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Abstract
In modern industrial processes, various types of soft sensors are used in process monitoring, control, and optimization, and 
the soft sensors designed to maintain or update these models are highly desirable in the industry. This paper proposes a 
novel technique for monitoring and control optimization of soft sensors in automation industry for fault detection. The fault 
detection has been carried out using probabilistic multi-layer Fourier transform perceptron (PMLFTP), and the input data has 
been pre-processed for removal of samples containing null values for fault detection and diagnosis process through Fourier 
transform–based detection and multi-layer perceptron–based diagnosis in the manufacturing process. The controlling of data 
in soft sensors has been optimized using auto-regression-based ant colony optimization (AR_ACO), and the experimental 
results have been reported in terms of computational rate of 40%, QoS of 78%, RMSE of 45%, fault detection rate of 90%, 
and control optimization of 93%.

Keywords Soft sensors · Monitoring automation industry · Fault detection · PMLFTP · AR_ACO

1 Introduction

It is tough and time-consuming to design defect detec-
tion methods for complex real-world industrial operations 
[1]. Numerous manufacturing cells execute a variety of 
assembly activities as well as functional tests in modern 
computer-based manufacturing systems. Computer soft-
ware supervises a specific production process, many of 
which are custom created, and the cells are controlled by it. 
One of the most significant duties for computers assigned 
to manufacturing plant supervision is to detect as well as 
diagnose product problems. Obtaining data required for 
process analysis is the initial stage in this task. Only a few 
data-generating mechanisms and sensing devices were used 
in first inspection systems. As a result, engineers could only 
analyze a limited amount of data for fault diagnosis method, 
and a more method based on structured data analysis was 
needed [2]. Limit checking is still the only method of fault 
detection utilized in numerous manufacturing plants today 
[3]. In this example, for a given characteristic in production 
process for a product, maximal and minimum values are 
known as thresholds. When value of a feature is within these 
defined boundaries, it is said to be in a normal function-
ing state. Although simple, resilient, and trustworthy, this 
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technique is sluggish to respond to deviations in a particu-
lar data characteristic as well as fails to detect complicated 
failures, which are detected by examining feature correla-
tions. Another issue with this method is difficulty in defin-
ing threshold values for each attribute.

In terms of data analysis, industrial applications with 
heavy machinery, in particular, might advantage from a 
deeper understanding of underlying methods as well as 
equipment state to modify their maintenance plans [4]. These 
components are used in the machine’s rotating mechan-
ics. These bearing parts deteriorate over time as a result of 
friction as the machine rotates. Traditionally, condition of 
a rolling bearing element was estimated using breakdown 
data from the past. Nowadays, state of a bearing element is 
determined by installing vibration sensors on certain sec-
tions of machines or detecting the motor currents of electrical 
engine that drives these elements. Vibrations, in particular, 
have proven to be beneficial in revealing underlying status 
of bearings. Raw signals must be denoised as well as pre-
processed before analysis, utilizing complicated and time-
consuming signal processing methods to obtain useful data, 
which is a vital requirement for an effective analysis. As a 

result, the emphasis has switched to deep learning algorithms 
that can analyze raw data and create features automatically by 
recognizing patterns in input data. This automated approach 
saves time, is less prone to human error, and may need a 
specialized domain expert with less subject experience [5].

FDD (fault detection and diagnosis) is a vital control 
technique for achieving this task among numerous process 
supervision techniques because many industries seek to 
enhance their process performance by increasing their FDD 
capability. FDD’s primary functions are categorized into 
2 sections: (1) monitoring process behavior and (2) dis-
closing presence, characteristics, and root causes of errors. 
To preserve high process output as well as throughput in 
industrial processes, rapid, significant detection tools for 
process or equipment failures that may affect whole sys-
tem’s performance are needed [4–6]. The FDD for many 
different processes has gained a lot of attention from many 
industrial sectors and academia over the years due to the 
many significant benefits that may be obtained from low-
ering process or product-related costs, improving quality 
and productivity. FDD has played a key role in a variety of 
industrial engineering methods, including semiconductor 

Fig.  Overall proposed architecture
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production and chemical and software engineering to name 
a few. As a result, there is an enhancing requirement for 
effective detection as well as diagnosis of suspicious defects 
to avert process deterioration, which could ultimately result 
in a decrease in product yield or process throughput. In 
general, the FDD work is conducted based on multiple pro-
cesses as well as equipment data measured by instruments 
as a key way for process supervision [6].

Research contribution is as follows:

• To collect historical data from soft sensors in designing 
fault detection systems for monitoring and controlling 
with optimization

• To pre-process the collected data in removing null values 
and missing data

• To detect and diagnose the faults of processed data using 
probabilistic multi-layer Fourier transform perceptron 
(PMLFTP)

• To optimize and control the data of soft sensors using 
auto-regression-based ant colony optimization (AR_
ACO)

The experimental analysis has been carried out in terms 
of computational rate, quality of service (QoS), root mean 
square error (RMSE), fault detection rate, control optimiza-
tion for various fault scenarios.

2  Related works

The value of foreign direct investment (FDI) was origi-
nally recognized in high-risk fields such as flight control, 
railways, medicine, nuclear power plants, and many oth-
ers. Due to the growing use of computational intelligence 
for data analysis done by real-time methods, the neces-
sity for problem detection has become even more press-
ing. This is particularly true in real-time energy-efficient 
management of distributed resources [7], real-time control 
as well as mobile crowd sensing [8], and protection of 
sensitive data collected by wearable sensors [9]. Regu-
lar inspections of sensor validation, measurement device 
calibration, software configuration, and preventative main-
tenance are required to ensure error-free operation [10]. 
According to [11], maintenance costs might be anything 
from 15 to 60% of the entire cost of manufacturing items. 
Within these margins, almost 33% of maintenance costs 
are directly related to redundant as well as inappropriate 
equipment maintenance. As a result, enhancing equipment 
efficiency while lowering the costs of costly maintenance 
could result in a significant reduction in overall production 
costs [12]. According to [13], equipment maintenance can 
be divided into three categories: (1) modification main-
tenance entails upgrading components to boost machine 
productivity as well as performance, (2) preventive main-
tenance entails replacing a component just before it fails, 
and (3) breakdown corrective maintenance is when a 
part fails and needs to be replaced, resulting in machine 
downtime. Focus on preventive maintenance in this paper, 
which is divided into 2 types: UBM (usage-based main-
tenance) and condition-based maintenance (CBM) are 
two types of maintenance. Time-domain analysis and fre-
quency-domain analysis are two traditional methods for 
identifying representative characteristics to categorize sig-
nals [14, 15]. The large number of features derived from 
various domains results in an HD dataset, as one could 
expect. As a result, features are chosen [16] and methods 
like PCA (principal component analysis) [17] or LDA (lin-
ear discriminant analysis) [18] are typically employed to 
reduce dimensionality of these features. In addition, [19], 
for example, used data entropy to preprocess raw time 
series data. RPCA (recursive PCA) [20], DPCA (dynamic 
PCA) [21], and KPCA (kernel PCA) [22] are used to mon-
itor a variety of industrial processes, including adaptive, 
dynamic, and nonlinear processes [23]. Two RPCA algo-
rithms were published in [24] to adapt for regular process 

Fig. 2  Optimization algorithm
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changes in semiconductor production operations. They did 
this by iteratively updating the correlation matrix [25].

3  System model

This section discusses the fault detection in automation indus-
try based on soft sensors in monitoring and controlling with 
optimization. The data has been collected from soft sensors 
in which the fault has to be detected. This collected data has 
been pre-processed for removal of samples containing null 
values. For this processed data, the detection and diagnosis 
have been carried out using probabilistic multi-layer Fourier 
transform perceptron (PMLFTP). Then, controlling of data 
in soft sensors has been optimized using auto-regression-
based ant colony optimization (AR_ACO) which has effect 
in increasing the production of industry automatically. The 
overall proposed architecture is shown in Fig. 1.

3.1  Fault detection and diagnosis using 
probabilistic multi‑layer Fourier transform 
perceptron (PMLFTP)

Input variables of model under study are given by N-dimen-
sional vector x =  × 1, × 2,…,xN, and response variable is 
represented by g (x). As stated in Eq. (1), the answer g(x) 
is a hierarchical correlated function expansion of input 
variables:

where  g0 denotes the 0th order component function or mean 
response of g(x). Function gi1i2 (xi1, xi2) is a 2nd-order 
that defines how variables xi1 and xi2 work together to pro-
duce output g(x). Last one g12,…, N (× 1, × 2,…, xN) com-
prises any residual dependency of all input variables linked 
together cooperatively to impact output g(x). For component 
functions in Eq. (2), this approach reduces to the following 
relationship.

Now consider the 1st order of g(x) given by Eqs. (3) and (4):
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Fourier transform pairs formulation is given by Eqs. (5) 
and (6):

The marginal density and features function of Y are  pY(y) 
and MY (θ) indicates imaginary number given as i = √ − 1 
given by Eq. (7):

Since the function fp(t) in points t = t(m) and t = t(m) + h(m) 
has discontinuities, for Fourier series following relations are 
valid by Eq. (8):

The following integral is local Fourier transform given by 
Eqs. (9) and (10):
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Furthermore, MPP is selected as reference point. Terms 
g
(
v∗
1
,… , v∗

i−1
, vi, v

∗
i+1

,… , v∗
N

)
 are individual component func-

tions which are independent of each other as shown by Eq. (12).

The Park-Goreva equations for synchronous machine are 
stated utilizing the relative unit method given by Eq. (13).

New intermediate variables are given as Eq. (14)

These new variables are used to convert approximation 
function into the following form using Eq. (15).

In system of walking coordinates given by Eq. (16), the 
following equation is obtained in  mth local interval of recur-
rence of converter within the duration of commutation of 
stages γ related to valve switching:
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The index l corresponds to value of variable at switching 
point, i.e., when controlling signal is submitted to next thyristor 
of converter, as demonstrated by following formula, Eq. (17):

Consider above-mentioned synchronous generator has 
outputs coupled to active and inductive loads rW , xW , as 
given in Eq. (18):
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After applying LFT to Eqs. (19), (20), and (21) in the 
field, obtain the synchronous generator’s equations as well 
as its activator.

In this context, it is generally known that the equation gives 
MLPNN state space formulation with one hidden layer (22).
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least-squares sense, it is observed that MLPNN seeks to make 
its output as near to subjective measure yd(n) as possible.
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Let the differential operator be expressed by Eq. (25),

Then, H(w(n))d(n) is given by Eq. (26)
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Fig. 3  Analysis of fault situa-
tion 1 in terms of a computa-
tional rate, b QoS, c RMSE, d 
fault detection rate, e control 
optimization

(a) computational rate (b) QoS

(c) RMSE (d) fault detection rate

(e) control optimization
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3.2  Data controlling and optimization using 
auto‑regression‑based ant colony optimization 
(AR_ACO)

The autoregressive model AR(p) uses a linear combination 
of the p last values by Eq. (29) to determine the value of a 
process at an arbitrary time step t.
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)
− (

↼

x (n) −
↼

y (n))
]2

The order of the AR model is denoted by the number 
p. The model parameters are the weights φi of the linear 
combination. They are thought to be constant. Further-
more, an AR model requires that this process is superim-
posed by white noise. εt are regarded uncorrelated in time 
and identically distributed, with a zero expected value and 
finite variance. AR(p) is the abbreviation for this model.

The AR(p) model is used to characterize a given time 
series, as shown in Eq. (30):

(29)yt = �
1
⋅ yt−1 + �

2
⋅ yt−2 +⋯ + �p ⋅ yt−p + �t

Fig. 4  Analysis of fault situa-
tion 2 in terms of a computa-
tional rate, b QoS, c RMSE, d 
fault detection rate, e control 
optimization

(a) computational rate (b) QoS

(c) RMSE (d) fault detection rate

(e) control optimization
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This calculation assumes a one-unit change over time. 
In general, the time step can be of any unit, and it can be 
substituted by ∆t by altering the unit of time, and the equa-
tion can be rewritten as Eq. (31):

The AR(p) model can be thought of as a linear operator 
that is applied to an initial vector of time series data. In 
this view, the definition’s equation is expressed as a matrix 
equation by Eqs. (32) and (33):

(30)yt−3, yt−2, yt−1, yt, yt+1, yt+2, yt+3,…

(31)
yt − yt−Δt

Δt
= �

0
+
(
�
1
− 1

)
yt−Δt

with a matrix

(32)

⎛⎜⎜⎜⎝

yt
yt−1
⋮

yt−p+1

⎞
⎟⎟⎟⎠

⏟⏟⏟

= Ap ⋅

⎛
⎜⎜⎜⎝

yt−1
yt−2
⋮

yt−p

⎞⎟⎟⎟⎠

(33)Ap =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

�
1
�
2
�
3
… �p−2 �p−1 �p

1 0 0 … 0 0 0

0 1 0 … 0 0 0

⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮

0 … 0 1 0 0 0

0 … 0 0 1 0 0

0 … 0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 5  Analysis of fault situa-
tion 3 in terms of a computa-
tional rate, b QoS, c RMSE, d 
fault detection rate, e control 
optimization

(a) computational rate (b) QoS

(c) RMSE (d) fault detection rate

(e) control optimization
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The attribute graph’s nodes are arranged in the same 
order as the composite vector’s boundary values. There 
are N edges eik, k1::N between two consecutive nodes vi 
and viz1 when N binary BCs are combined. Each edge, 
eik in E, shows a couple of conditional probabilities (i.e., 
p
([
vi, vi+1

]
∣ c

1

)
, p
([
vi, vi+1

]
∣ c

2

)
 integrated with attribute 

interval 
[
vi, vi+1

]
 . Conditional probability distribution of 

original instance of attribute from kth BC is used to cal-
culate these probabilities. Conditional probabilities label-
ling edge e

11
=
[
v
1
, v

2

]
 are evaluated in the following way 

by Eq. (34):

The  cha rac t e r i s t i c  po lynomia l  o f  Ap  i s 
�p(�) = (−1)

p
⋅

(
�p − �

1
�p−1 −⋯ − �p−1� − �p

)
The case p = 1 with Eq. (35)

Induction step starts with Eq. (36):

As indicated in Eq. (37), the determinant of this matrix 
will be determined by utilizing the Laplace expansion along 
the last column.

(34)p
([
v
1
, v

2

]
∣ c

1

)
=

p
([
v1
1
, v1

2

]
∣ c

1

)
∗
(
v
2
− v

1

)
(
v1
2
− v1

1

)

(35)
det

(
�

1
− ��

)
= det

(
�
1
− �

)
= �

1
− � = −1 ⋅

(
� − �

1

)
= �

1
(�).

(36)

det
�
�p − ��

�
= det

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

�
1
− � �

2
�
3
⋯ �p−2 �p−1 �p

1 −� 0 ⋯ 0 0 0

0 1 −� ⋯ 0 0 0

⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮

0 ⋯ 0 1 −� 0 0

0 ⋯ 0 0 1 −� 0

0 ⋯ 0 0 0 1 −�

⎞⎟⎟⎟⎟⎟⎟⎟⎠

(37)det
�
�p − ��

�
= −(−1)p ⋅ �p ⋅ det

⎛
⎜⎜⎜⎜⎜⎝

1 −� 0 …

0 1 −� …

⋮ ⋱ ⋱ ⋱

0 … 0 1

⎞
⎟⎟⎟⎟⎟⎠

+ (−�) ⋅ det
�
�p−1 − ��

�

The Laplace expansion reduces the p × p matrix 
(Ap − λI) into two matrices. The first matrix’s determinate 
is one since its structure has a lower triangular matrix of 
zeros, and the diagonal’s product is one. The induction 
hypothesis is met by the second matrix, which is given 
by Eq. (38):

characteristic polynomial of �p is �p(�)

k-fold application of linear operator  Ap is represented by 
Eq. (39):

Using corresponding eigenvectors, matrix A2 is decom-
posed into �

2
= � ⋅ � ⋅ �−1 shown in Eq. (40):

closed form of this AR(2)-model is represented by Eq. (41):

The key principle behind understanding a differential 
equation as an AR model is that it is symmetric; not only 
can the difference equation be understood as an AR model, 
but it can also be reversed. Furthermore, higher-order 
AR models relate to differential equations of increasing 
degree. Aside from the following difference quotients, 
namely, forward difference by Eq. (42):

(38)
det

(
�p − ��

)
= (−1)p ⋅

(
−�p

)
− � ⋅ det

(
�p−1 − ��

)

= (−1)p ⋅
(
−�p

)
− �.

[
(−1)p−1 ⋅

(
�p−1 − �1�

p−2 −⋯ − �p−2� − �p−1

)]

(39)

A
k
p
=
(
���−1

)k
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⋅ T

⏟⏟⏟
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(40)
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√
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�

(41)
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2
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⋅
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2
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Table 1  Comparative analysis 
for various fault situations 
between proposed and existing 
technique

Fault situations Techniques Computa-
tional Time

QoS RMSE Fault detec-
tion rate

Control 
optimiza-
tion

Fault situation-1 PCA 55 76 60 86 86
LDA 53 78 58 88 90
PMLFTP_ AR_ACO 50 80 57 89 92

Fault situation-2 PCA 55 73.2 58 84 91
LDA 53 75 55 88.7 91.8
PMLFTP_ AR_ACO 52 79.9 50 89.9 92

Fault situation-3 PCA 55 65 52 85 91
LDA 43 74 48 86 92
PMLFTP_ AR_ACO 40 78 45 90 93
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There are also difference quotients for the numerical 
calculation of higher derivatives to approach the first-
order derivative. Equation (43) provides a recursive defi-
nition of higher-order central difference quotients:

for even degrees of n, and by Eq. (44):

by substituting k-th derivative by �k in Eq. (45):

The roots are real or occur in conjugate pairs if all coef-
ficients  ai are real. The rules for solving higher-order dif-
ferential equations with constant coefficients can then be 
used to find the required n linearly independent solutions: If 
r is a real root that appears k times, then Eq. (46) represents 
the solutions:

If r = α ± βi are complex conjugate roots appearing k 
times, then results are given by Eq. (47):

The proposed optimization algorithm is discussed below (Fig. 2).

Stage 1: Assign number of clusters to c = 2 and  cmax, and 
use formula to obtain the right number of clusters (8). Set 
settings for ACO technique, initialize solution Si, I = 1,…, 
T, and replace Si with 2i = Si in fitness function (5).
Stage 2: Sort answers by fitness function and then 
organize them in ascending order. Probability value for 
renewing results as Si I = 1,…, T) using (9) and (10).
Stage 3: Evaluate mean µ utilizing probability value pro-
duced by Step 2 and roulette technique and set SD σ i v 

(42)
Δy

Δt
=

yt+Δt − yt

Δt

Δy

Δt
=

yt − yt−Δt

Δt

Δy

Δt
=

yt+Δt − yt−Δt

2Δt

(43)
Δny

Δtn
=

1

Δtn
⋅

∑n

k=0
(−1)

k

(
n

□

)
yt+k−n∕2

(44)

Δny

Δtn
=

1

2Δtn
⋅

�n−1

k=0
(−1)k

⎛⎜⎜⎝
n − 1

k

⎞⎟⎟⎠
⋅

�
yt+k+1−(n−1)∕2 − yt+k−1−(n−1)∕2

�
any

(n)an−1y
(n−1)

+…a
2
y�� + a

1
y� + a

0
y = f (x)y(n) + an−1y

(n−1) +⋯ + a
2
y�� + a

1
y� + a

0
y = f (x).

(45)�(�) = �n + an−1�
(n−1) +⋯ + a

2
�2 + a

1
� + a

0

(46)y = evt, y = t ⋅ er−t, y = t2 ⋅ er⋅t,⋯ , y = tk−1 ⋅ er−t

(47)

eΔ−tcos(� ⋅ t), eΔ⋅tsin(� ⋅ t)t ⋅ ea−tcos(� ⋅ t),

t ⋅ eΔtsin(� ⋅ t)t2 ⋅ e(−tcos(� ⋅ t), t2 ⋅ ea⋅tsin(� ⋅ t),�(t)

=

⎡⎢⎢⎢⎢⎣

u
(l)

11
⋯ u

(l)

1N

⋮ ⋱ ⋮

u
(l)

c1
⋯ u

(l)

eN

⎤⎥⎥⎥⎥⎦

tk−1 ⋅ ea−tcos(� ⋅ t), tk−1 ⋅ ea−tsin(� ⋅ t)

utilizing (11). If condition |||f (l+1)
(
𝜇i
)
− f (l+1)

(
Si
)||| < 0 is 

satisfied, then set Si = µ i; otherwise, keep original Si.
Stage 4: If condition |||f (l+1)

(
Si
)
− f (t)

(
Si
)||| < 𝛿 is satisfied, 

then define Si ≡ 2i; otherwise set l = l + 1 and return to 
Step 2.
Stage 5: Examine for less fitness value utilizing (5) until 
condition ‖�(d+1)

n−1
− �(l)‖ < 𝜀 is satisfied, where 

�(t) =

⎡
⎢⎢⎣

u
(l)

11
⋯ u

(l)

1N

⋮ ⋱ ⋮

u
(l)

c1
⋯ u

(l)

eN

⎤
⎥⎥⎦

The center of bell-shaped MF α i q and SD of bell-shaped MF 
� i
q
 is given by following formulas given by Eqs. (48) and (49):

The grade of MF Ai
g

(
xq(k)

)
 is given by (3) weight  wi(k) 

and output yˆ is given as wi(k) =
∏n

q=1
Ai
q

�
xq(k)

�
 , and 

ỳ(k) =
∑∑

i=1
mi(k)y

�
(k)

∑∑
i=1

mi(k)

Stage 6: Replace input–output data and yˆ(k) by Eq. (50).

where � = � − �̀, real model � =
[
y(1) … y(N)

]T the estab-
lished model �̀ =

[
ỳ(1) … ỳ(N)

]T
,Φ is shown in Eq. (51)

Step 7: Convert set χi, where i = 1,...,r, produced from 
Step 6 as orthogonal basis vectors, utilizing subsequent 
process:

1. Set
↼

m = 1  
2. Γ

1
= �

1
 and q

1
=

⟨Γ
1
⋅y

2
⟩

⟨Γ
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1
⟩.
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↼

m = 2 to r
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qi =
⟨Γiy⟩
⟨Γi,Γi⟩ 3) Figure out Θ̀ by subsequent equation:

where

4  Results and discussion

The Python programming language was used to implement 
the strategy. The proposed solution is implemented using 
the The ano library, which features dynamic C code genera-
tion, robust and rapid optimization techniques, and integra-
tion with mathematical NumPy library. A learning method 
plus a real-time module make up implementation. Learning 
method learns the parameters for both spatial pooling as 
well as temporal inference continuously and saves them in 
a database that is shared with real-time module. Real-time 
method uses parameters contained in shared database to 
execute real-time FDI. Module is simply concerned with 
execution of technique with already learned parameters and 
does not perform any learning. This operation of separating 
the learning and execution processes is required to provide 
real-time functioning, which would otherwise be impossible 
to achieve. The learning method is executed on a dedicated 
server, and deployed method is made available as a service. 
System begins by obtaining multiple data samples from an 
SPC database. Database stores a lot of signals created by 
manufacturing methods as they occur throughout time. This 
information is recorded in a database as textual data as well 
as imported into computer memory by learning method as 
a list of string objects.

Table 1 shows the parametric comparison for fault situa-
tion 1, fault situation 2, and fault situation 3. The parameters 
considered are computational rate, QoS, RMSE, fault detec-
tion rate, and control optimization. The techniques compared 
are PCA and LDA with proposed technique. The graph for 
above comparison table is given below.

Figures 3, 4, and 5 show parametric analysis in terms of 
computational rate, QoS, RMSE, fault detection rate, control 

𝛾iin =
⟨Γ

1,xa⟩
⟨Γi,Γ⟩ , 1 ≤ i <

↼

m

�ΘT = �

A =
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1 �
12

�
13

⋯ ⋯ �
1r

0 1 �
23

⋯ ⋯ �
2r

0 0 1 ⋯ ⋯ �
3r

⋮ ⋮ ⋮ ⋯ ⋮ ⋮

0 0 0 ⋯ 1 �(r−1)r
0 0 0 ⋯ 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
q =

�
q
1
q
2
⋯ qr

�
.

optimization. The proposed technique has been compared 
with existing PCA and LDA. In terms of computational rate 
of 50%, QoS of 80%, RMSE of 57%, fault detection rate of 
89%, and control optimization of 92% for fault situation 1 
by proposed technique. Computational rate of 52%, QoS of 
79.9%, RMSE of 50%, fault detection rate of 89.9%, and 
control optimization of 92% for fault situation 2 calculated 
based on fault detection. Based on this comparison, pro-
posed technique obtained higher QoS and fault detection 
rate in fault location. In terms of computational rate of 40%, 
QoS of 78%, RMSE of 45%, fault detection rate of 90%, and 
control optimization of 93% for fault situation 3 by proposed 
technique.

More crucially, an inferential model like this might be 
used to forecast paperboard qualities like flat crush strength 
and compression strength directly. Controlling the refining 
parameters directly based on feedback from the finished 
product (board or paper) quality could be a modern con-
trol method for refining. Overall, the findings of this study 
showed that machine learning–based solutions have a lot 
of promise in the pulp and paper industry, as long as the 
constraints of data-driven solutions are understood and sig-
nificant process expertise is used when constructing predic-
tive models.

5  Conclusion

This research proposed novel design in monitoring and con-
trol optimization of soft sensors in automation industry for 
fault detection. The aim is to collect the historical data from 
soft sensors in designing fault detection systems for monitor-
ing and controlling with optimization. Then, to pre-process 
the collected data in removing null values and missing data. 
For detection and diagnosis of the faults of processed data 
using probabilistic multi-layer Fourier transform perceptron 
(PMLFTP). Then, optimization and control of the data of 
soft sensors have been done using auto-regression-based ant 
colony optimization (AR_ACO) which has effect in increas-
ing the production of industry automatically. The experimen-
tal results have been carried out in terms of computational 
rate of 40%, QoS of 78%, RMSE of 45%, fault detection 
rate of 90%, and control optimization of 93% which been 
obtained for various historical data–based evaluations.
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