. [5] proposed 
a double cubic NURBS with 5 control points and related 
weights, which satisfies the curvature continuous and accu-
racy constraint for G01 tool path, the control points, and 

weights are parameterized to be symmetrical. To solve 
the overlap problem while improving the kinematics per-
formance of machine tools, Zhang et al. [17] desired two 
quartic B-spline to smooth the tool tip and tool orientation 
respectively for five-axis linear segments; among them, the 
tool tip position is smoothed with fixed-length constraint 
symmetrical curve, while the tool orientation is asymmetri-
cal curve. G3 continuity is guaranteed along the entire tool 
path. To further consider the kinematics performance of 
machine tools, a quintic B-spline curve local corner smooth-
ing with the fixed-length constraint was proposed in [10, 
18], which can ensure high-order continuity of transition 
curves and steady motion of machine tools. To solve the 
arclength problem, Huang et al. [15] the first time proposed a 
“airthoid” curve to smooth the corners of the G01 tool path. 
The clothoid spline is an arclength-parameterized spline; 
thus, the feedrate fluctuation is eliminated in feedrate sched-
uling phase; this is an advantage over other none arc-length 
parameterized spline, but the maximum transition length is 
also restricted to less than half length of the original linear 
segment. Yang et al. [19] extended the fix-length constraint 
quintic B-spline to tool path smoothing of robotic machining 
and achieved the improvement of robot motion smoothness 
and tracking accuracy. To achieve smaller curvature, dif-
ferent from the traditional corner rounding methods whose 
control points of transition curves lie in linear segments, 
Xu and Sun [20] proposed a circumscribed corner round-
ing method based on fixed-length constraint with a part 
of control points outside of the corner to modify the path 
curvature and feedrate at the corners. Indeed, simply con-
straining the transition length can avoid the overlaps between 
adjacent transition curves, but this FLCR method is exces-
sively restrictive, even if the transition length exceeds half 
the linear tool path segment without overlaps, it also has 
to shrink to the fixed length, which sacrifices the freedoms 
of transition curve and restricts the feedrate at curvature 
extreme point of the transition curve to a lower one. For the 
purpose of alleviating the excessive constraint on transition 
length, Du et al. [21] reformulated a quadratic equation with 
respect to transition length to locally optimize the overlaps 
problem; the joint-point of two adjacent transition curve is 
obtained analytically; however, the overlaps may continually 
happen in the following corners; they also have effect on the 
previous transition curves, but this is neglected.

Different from FLCR method to solve the overlap prob-
lem, some attempts focus on eliminating the overlaps by pro-
portionally reducing the approximation error to the corners, 
which is also known as the proportional adjustment (PA) 
strategy. Zhao et al. [22] proposed a curvature-continuous 
B-spline with five control points to blend the short linear 
tool path. By recursive half one subdivision to proportion-
ally shorten the two adjacent transition length until the 
overlap eliminated, thus to obtain an suboptimal solution of 
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transition length. To archive higher curvature continuity, Fan 
et al. [23] proposed a symmetrical G3 continuously quartic 
Bézier curve with 9 control points to round the corners; the 
transition curve overlaps were eliminate with PA strategy but 
different from Zhao et al. [22]; a smaller than 1 but larger 
than 0 factor was used to recursively shorten the two adja-
cent transition length in same proportion other than half one 
subdivision, which can get more accurate result if the factor 
is near to 1, but in sacrifice of computing time. These PA 
methods only consider the adjacent two transition curve. 
However, the transition length adjusted proportionally also 
couples possibly with the next adjacent transition lengths 
when the overlap continuously appears in the tool path. It 
may happen that the linear segment would be left when 
dealing the overlap of the followed corner although it may 
seems fully used in dealing with the current overlap. Moreo-
ver, unbalanced ratio of curvature extreme of the adjacent 
curves may happen; this is a worse situation. Zhang et al. 
[24] proposed a method to search the suboptimal scaling 
factor of each corner, which relates to the transition length 
and smoothing geometric error of the transition curve, by 
recursively increase the scaling factor of each transition 
curve with a small increment until the specified constrains 
not be satisfied anymore, then frozen this factor, until all the 
factors respected to each corner have been frozen. This is a 
good solution for short linear segments; however, it is time-
consuming especially when dealing with long segments and 
large smoothing error allowance, and the algorithm accuracy 
is also affected by the increment.

Different from symmetrical methods that the transition 
length of both side of the corner must keep the same length, 
asymmetrical transition methods can adjust independently the 
transition length on both sides of corner. Shi et al. [25] pro-
posed an asymmetrical quintic PH spline to smooth the G01 
blocks for improving the feedrate fluctuation and machining 
efficiency, although the transitional lengths at the corners can 
be obtained analytically with the approximation error, but the 
potential overlap was not considered especially when deal-
ing with the short-segmented tool path. Wan et al. [3] con-
structed an asymmetrical PH spline by introducing two steps 
to shorten the spline and connect the adjacent two splines. In 
step 1 by shorting the spline whose control polygon shares the 
longer segment to satisfy a specified equation, if the overlap 
still occurs after step 1, then in step 2, a proportional factor is 
implicated to shorten the splines with same proportion, thus 
eliminate the overlap; this step shorten the adjacent transi-
tion length, also can be called PA strategy. Yan et al. [11] 
proposed an unconstrained pre-cornering transition model to 
analyse the effect of tool path geometry on transition overlap, 
and classified the overlap into 3 types according to the transi-
tion length and the their position in the segments; then, two 
overlap eliminating strategies were adapted to adjust the con-
trol points; thus, the asymmetrical B-spline was constructed. 

The approximation error was proved within the user-specified 
approximation error, but the curvature extreme point of the 
asymmetrical curve was not given; this is also an inherent 
short come of asymmetrical curve, no analytical solution to 
get the curvature extreme. Although the transition length on 
both sides of corner can adjust independently to eliminate the 
overlaps, but the following corners are not considered in the 
existing proposed methods, so the solution to distribute the 
shared segment length to the adjacent transition curve is not 
optimal.

Compared to asymmetrical curve, the curvature extreme 
of symmetrical curve is just in the middle of the curve; it can 
be analytically expressed. Another advantage is to estimate 
the spline length. An obvious difficulty of smoothing methods 
based on Bézier, B-spline, or NURBS is that there is no ana-
lytical relationship between the arc length and its parameters; 
an iterative numerical algorithm is needed to estimate the 
curve length before velocity scheduling [26]. Then, for sym-
metrical curve, the iterative algorithm only need run half of 
the curve; by doubling the result can get the estimate length of 
the curve; this is an significant advantage in real-time smooth-
ing and interpretation. However, the existing FLCR method 
cannot fully use the segment length in overcoming potential 
overlaps; the PA strategy without taking the following corners 
in consideration while dealing overlaps may cannot fully use 
the linear segment length, and unbalanced curvature extreme 
ratio between the adjacent transition curves can happen, so 
there are still works to do in symmetrical curve transition, 
achieving optimal transition length solution in real time. The 
main contribution of this paper is proposed an optimal solution 
to eliminate the potential overlaps of adjacent the transition 
curves, by look ahead analysing the overlaps situation of a set 
of continuously corners, and backward optimizing the transi-
tion length of each corner with approximation error constraint, 
segment lengthen constraint, and curvature extreme ratio of the 
adjacent curves in consideration, thus fully use the linear seg-
ment length of each corner, avoid curvature extreme polariza-
tion at the same time, and decrease average curvature as much 
as possible under the specified approximation error constraint, 
thereby fully increasing the feedrate at the corners. This novel 
look ahead optimal method has no complex mathematical 
operation in look ahead scanning and backward optimization 
process and makes it easy to implement in real-time CNC 
system; the relationship of curvature extreme and transition 
length is mathematically analysed; the curvature extreme is 
also provided mathematically in this paper.

2 � Symmetrical NURBS curve transition

In consideration of G2 continuity which can guarantee the con-
tinuities of tangency and curvature so that the fluctuation in 
feed, acceleration and jerk can be improved greatly [5], a cubic 
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NURBS is adapted in this paper to smooth the linear segment 
tool path, as illustrate in Fig. 1.

2.1 � Construction of cubic NURBS curve

According to Les and Wayne [27], the cubic NURBS with five 
control points in this paper is given as:

where j = 0, 1, 2, 3, 4 ; Qi,j are the control points; wi,j are the 
weights, particularly, wi,0 = wi,4 , wi,1 = wi,3 ; and the node 
vector is U = {0, 0, 0, 0, 0.5, 1, 1, 1, 1} . Meanwhile, the con-
trol point Qi,2 is located on tool point Pi; Qi,0 , Qi,1 and Qi,4 ,  
Qi,3 are symmetrically located in linear segments Pi−1Pi and 
PiPi+1 , and satisfy the following conditions:

(1)Ci(u) =

∑4

j=0
Nj,3(u)wi,jQi,j

∑4

j=0
Nj,3(u)wi,j

(2)

⎧
⎪⎪⎨⎪⎪⎩

Nj,3(3) =
u−uj

uj+3−uj
Nj,2 +

uj+4−u

uj+4−uj+1
Nj,2

Nj,0(u) =

�
1, if uj ⩽ u ⩽ uj+1
0, otherwise

def ine
0

0
= 0

(3)Li,0 = |Qi,0Pi| = |PiQi,4|

where Li,0 presents the transition length of the NURBS 
curve. According to [28], 1.4 ≤ Li,0∕di,0 ≤ 1.7 gives satisfy-
ing result in terms of machining time minimization. In this 
paper, the radio was set to 1.5; then, Eqs. (3) and (4) can be 
rewritten as:

then the five control points of the cubic NURBS can be 
given as:

where the ai,0 and ai,1 are the unit vectors of two adjacent 
segments.

2.2 � Approximation error of transition curve

As illustrate in Fig. 1, the proposed cubic NURBS curve 
will cause the geometric error with respect to the original 
G01 linear segments which known as smoothing error. Since 
the inserted curve is symmetrical about the bisector corner, 
the maximal approximation error and curvature extreme all 
appear at the middle of the NURBS curve Ci(u), so the maxi-
mal approximation error can be expressed as �i = |PiCi(0.5)| , 
calculated as Eq. (8); the derivation is given in Appendix A. 
And the curvature extreme km can be analytically expressed 
as Eq. (9); the derivation is given in Appendix B.

Assume the maximum allowed geometric error of the 
CNC system is denoted as εm, thus the approximation error 
must satisfy �i ≤ �m , then the transition length Li,0 is limited 
by:

(4)di,0 = |Qi,1Pi| = |PiQi,3|

(5)Li,0 = 1.5di,0 = 1.5|Qi,1Pi| = 1.5|PiQi,3|

(6)|Qi,1Pi| = |PiQi,3| = di,0 =
2

3
Li,0

(7)

⎧⎪⎪⎨⎪⎪⎩

Qi,0 = Pi − Li,0ai,0
Qi,1 = Pi −

2

3
Li,0ai,0

Qi,2 = Pi

Qi,3 = Pi +
2

3
Li,0ai,1

Qi,4 = Pi + Li,0ai,1

(8)�i =
2wi,1Li,0sin(

�i

2
)

3(wi,1 + wi,2)

(9)km =
wi,2sin(�i)

wi,1Li,1cos
3(

�i

2
)

(10)Li,0 ≤
3(wi,1 + wi,2)�m

2wi,1sin(
�i

2
)

Fig. 1   The cubic NURBS transition model
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Meanwhile, the sum of the transition length of the two 
adjacent curves must not exceed the length of the shared 
linear segment length as expressed in Eq. (11):

3 � Transition length optimization

The maximal transition federate can be reached if the curva-
ture extreme of every transition curve is the smallest. Once 
the transition curve type is defined, the curvature of the tran-
sition curve has to do with the constraint transition length 
and the corner angle of the adjacent linear segment. Nor-
mally, the corner angle of the adjacent linear segment will 
keep the same as the original NC, so the transition length 
Li,0 is limited by Eq. (10).

As illustrate in Fig. 2, in this literature, the optimal solution 
is to maximize the linear segments of each corner or minimize 

(11)
{

Li−1,1 + Li,0 ≤ |Pi−1Pi|
Li,1 + Li+1,0 ≤ |PiPi+1|

(12)
�

min
∑n

i=1
Li
left

min
∑n

i=1
(Li+1,0 − Li,1)

the remained linear segments as expressed in Eq. (12); at the 
same time, the adjacent corner will not be polarized; that is to 
say, one corner consumed too much linear length, while the 
other only very short length can be used should not happen.

As can be seen from Eq. (9), the curvature extreme km is 
inversely proportional to transition length. Unfortunately, this 
polarized case is inevitable in current PA strategy and asym-
metrical methods. As illustrate in Fig. 3, according to Eq. (10), 
under the same approximation error, the smaller the corner 
angle of two adjacent linear segments requires the longer 
transition length, and generate the smaller curvature extreme, 
on contrary the larger corner angle cause larger curvature 
extreme, and in considering the real machining kinematic con-
straint, the larger curvature extreme, requires the smaller feed 
speed. So, in processing short linear segment smoothing, one 
need to keep balance the transition length and curvature distri-
bution, so that the feed speed sharp dropping can be mitigate 
in the sharp corner. In this paper, to keep balance the transition 
length and curvature distribution is realized by minimizing the 
difference of the transition length of the adjacent two corners 
when eliminating the overlaps, as expressed in Eq. (12).

3.1 � The working of optimization method

In the case of Fig. 3a, the approximation error constraint tran-
sition lengths satisfy Eq. (13); then, there no overlap happen 
in these adjacent two corners, so, in the proposed method, the 
optimal transition length in corner ① will keep as the approxi-
mation error constraint transition length, instead of shrink it 
to 0.5|PiPi+1| like FLCR.

In the case of Fig. 3b, the approximation error con-
straint transition lengths satisfy Eq. (14); if just consider 

(13)
{

Li,0 + Li+1,0 < |PiPi+1|
Li,0 > 0.5|PiPi+1|

Fig. 2   Length constrained corner smoothing

iP

1iP
1iP

iP

iP
1iP

(b) (c)

,0iL

iP

1iP
1iP

(a)

,0iL ,0iL

Fig. 3   Transition length optimization. (a) transition curve without overlap; (b) transition curve maybe have overlap; (c) transition curve abso-
lutely have overlap
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the approximation error constraint transition length, the 
overlap will happen here, but in the proposed method, 
after look ahead processing, the pre-estimate transition 
length in corner ② may not over than 0.5|Pi+1Pi+2| ; thus, 
the optimal transition length of corner ① may keep as the 
approximation error constraint transition length, if need 
shrinking; nevertheless, the segment PiPi+1 is fully used 
in this case.

In the case of Fig. 3c, the approximation error con-
straint transition lengths satisfy Eq. (15), here absolutely 
occurs overlap. After look ahead processing, here assume 
the pre-estimate transition length corner ② is L�

i+1,0
 , then 

the optimal transition length L′

i,0
 of corner ① is given by 

Eq. (16), thus mitigate curvature polarization of these 
two corners, since corner ② is first considered, unlike 
PA strategy give too much portion of segment PiPi+1 to 
corner ① since the corner angle of corner ① is smaller 
than corner ②.

To real time the algorithm, and practical in long and 
short linear segments, the look-ahead segment number 
must be limited; there are two factors to stop the scan-
ning process:

(1)	 the segment number reach the pre-defined maxim num-
ber.

(2)	 the following segments have no more influence on the 
previous transition curve; it happens when the two adja-
cent curves satisfy Li

left
> 0.

In this optimal model, once factor (1) is satisfied; 
then, the last optimal transition length lopt was set to 
mim{0.5|PnPn+1|, Ln,1} , then backward to determine the 
previous optimal transition length. Once the criteria (2) is 
satisfied, the last optimal transition length lopt was set to the 
approximation error constraint length Li,1, then backward to 
determine the previous optimal transition length, thus can 
full use the linear segment, without linear parts remain. The 
transition length optimal algorithm is given in Appendix C.

(14)

⎧
⎪⎨⎪⎩

Li,0 + Li+1,0 > �PiPi+1�
Li,0 > 0.5�PiPi+1�
0.5�PiPi+1� > �Pi+1Pi+2�

(15)

⎧⎪⎨⎪⎩

Li,0 + Li+1,0 > �PiPi+1�
Li,0 > 0.5�PiPi+1�
0.5�PiPi+1� < �Pi+1Pi+2�
Li,+1,0 > 0.5�Pi+1Pi+2�

(16)
{

L�
i,0

= ||PiPi+1
|| − L�

i+1,0
, L�

i+1,0
< 0.5||PiPi+1

||
L�
i,0

= 0.5||PiPi+1
||, others

4 � Experimental works and result

4.1 � Experimental features

The proposed method has been coded in VS2010 using 
C +  + programming and implemented on a PC with 
i7-8550U CPU and 8 G RAM for simulation, and the 
method has been coded in Xilinx SDK using C program-
ming and been implicated in ARM architecture-based 
CNC system, which runs in the CPU0 of ZYNQ7020 
(667 MHz) with 125-μs control period, for real machin-
ing for testing and validation purpose. In our experiments, 
corner rounding for the typical Pentagram-shaped tool 
path and the coronal tool path is tested in simulation, and 
corner rounding of bat-shaped tool path is tested by real 
machining experiment. In these tests, the proposed method 
is compared with the classical FLCR method [5] and PA 
strategy [23] for rounding corners. The Pentagram-shaped 
profile as is shown in Fig. 4a, consists of 10 corners, 5 
obtuse corners, and 5 acute corners, and all the linear seg-
ments with the same length. The machining starts from 
the top corner and in clockwise direction, so only 4 acute 
corners and 5 obtuse corners are rounded in this experi-
ment. The coronal tool path is shown in Fig. 7a with 160 
corners and typical short linear segments, starts from the 
bottom right of the top coronal and in counterclockwise 
direction, and because the NC tool point only keeps three 
decimal places, the coronals are not totally the same. The 
real machining butterfly tool path has 198 corners as show 
in Fig. 12a; the machining test starts from the most top 
point of the shape. To ensure the tested methods share the 
kinematically similar performances, a complete S-shaped 
federate scheduling method [29] is used to schedule the 
feedrate profile of the smoothed tool path. The parameters 
used in characterizing the kinematics performance of the 
tool paths for testing are listed in Table 1.

4.2 � Comparison with the FLCR method

In this experiment, at the acute corners, the proposed and 
the FLCR obtain the same curvature extreme as can be 
seen in Fig. 5; it is because the approximation error con-
straint transition length in acute corners are less than half 
length of the linear segment, so while implementing seg-
ment length constraint processing, these two methods 
made no adjustment to the approximation error constraint 
transition length. For the FLCR method, the approxima-
tion error  constraint transition length not exceed half 
length of the adjacent two linear segment, so no need to 
adjust it, for the proposed method, although the sum of 
the approximation error constraint transition length of the 
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adjacent acute corner and obtuse corner exceed the shared 
linear segment, but because the approximation error con-
straint transition length not exceed half length of the linear 
segment, so the optimal transition length of the acute cor-
ners keeps the same as the approximation error constraint 
transition length.

However, there are great difference between these two 
methods while rounding the obtuse corners, which can be 
seen in the magnified view of the NC segment and rounded 
tool orbit in Fig. 4c, and the curvature extremes of tran-
sition curves at each corner are showed in Fig. 5. For the 
FLCR method, the transition lengths cannot overpass half 
of the linear segments, even when there will be linear seg-
ment left, while the proposed method can fully use the linear 
segments to achieve lower curvature at the obtuse corners. 
By analysis, the proposed method achieved a significant 
curvature decrease of 17.64%. From the view of feedrate 
profile in Fig. 6, it is very clear that the decrease of curvature 
results in the increase of federate substantially. This makes 
the machining time decreased from 998.875 to 979.25 ms; 

without doubt, the proposed optimal method improved the 
machining efficiency further. In the aspect of algorithm com-
plexity, one can see from the given pseudo code in Appendix 
C, there is no complex mathematical operation or recursively 
calculation compared to FLCR.

4.3 � Comparison with the PA strategy

In this simulation comparison, a coronal tool path is used to 
compare the proposed method with the PA strategy in [23]. 
With the predefined approximation error tolerance as show 
in Table 1, the transition curve overlap happened in every 
coronal. Thus, the overlap eliminating process between the 
proposed method and PA strategy is compared in detail to 
demonstrate the advantage of the proposed method in this 
paper. The smoothed tool path by proposed method and PA 
strategy are pictured in Fig. 7b. Figure 7c shows the par-
tial magnified view of tool path. To compare the control 
points distribution of PA strategy and the proposed method, 
two partial enlarged views of control points are pictured in 
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proposed method and FLCR method. c Magnified view of smoothed tool path

Table 1   Parameters used in path 
smoothing and characterizing 
the kinematics performance

Parameter Pentagram-shaped 
tool path

Corona tool path Butterfly tool path

Approximation error 0.8 mm 20 μm 10 μm
Chord error 0.1 μm 0.1 μm 0.1 μm
Tangential acceleration limitation 2000 mm/s2 1000 mm/s2 1000 mm/s2

Normal acceleration limitation 2000 mm/s2 1000 mm/s2 1000 mm/s2

Normal jerk limitation 80,000 mm/s2 40,000 mm/s2 80,000 mm/s2

Programmed feedrate 5000 mm/min 600 mm/min 6000 mm/min
Interpretation period 125 μs 125 μs 125 μs
Sampling period 125 μs 125 μs 125 μs
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Figs. 8 and 9. The smoothed curvature extreme of each cor-
ner is pictured in Fig. 10; it is very clear that the proposed 
methods in some corners have larger extreme than PA strat-
egy, while in some corners smaller than PA strategy, but 
overall, the proposed curvature extreme is smaller than PA 
strategy, and the proposed methods have more gentle cur-
vature distribution as can be seen in the magnified view in 
Fig. 10. And from the perspective of machining speed profile 
in Fig. 11, the largest and smallest speed of proposed method 
are higher than PA strategy; thus, the proposed method has 
higher efficiency than PA strategy.

By comparison, the control points distribution of the 
proposed method and PA method, which are pictured 

in Figs. 8 and 9 respectively; it can be seen that by pro-
posed method, there are only in segment P11P12 and P15P16 
remained linear portion after smoothing, but by PA strat-
egy, the linear portion appeared not only in P11P12 and 
P15P16, but also in P8P9 and P9P10. Since the machining 
direction is counterclockwise, by PA strategy, the sum 
of approximation error constraint length of corner P8 
and P9 is exceed the length of segment P8P9, so PA strat-
egy will shrink the transition length of corner P8 and P9 
proportionally to eliminate the potential overlap; when 
smoothing corner P9, there is overlap in segment P9P10, 
so the transition length of corner P9 and P10 adjusted pro-
portionally to eliminate the overlap, and corner P9 get a 
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portion from segment P9P10 which is shorter than the lin-
ear segment left in segment P8P9 after smoothing corner 
P8, thus found there linear part remained in segment P8P9. 
In our proposed method, with the pre-read processing, 
the transition length of corner P9 was pre-constrained by 
the following corners P10, P11, etc., and while analysing 
the potential overlap of corner P8 and P9, the pre-con-
strained transition length of corner P9 is obviously less 
than half of the segment P8P9, because |P9P10| < |P8P9| , 
so here the pre-constrained transition length of corner P9 

is kept, the transition length of corner P8 is adjusted to 
eliminate the overlap, and after the smoothing of corner 
P8 , the remained linear part of segment P8P9 will be fully 
used in corner P9 smoothing; thus, no linear portion left 
in segment P8P9, and the proposed method get smaller 
curvature extreme in corner P8 compared to PA strategy. 
Segment P9P10 also has linear portion left by PA strat-
egy; it is the same situation as smoothing corner P8 and 
P9, and linear portion left in segment P8P9. In corner P10, 
our method gets smaller curvature, but in corner P11 gets 
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lager curvature compared to PA strategy; it is because the 
approximation error constraint transition lengths in corner 
P10 and P11 exceed 0.5|P10P11| , and |P10P11| < |P9P10| , and 
|P10P11| < |P11P12| , so corner P11 get 0.5|P10P11| as transi-
tion length, so also the corner P10, but by PA strategy, 
while eliminating the overlap in segment |P10P11| , corner 
P11 get a portion more than half of the segment P10P11; 
let it be noted as L11,0 > 0.5|P10P11| , and corner P11 and 
P12 have the same corner angle of the two adjacent linear 

segments, so by PA strategy, corner P11 can get half of 
the segment P11P12; let it be noted as L11,1 = 0.5|P11P12| , 
but L11,0 < L11,1 , so the segment length constraint transi-
tion length of P11 is L11,0; thus, PA strategy get smaller 
curvature in corner P11 and P12, but larger curvature in P10 
compared to our method. In segment P11P12, there is linear 
portion left because |P10P11| < |P11P12| , and the remained 
linear segment length of P10P11 after smoothing corner P10 
is less than 0.5|P11P12| , and when smoothing corner P12 
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the transition length also limited by the segment length of 
P12P13, corner P12 get less than half of segment P11P12 as 
transition length, thus has linear portion left in segment 
P11P12. In segment P15P16 also has linear portion left after 
smoothing, it is the same situation as segment P11P12.

By analysing magnified curvature extreme distribution 
in Fig. 10 and speed profile in Fig. 11, the bottom speed 
happens in P10 and P13; the top speed appears in segment 
P15P16 (also can be said before P8); it is clear our method has 
higher speed in these point, because our method get smaller 
curvature extreme in these corners. In corners P11 and P12, 
and P14 although PA strategy has smaller curvature extreme, 
but the linear segments in these related segments are very 
short, there are not enough distance to reach the curvature 
extreme allowed maxim speed under certain speed accelera-
tion, that is why the whole machining time is longer than our 
method. By analysing the curvature extreme distribution of 
the corners P8 to P14, it is very clear the proposed method 
is smoother compared to PA strategy. Thus, proposed opti-
mal method not only fully uses the linear segments but also 
keeps the curvature extreme distribution balanced and makes 
the machining time decrease from 2.477 to 2.367 s; thus, 
the machining efficiency is improved 4.44% compared to 
PA strategy.

4.4 � Real machining experiment

In this real machining test, a butterfly tool path is per-
formed on a CNC machine to demonstrate the advantage 
of our method in short linear segment smoothing and the 
real-time performance, compared with the PA strategy, but 
different from the recursive function in [22, 23], the propor-
tional shrink factor is obtained mathematically in Appendix 

D. Thus, the PA strategy can be implicated in the real-time 
machining test. With the specified approximation error 
ε0 = 10 μm, the transition overlaps occurred in some places 
where the tool points are dense. In this test, all the transi-
tion overlaps are eliminated by the proposed optimal mothed 
and PA strategy and the smoothed tool orbits are shown in 
Fig. 12a. The machining results are shown in Fig. 12b. From 
the magnified view of the smoothed tool orbits in Fig. 12c, 
it is very clear that in the sharp corner, the proposed method 
has smaller curvature than PA strategy, while in the adjacent 
corner which before the sharp one, PA strategy get smaller 
curvature; this is because here the transition overlap hap-
pened and the proposed method balanced the distribution 
of the length of the linear segments.

As shown in Fig. 13, the machining velocity profile of 
both PA strategy and the proposed method are pictured 
respectively. From the magnified view of the velocity pro-
file of the red circle circled portion in Fig. 13a, there is fluc-
tuation in the place where the interpolation velocity should 
be kept in 6000 mm/min; it is because the pulse rounding 
accuracy, so, 1 pulse fluctuation in the moving axis is inevi-
table, and in this test, 1 mm distance equals 100,000 inter-
polation pulses, so the maxim rounding fluctuation could be √
2 pulse for two axis-linkage; thus, the fluctuation could 

be 6.78823 mm/min in one sample period, as calculated in 
Eq. (17). And the feedback velocity profile is always delayed 
to the interpolation velocity, and has fluctuation, and the 
amplitude is larger than the interpolation velocity profile; it 
is normal and also has to do with the parameter of the servo 
and the performance of servo system, here will not discuss 
about it, for it is out of the scope of the paper.

(17)60 × (
√
2∕100000) × 8000 = 6.78823
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From the magnified view of velocity profile in Fig. 13b, 
in the none-overlap corner, the PA strategy and the proposed 
method have the same velocity level, that means the curvature 
is the same, while in the overlap segments, the proposed 
method can obtain balanced transition length; thus, the 
curvature extreme will not be polarized, that means the 
proposed method has higher curvature extreme level in the 
curvature bottom, but lower curvature extreme level in the 
curvature top compared to PA strategy. Thus, the proposed 
method obtained higher machining efficiency than PA strategy, 
which decreased machining time from 4.9785 to 4.8985 s.

5 � Conclusion

In this paper, a local corner rounding algorithm with look 
ahead optimal strategy for short and long G01 linear seg-
ments is presented. The control points of cubic NURBS 
transition curve are parameterized to make the curve sym-
metrical about the included angle bisector, and G2 continu-
ity of the smoothed tool path is guaranteed along the entire 
tool path and within specified geometric error. Based on 
the characteristic of symmetrical curve, the relationship of 
curvature extreme, transition length, approximation error, 
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and the corner angle of the two adjacent linear segments 
are analysed; the curvature extreme is mathematically pre-
sented, which can be used in machining velocity planning 
to obtain the kinematic constraint speed. The novel transi-
tion length look ahead optimal algorithm in this paper not 
only eliminates the transition overlap but also can fully 
use the linear segment and avoid polarization or unbal-
anced ratio of curvature extreme of the adjacent curves 
while eliminating the overlap, thus decreasing the cur-
vature extreme as much as possible, at the same time get 
more smoothed curvature extreme distribution especially 

in short linear segments NC machining. In comparison 
with traditional FLCR, our proposed method achieved a 
significant curvature decrease of 17.64%. In comparison 
with PA strategy, the proposed method obtained balanced 
curvature distribution and an efficiency improvement of 
4.44%. The proposed look ahead optimal method also can 
be used in asymmetrical curve smoothing to mitigate the 
polarization or unbalanced ratio of curvature extreme in 
adjacent transition curves. In addition, our method can 
work well in 125 μs control period real-time CNC system 
which was verified in real CNC machining experiment.
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Appendix A: The calculation of max 
approximation error of NURBS smoothing 
curve

At first according to Eq. (2), the basis function Ni,p(u) can be 
calculated as following:

N0,0 = N1,0 = N2,0 = 0,

N3,0 =

{
1 0 ≤ u < 0.5

0 ohterwise

N4,0 =

{
1 0.5 ≤ u < 1

0 ohterwise

N5,0 = N6,0 = N7,0 = 0, −∞ < u < ∞

N1,1 =
u−0

0−0
N1,0 +

u−0

0−0
N2,0 = 0, −∞ < u < ∞

N2,1 =
u − 0

0 − 0
N2,0 =

0.5 − u

0.5 − 0
N3,0 =

{
2(0.5 − u) 0 ≤ u < 0.5

0 ohterwise

N3,1 =
u − 0

0.5 − 0
N3,0 +

1 − u

1 − 0.5
N4,0 =

⎧
⎪⎨⎪⎩

2u 0 ≤ u < 0.5

2(1 − u) 0.5 ≤ u < 1

0 ohterwise

N4,1 =
u − 0.5

1 − 0.5
N4,0 +

1 − u

1 − 1
N5,0 =

{
2(u − 0.5) 0.5 ≤ u < 1

0 ohterwise

N5,1 =
u−1

1−1
N5,0 +

1−u

1−1
N6,0 = 0, −∞ < u < ∞

N6,1 =
u−1

1−1
N6,0 +

1−u

1−1
N7,0 = 0, −∞ < u < ∞

N0,2 =
u−0

0−0
N0,1 +

0−u

0−0
N1,1 = 0, −∞ < u < ∞

N1,2 =
u − 0

0 − 0
N1,1 +

0.5 − u

0.5 − 0
N2,1 =

{
4(0.5 − u)2 0 ≤ u < 0.5

0 ohterwise

N2,2 =
u − 0

0.5 − 0
N2,1 +

1 − u

1 − 0
N3,1 =

⎧⎪⎪⎨⎪⎪⎩

4u(0.5 − u) + 2u(1 − u) 0 ≤ u < 0.5

2(1 − u)2 0.5 ≤ u < 1

0 ohterwise

then according to Eqs. (1) and (7) can get Ci(0.5) as:

Thus

N3,2 =
u − 0

1 − 0
N3,1 +

1 − u

1 − 0.5
N4,1 =

⎧⎪⎪⎨⎪⎪⎩

2u2 0 ≤ u < 0.5

2u(1 − u) + 4(1 − u)(u − 0.5) 0.5 ≤ u < 1

0 ohterwise

N4,2 =
u − 0.5

1 − 0.5
N4,1 +

1 − u

1 − 0.5
N5,1 =

{
4(u − 0.5)2 0.5 ≤ u < 1

0 ohterwise

N5,2 =
u−1

1−1
N5,1 +

1−u

1−1
N6,1 = 0, −∞ < u < ∞

N0,3 =
u − 0

0 − 0
N0,2 +

0.5 − u

0.5 − 0
N1,2 =

{
8(0.5 − u)3 0 ≤ u < 0.5

0 ohterwise

N1,3 =
u − 0

0.5 − 0
N1,2 +

1 − u

1 − 0
N2,2 =

⎧⎪⎪⎨⎪⎪⎩

8u(0.5 − u)2 + 2u(1 − u)(2 − 3u) 0 ≤ u < 0.5

2(1 − u)3 0.5 ≤ u < 1

0 ohterwise

N2,3 =
u − 0

1 − 0
N2,2 +

1 − u

1 − 0
N3,2 =

⎧⎪⎪⎨⎪⎪⎩

4u2(0.5 − u)2 + 4u2(1 − u) 0 ≤ u < 0.5

4u(1 − u)2 + 4(1 − u)2(u − 0.5) 0.5 ≤ u < 1

0 ohterwise

N3,3 =
u − 0

1 − 0
N3,2 +

1 − u

1 − 0.5
N4,2 =

⎧⎪⎪⎨⎪⎪⎩

2u3 0 ≤ u < 0.5

2u2(1 − u) + (1 − u)(u − 0.5)(12u − 4) 0.5 ≤ u < 1

0 ohterwise

N4,3 =
u − 0.5

1 − 0.5
N4,2 +

1 − u

1 − 1
N5,2 =

{
8(u − 0.5)3 0.5 ≤ u < 1

0 ohterwise

Ci(0.5) =

∑4

j=0
Nj,3(0.5)wi,jQi,j∑4

j=0
Nj,3(0.5)wi,j

=
0.5wi,1(Qi,1+Qi,3)+wi,2Qi,2

wi,1+wi,2

=
0.5wi,1(Pi−

2

3
Li,0ai,0+Pi+

2

3
Li,0ai,1)+wi,2Pi

wi,1+wi,2

= Pi +
wi,1Li,0(ai,1−ai,0)

3(wi,1+wi,2)

� = PiCi(0.5) = |wi,1Li,0(ai,1 − ai,0)

3(wi,1 + wi,2)
| =

2wi,1Li,0 sin(
�i

2
)

3(wi,1 + wi,2)
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Appendix B: The calculation of max 
curvature extreme of NURBS curve

Let A(u) =
∑4

j=0
Nj,3(u)wi,jQi,jW(u) =

∑4

j=0
Nj,3(u)wi,j , then 

C(u) =
A(u)

W(u)

C�(u) =
W(u) A�(u)−W �(u) A(u)

W(u)2
=

W(u) A�(u)−W �(u) W(u) C(u)

W(u)2
=

A�(u)−W �(u) C(u)

W(u)2

C��(u) =
A��(u)−W ��(u) C(u)−W �(u) C�(u)

W(u)

According to the derivation equation of Appendix A

Ai(u)
||u=0.5 = 0.25wi,1

(
Qi,1 + Qi,3

)
+ 0.5wi,2Qi,2

Wi(u)
||u=0.5 = 0.25

(
wi,1 + wi,3

)
+ 0.5wi,2 = 0.5

(
wi,1 + wi,2

)

Ci(u)
||u=0.5 =

0.5wi,1

(
Qi,1 + Qi,3

)
+ wi,2Qi,2

wi,1 + wi,2

A�(u)||u=0.5 =
(
−6(1 − u)2wi,1Qi,1 +

(
24u2 − 36u + 12

)
wi,2Qi,2 +

(
−42u2 + 48u − 12

)
wi,3Qi,3

)|||u=0.5
= −1.5wi,1Qi,1 + 1.5wi,3Qi,3

W �(u)||u=0.5 = 0

A��(u)||u=0.5 =
(
12(1 − u)wi,1Qi,1 + (48 − 36)wi,2Qi,2 + (−42u + 48)wi,3Qi,3

)|||u=0.5
= 6wi,1

(
Qi,1 + Qi,3

)
− 12wi,2Qi,2 W

��(u)||u=0.5
= 6wi,1 + 6wi,3 − 12wi,2 C

��(u)||u=0.5 =
A�(u) −W �(u)C(u)

W(u)

||||u=0.5
=

−1.5wi,1Qi,1 + 1.5wi,3Qi,3

0.5
(
wi,1 + wi,2

)

=
1.5wi,1

(
Qi,3 − Qi,1

)

0.5
(
wi,1 + wi,2

)

=

−1.5wi

(
Pi +

2

3
Li,0ai,1 − Pi +

2

3
Li,0ai,0

)

0.5
(
wi,1 + wi,2

)

=
wi,1Li,0

0.5
(
wi,1 + wi,2

) (ai,1 + ai,0
)
C��(u)||u=0.5 =

A��(u) −W ��(u)C(u)

W(u)

=

6wi,1

(
Qi,1 + Qi,3

)
− 12wi,2Qi,2 − 12

(
wi,1 − wi,2

) 0.5wi,1

(
Qi,1 + Qi,3

)
+ wi,2Qi,2

wi,1 + wi,2

0.5
(
wi,1 + wi,2

)

=

6wi,1

(
Pi −

2

3
Li,0ai,0 + Pi −

2

3
Li,0ai,1

)
− 12wi,2Pi − 12

(
wi,1 − wi,2

)[
Pi +

wi,1Li,0
(
ai,1 − ai,0

)

3
(
wi,1 + wi,2

)
]

0.5
(
wi,1 + wi,2

)

=
16wi,1wi,2Li,0(
wi,1 + wi,2

)2
(
ai,1 − ai,0

)

So, the curvature extreme can be expressed as:

k =
�C�(0.5) × C��(0.5)�

�C�(0.5)�3 =

wi,1Li,0

0.5
�
wi,1 + wi,2

� 16wi,1wi,2Li,0�
wi,1 + wi,2

�2
���
�
ai,1 + ai,0

�
×
�
ai,1 − ai,0

����

⎛⎜⎜⎜⎜⎝

4wi,1Li,0 cos

�
�i

2

�

wi,1 + wi,2

⎞⎟⎟⎟⎟⎠

3
=

2wi,1 sin
�
�i
�

wi,1Li,0 cos
3

�
�i

2

�
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Appendix C: Transition length optimal 
algorithm

Output: approximation error and linear segment length 
constraint NURBS curve transition length lopt and remained 
linear length Lleft after transition.

Step 0:
Calculate the approximation error constrained transition 

length li of each corner which satisfies Eq. (10).

Input: Predetermined max approximation error εm speci-
fying the designed accuracy of the algorithm; specify the 
max pre-read segment number N (to real time the algo-
rithm, the look ahead number should be limited); data points 
{Pi ∈ R3, 0 ≤ i ≤ N} of linear tool path.
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Appendix D: Mathematical expression 
of shrinking factor

In [23], the error constraint for transition curve is denoted 
hi, the segments length is denoted Li, and the overlap criteria 
is �i−1hi−1 + �ihi ≤ Li ; when the criteria is not satisfied, then 
set hi – 1 = λhi – 1 && hi = λhi iteratively until the criteria is 
satisfied, where 0 < λ < 1. Here, assume after n times itera-
tion, the criteria is satisfied, then: (γi–1hi – 1 + γihi)λn ≤ Li.

Let �i−1 =
Li

�i−1hi−1+�ihi
 ; thus, the proportional shrink factor 

is obtained mathematically; it is even more accurate than the 
iteration algorithm in [23].
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