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Abstract
Vibration-based bearing condition monitoring of rotating machinery is of great importance for improving production effi-
ciency and ensuring operational safety in the manufacturing industry. Sparse representation is able to effectively extract inher-
ent impulse features from fault vibration signals corrupted by noise and harmonic interference, of which the performance is 
directly determined by dictionaries. In this study, the typical drawbacks of commonly used dictionaries are addressed using 
a novel cascaded dictionary. Period-assisted bi-damped wavelets with specific shapes are employed as the initial dictionary 
atoms to achieve overall matches with impulse features. Subsequently, the initial atoms are subjected to the K-singular value 
decomposition (K-SVD) for a secondary learning to obtain a cascaded dictionary that matches the real impulse features 
globally and locally. Finally, faulty vibration signals are recovered in segments using the cascaded dictionary and orthogonal 
matching pursuit (OMP). The results on the signals from the simulations, experiments, and real-world engineering confirm 
that the proposed cascaded dictionary consistently outperforms three other leading methods. Furthermore, the proposed 
cascaded dictionary is proved to be suitable for practical engineering diagnosis because of its outstanding anti-noise capa-
bilities and self-adaptability.
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1 Introduction

Rolling bearings play a paramount role in machine tools and 
are primarily employed to support rotations and carry the 
radical dynamic loads of spindles [1–3]. As a safety–criti-
cal component, rolling bearings usually work under harsh 
operating conditions, and are therefore prone to various 
failures, which may lead to production efficiency reduc-
tion and economic losses in the manufacturing industry [4]. 
Accurate fault diagnosis of rolling bearings is thus of great 
importance for ensuring the high safety and high-efficiency 
operation of manufacturing equipment. When a localised 

bearing fault occurs, the defect passes its mating surface 
resulting in a short force pulse. As the bearing rotates in a 
continuous fashion, the transient pulse repeatedly arises, and 
thus, periodic impulse features take place in the vibration 
signal. Hence, the bearing fault diagnosis technique based 
on vibration signal analysis has attracted significant atten-
tion in recent years [5–8]. Nevertheless, vibration signals are 
normally contaminated by noise and harmonic interference 
due to poor operating conditions.

Numerous effective methods have sprung up for extract-
ing periodic fault features from vibration signals. Commonly 
applied vibration signal analysis methods include the short-
time Fourier transform (STFT) [9, 10], wavelet transform 
[11, 12], ensemble empirical mode decomposition (EEMD) 
[13], and tuneable Q-factor wavelet transform (TQWT) [14, 
15]. However, these methods suffer from threshold setting 
and high computational costs, as well as the requirement of 
abundant human expertise. Recently, sparse representation, 
emerging as an active and valid signal analysis approach, has 
garnered considerable attention because of its outstanding 
performance in feature extraction.
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Sparse representation has two key components: dictionary 
construction, and the determination of sparse coefficients. 
The matching pursuit (MP) [16] and basis pursuit (BP) algo-
rithms [17] are two typical approaches employed to deter-
mine sparse coefficients. The advantage of the MP algorithm 
over the BP algorithm is that the former is computationally 
simpler and easier to implement [18]. The orthogonal match-
ing pursuit (OMP) algorithm is an improved derivate of the 
MP algorithm, which has been extensively utilised in the 
determination of sparse coefficients. For example, Li et al. 
[19] applied the OMP algorithm and a self-adaptive com-
plete dictionary to obtain a sparse signal. Song et al. [20] 
proposed a cluster contraction stagewise OMP (CcStOMP) 
algorithm to detect the fault features of rolling bearings. In 
fact, the coefficient solving algorithm mainly affects the 
speed of feature reconstruction, whereas it is the dictionary 
which truly underlies the accuracy of feature extraction [21]. 
Hence, designing an appropriate dictionary is essential to 
fault feature extraction.

Among the existing dictionaries, wavelet parameter dic-
tionaries are extensively explored because of the flexibility 
and variability of wavelet waveforms. Notably, the similar-
ity between the dictionary atoms and fault impulse directly 
determines the performance of feature extraction [21]. The 
unit impulse response, Laplace wavelet, and Morlet wave-
let are widely used as mathematical models of wavelet dic-
tionary atoms, where the first two are both single-sided and 
damped exponential functions. By coincidence, a bearing 
fault-induced impulse response is generally acknowledged 
to be single-sided attenuation, which leads a wide applica-
tion of such two wavelets to bearing fault feature extraction. 
For instance, Jiang et al. [21] used a unit impulse response 
function as the mathematical model of atoms to design a 
dictionary, which was employed in conjunction with the MP 
algorithm to realise fault feature extraction for bearings. Li 
et al. [22] applied the Laplace wavelet dictionary and a sec-
ondary selection-based OMP (SS-OMP) algorithm to suc-
cessfully detect the fault features of rolling bearings, whilst 
Sun et al. [23] also utilised the Laplace wavelet parametric 
dictionary to extract fault features of rolling bearings. Mean-
while, Qin et al. [24] constructed a new impulsive wavelet 
as the dictionary atom model for a sparse representation of 
rolling bearing fault-induced impulses. On the contrary, the 
distinctive feature of the Morlet wavelet is that its waveform 
has a shape similar to that of a gear fault-induced impulse 
response with double-sided attenuation. Hence, Fan et al. 
[25] constructed a parameter dictionary to diagnose gear-
boxes based on Morlet wavelets, whereas Wang et al. [26] 
used the Morlet wavelet as a transient model and identified 
the model parameters via a correlation filtering algorithm 
(CFA) to diagnose gear faults within rotating machinery. In 
the case of compound faults where gear and bearing faults 
co-exist, Deng et al. [27] introduced the Laplace and Morlet 

wavelets as the mathematical models of dictionary atoms 
to design corresponding dictionaries for diagnosing bearing 
and gear faults simultaneously. He et al. [28] designed two 
types of dictionaries for the sparse representation of gear 
and bearing faults, where the mathematical models of their 
dictionary atoms were a steady harmonic and unit impulse 
response function.

The review of the previous literature indicates that the 
wavelet mathematical model used for sparse representation 
has a significant effect on the fault feature extraction. How-
ever, the commonly used wavelet functions exhibit single-
sided attenuation or bilateral symmetric attenuation because 
of a single damping ratio. In fact, the impulse response 
components in the real-life faulty bearing vibration signal 
generally exhibit bilateral asymmetric attenuation because 
of the influence of such factors as fault mechanism, trans-
mission paths, and sensor characteristics. Therefore, such 
wavelet functions fail to be used to good effect when serving 
as mathematical models for dictionary atoms in practical 
engineering applications. To address the above issues, this 
work makes use of a bi-damped wavelet as the mathematical 
model of an atom to construct an initial parameter diction-
ary, where the bi-damped wavelet is able to take an asym-
metric bilateral shape resembling the fault-induced impulse 
response [29]. As such, this initial dictionary is expected to 
achieve a global match with the fault-induced impulses in 
vibration signals.

Most wavelet dictionaries are paved by changing the 
time-shift parameter of an optimal wavelet basis, so that the 
waveforms of all the atoms are essentially identical. This is 
also the case of the bi-damped wavelet parameter dictionary. 
However, the fault-induced impulses in the vibration signals 
are not identical in terms of amplitudes and oscillation char-
acteristics. A data-driven learning dictionary can automati-
cally update each column of the dictionary according to the 
fault-induced impulses in the signal at hand. As a typical 
dictionary learning model, K-singular value decomposition 
(K-SVD) has been applied widely in fault diagnosis [30–32]. 
However, when the noise and harmonic components are 
intensive, the K-SVD algorithm is prone to learning com-
ponents that are unrelated to fault-induced impulse features.

To improve the global and local matching of the initial 
dictionary to the fault-induced impulse, we developed a cas-
caded dictionary construction method. In this approach, a 
bi-damped wavelet is first employed as the wavelet math-
ematical model of the atom, which globally matches the 
fault-induced impulses. Motivated by the periodicity char-
acteristic of the impulses in the vibration signal, the param-
eter dictionary atom is constructed with period-assisted 
bi-damped wavelets. Next, the initial bi-damped wavelet 
parameter dictionary is substituted into the K-SVD algo-
rithm to adjust the amplitude and oscillation characteris-
tics of each atom to achieve a local match with the fault 
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impulses. Thus, a cascaded dictionary is obtained that takes 
into account the global and local features of the vibration 
signals.

The main contributions of this paper are as follows: (1) 
The cascaded dictionary is proposed to merge the parametric 
dictionary and the learning one, integrating the power of 
individual dictionary and overcomes their own shortcomings 
simultaneously. (2) Period-assisted bi-damped wavelets are 
employed as the dictionary atoms, considering not only the 
shape of the impulse response but also the periodicity in 
real vibration signals. (3) The proposed method can achieve 
excellent performance in the fault feature extraction of an 
actual locomotive wheel-set bearing.

The structure of this paper is arranged as follows. In 
Section 2, the individual methods utilised in the developed 
approach are briefly described. The implementation details 
of the proposed approach are introduced in Section 3. In 
Section 4, the effectiveness of the proposed method is vali-
dated by simulation analysis. In Section 5, the performance 
and superiority of the proposed method are analysed using 
experimental and actual engineering signals. Finally, con-
cluding remarks are summarised in Section 6.

2  Methods

2.1  Sparse representation and OMP algorithm

A bearing fault vibration signal typically consists of periodic 
transient impulse components and background noise. Thus, 
the observed fault signal y can be described as.

where h represents the periodic transient impulse com-
ponents and e denotes the background noise. In accord-
ance with the theory of sparse decomposition, the signal 
y ∈ R

n×1 can be expanded with an over-complete dictionary 
D ∈ R

n×M , D = [d1, d2,… , dM] . Then, the signal y can be 
modelled as.

(1)y = h + e

where x ∈ R
M×1 denotes the sparse coefficient vector and 

� is the reconstruction error. The purpose of sparse repre-
sentation is to use as few atoms as possible from the over-
complete dictionary D to represent the vibration signal y 
with the minimum l0 norm ‖x‖0 . The sparse representation 
is defined as.

Determining the minimum l0 norm ‖x‖0 is a non-deter-
ministic polynomial hard problem. The OMP algorithm can 
transform the l0-minimisation problem into an l1-minimisa-
tion problem, as follows:

To ensure that the solution is optimal, the OMP algorithm 
performs a Gram-Schmidt orthogonalisation operation on 
all selected atoms during each iteration. For clarity, a basic 
description of the OMP algorithm is presented in Table 1.

2.2  Cascaded sparse dictionary

For better extraction of the transient impulse responses from 
a vibration signal submerged in noise and harmonic compo-
nents, the construction of a dictionary that allows atoms to 
follow impulse changes and not easily be affected by noise 
interference is a subject worthy of attention. This paper 
proposes a cascaded dictionary construction method that 
satisfies the aforementioned demands and the accuracy of 
rolling bearing feature extraction is expected to be improved. 
Considering the asymmetric bilateral attenuation and perio-
dicity of the real-life impulse responses, a period-assisted bi-
damped wavelet is employed as the atom to design an initial 
parameter dictionary. Then, the K-SVD algorithm is utilised 
to refine the initial parameter dictionary locally. Finally, a 
cascaded dictionary can be obtained that matches the real 
impulse response globally and locally.

(2)y = Dx + �

(3)min
x
‖x‖0, s.t. ‖y − Dx‖2

2
< 𝜀

(4)min
x
‖x‖1, s.t. ‖y − Dx‖2

2
< 𝜀

Table 1  Description of OMP 
algorithm Input: signal y, dictionary D, and sparsity threshold T

Initialise: residual r0 = y , iteration number s = 1 , initial atom set D0 = ∅ , and support index set Λ0 = �

Procedure:
(1) for s = 1, 2, …, T, do
(2) Select the index �s that solves the optimisation problem: 𝜆s = argm=1,…,M

max||< rs−1, dm >||
(3) Update the index set Λs : Λs = Λs−1

⋃�
�s
�
 , update initial set of atoms: Ds = [Ds−1, d�s ]

(4) Search the approximate solution of least squares problem: x̂s = argx̂
min‖y − Dsx̂‖2

(5) Update the residual: rs = y − Dsx̂s , iteration time: s = s + 1

(6) end for
Output: x̂T
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2.2.1  Bi‑damped wavelet

Some researchers consider that the transient impulses 
generated by a bearing fault exhibit strictly single-sided 
attenuation characteristics [33, 34], with the impulse model 
described as Eq. (5):

where � = 2�f  represents the oscillation frequency, which 
is denoted by f  in the following equations. Meanwhile, � 
denotes the time shift; � represents the damping ratio, which 

(5)�imp(�, �, �, t) = e

−�√
1−�2

�(t−�)

sin�(t − �), t ≥ �

is used to control the rate of wavelet attenuation; and t is the 
signal duration.

Figure 1 illustrates the commonly used wavelet functions, 
from which we can see that the Laplace wavelet with single-
sided attenuation and the Morlet wavelet with double-sided 
symmetric attenuation match poorly with the fault-induced 
double-sided asymmetric attenuation impulses as shown in 
Fig. 2, which come from the bearing vibration signals pro-
vided by the Western Reserve University. Therefore, based on 
the characteristics of the bearing fault impulses, and consider-
ing the weaknesses of commonly used wavelet functions, this 
study uses a bi-damped wavelet gimp(�, �, � , �, t) as the atom 
mathematical model to construct an initial parameter diction-
ary, which is expressed as Eq. (6):

(6)gimp(𝜔, 𝜉, 𝜁 , 𝜏, t) =

⎧
⎪
⎨
⎪⎩

Kimp(t − 𝜏, 0) ⋅ e

−𝜉√
1−𝜉2

𝜔(t−𝜏)

cos (𝜔(t − 𝜏)) − Kimp(𝜏 − t, 0) ⋅ e

𝜁√
1−𝜁2

𝜔(t−𝜏)

cos (𝜔(t − 𝜏)), t𝜖[𝜏 −Ws, 𝜏 +Ws]

0, else

Kimp(t, 0) =

�
1, t > 0

0, else

Fig. 1  Commonly used wavelet functions: (a) db4 wavelet; (b) Morlet wavelet; (c) Laplace wavelet

Fig. 2  Bearing fault signals: a outer ring fault signal; b inner ring fault signal
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where by carefully adjusting the two damping ratios � and 
� , we can refine the oscillation attenuations on the left and 
right sides of the wavelet respectively, so as to match the 
inherent impulse responses in faulty bearing vibration 
signals. Figure 3 displays three bi-damped wavelets with 
the parameter combinations of gimp(1000, 0.5, 0.2, 0.01) , 
gimp(1500, 0.15, 0.15, 0.03) , and gimp(1800, 0.2, 0.5, 0.05) . It 
is seen that a suitable selection of wavelet parameters has the 
potential to yield a bi-damped wavelet matching perfectly 
with the fault-induced impulse response.

2.2.2  Building bi‑damped wavelet dictionary

(1)  Optimise the bi-damped wavelet by CFA with respect 
to the parameters (�, �, � , �) ( � = 2�f ) to approximate 
fault-induced impulses in the processed signal. First, in 
accordance with Ref. [34], let f �[0, fs∕2 ], ��[0, Tc] , and 
both �and��[0, 1] , where fs is the sampling frequency, 
and Tc is the signal time series used for correlation fil-
tering.

  Next, the inner products of the wavelets of various 
parameter combinations and the signal of interest are 
calculated by CFA. The inner product measures the 
correlation degree between the wavelet atom and the 
signal, which can be defined as Eq. (7).

  As can be seen from Eq. (7), the inner product is 
affected by the amplitude of the wavelet gimp(t) and the 
signal y(t) , as well as the angle � . Actually, the smaller 
the angle � is, the more similar of gimp(t) and y(t) will 
be. To eliminate the amplitude effect of the wavelet and 
signal, a correlation coefficient Kr can be defined to 
quantify the magnitude of the angle, i.e., the similarity 
level of the wavelet to the signal. The correlation coef-
ficient Kr is described as Eq. (8).

  Considering that the process of identifying the 
optimal parameters is computationally expensive, the 

(7)⟨gimp(t), y(t)⟩ = ‖gimp(t)‖2‖y(t)‖2cos(�)

(8)Kr = cos� =
√
2

∣ ⟨gimp(t), y(t)⟩ ∣
‖gimp(t)‖2 ⋅ ‖y(t)‖2

CFA is performed in conjunction with the particle 
swarm optimisation (PSO) algorithm to speed up the 
optimisation process. The correlation coefficient Kr is 
employed as the fitness function in the PSO algorithm, 
as shown in Eq. (9). Finally, the optimal parameters 
are selected as those maximising Kr . In the PSO algo-
rithm, the main parameters are the particle swarm size 
A , maximum number of iterations M , and acceleration 
factors c1 and c2 , prescribed as A = 50 , M = 10 , and 
c1 = c2 = 1.49445.

(2)  Construct the initial bi-damped wavelet parameter 
dictionary. After the above parameter optimisation, the 
optimal bi-damped wavelet gimp(i) is obtained for the 
subsequent dictionary atom construction. The length of 
the optimal wavelet is set to Lw = round(fs∕fi) (where 
fi is the fault characteristic frequency of the bearings). 
Inspired by the periodicity of fault impulses, period-
assisted optimal wavelets are employed as the diction-
ary atoms. The period number of the optimal wavelet 
in an atom is set to 4 [29]. Thus, the length of an atom 
is La = 4 × Lw . Meanwhile, we can observe from Fig. 3 
that the parameter � controls only the position of the 
bi-damped wavelet on the time axis and has no effect on 
the wavelet waveform. Thus, paving the optimal wave-
let with varied time-shift parameter � gives rise to an 
initial bi-damped wavelet parameter dictionary.

2.2.3  K‑SVD algorithm

At present, K-SVD is the most widely used dictionary learn-
ing algorithm which can effectively reduce the sparsity of 
the coefficient matrix. That is to say, the bi-damped wavelet 
dictionary can represent signal features more effectively, if 
the K-SVD is further utilised. The K-SVD can be defined as 
an objective optimisation problem:

(9)fitness =
max

{f , �, � , �}

(
Kr

)

(10)min
D,X

‖Y − DX‖2
F
s.t.‖xi‖0 ≤ T0, for i = 1, 2,… , n

Fig. 3  Waveforms of bi-damped 
wavelet with different parameter 
combinations
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where Y  denotes the training sample, xi is the column vector 
of the coefficient matrix X , and T0 represents the sparsity con-
straint factor. The K-SVD algorithm first fixes the dictionary 
D and then updates the sparse coefficients X using the OMP 

algorithm. Each column of the dictionary is then sequentially 
updated during the above optimisation process with refer-
ence to the signal features to be extracted. The mathematical 
formula for updating the dictionary is as follows:

(11)‖Y − DX‖2
2
= ‖Y −

�P

j=1
djx

j

T
‖
2

2
= ‖

�
Y −

�
j≠l
djx

j

T

�
− dlx

l
T
‖
2

2

= ‖El − dlx
l
T
‖2
2

Fig. 4  Flowchart of the proposed approach for fault diagnosis
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Fig. 5  Simulation signal: a pure 
signal; b noisy signal

Fig. 6  The representation results of the simulated signal by using the proposed method: a the optimal wavelet atom; b the result of wavelet dic-
tionary; c the result of cascaded dictionary; d the envelope spectrum
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where El denotes the residual matrix. Then, the residual 
matrix is decomposed into various singular values via the 
singular value decomposition (SVD) method.

where Elj = ojujv
T
j
 denotes the j-th singular component. 

Meanwhile, oj denotes the j-th singular value and uj repre-
sents the j-th column vector of the singular matrix U . 
Besides, vj is the j-th column vector of the singular matrix 
V  , and Δ = diag(o1, o2,… , on) is the diagonal matrix. 
According to the principle of K-SVD, dl is updated by the 
columns of U, and the solution to xl is o1vT1  . All the atoms dl 
(l = 1, 2, …, L) in D are updated sequentially.

The K-SVD has been recognised as an effective tool to 
detect inherent fault features. However, the updating prin-
ciple of the K-SVD algorithm is based on the maximum 
singular value. When the noise and harmonic components 
are intense, it will learn some features unrelated to fault 
impulses [29]. Therefore, through substituting the bi-damped 
wavelet parameter dictionary into the K-SVD dictionary, 
the influence of unrelated features can be avoided, and the 

(12)El = UΔVT =
∑m

j=1
Elj

dictionary atoms can be learned in the way of a secondary 
learning to obtain a cascaded dictionary that further suits the 
local features of the fault vibration signals. Consequently, 
the cascaded dictionary is promising in the sense that it can 
achieve better feature extraction in bearing fault diagnosis.

3  Proposed procedures for feature 
extraction

Based on the theory of sparse representation, this paper pre-
sents a novel cascaded dictionary construction method using 
a bi-damped wavelet and the K-SVD algorithm. The steps of 
the proposed approach are provided in detail as follows, with 
the corresponding flowchart presented in Fig. 4.

Step 1: Input the original fault vibration signal of a roll-
ing bearing. First, a cascaded dictionary is constructed 
based on the method mentioned in Section 2.2, which 
can reduce noise and harmonic interference and learn the 
characteristics of fault impulses.

Fig. 7  a, b The processing results of the Laplace wavelet dictionary; c, d the processing results of the K-SVD algorithm
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Step 2: Determine the sparse coefficients. The fault 
vibration signal is divided into several segments with the 
lengths equal to those of the atoms in the cascaded dic-
tionary. The OMP algorithm is then applied to obtain a 
sparse coefficient matrix x̂ = (̂x1, x̂2,… , x̂i).
Step 3: Detect the fault feature frequency. The fault vibra-
tion signals are recovered using the sparse coefficient 
matrix and the cascaded dictionary. The recovered signal 
is then demodulated by the Hilbert transform to get the 
envelope spectra. Finally, bearing fault can be diagnosed 
by identifying the fault characteristic frequency in the 
envelope spectra.

4  Simulation verification and result analysis

To validate the effectiveness and adaptiveness of the pro-
posed approach to feature extraction, a quasi-periodic sig-
nal y(t) is simulated, which is composed of three kinds of 
impulse responses gimp(t) and a random noise n(t) . The simu-
lated signal y(t) is formulated as follows:

where the cyclic period Tr = 0.1s , and Ai and Ao repre-
sent the amplitude of the impulse response and noise, 
respectively. The parameters for the three types of impulse 
responses are predefined as gimp(80, 0.35, 0.15, 0.05)
,gimp(80, 0.25, 0.25, 0.35) ,  and gimp(80, 0.15, 0.35, 0.65) , 

(13)y(t) =
∑

i

Aigimp(t − iTr) + A0n(t)

Table 2  Comparative analysis of reconstructed signals at different 
SNRs

Noise level 
( A0)

Polluted signal 
(SNR, dB)

Cascaded diction-
ary (RMSE)

Laplace 
dictionary 
(RMSE)

0.4  − 6.532 0.059 0.139
0.6  − 10.085 0.050 0.143
0.8  − 12.457 0.062 0.158
1.0  − 14.545 0.073 0.179
1.2  − 16.153 0.064 0.183

Fig. 9  COINV-1618 test bench

Fig. 8  Recovered signals at var-
ious noise intensities (i.e., the 
noise amplitudes  A0 = 0.4, 0.6, 
…, 1.2): a cascaded dictionary; 
b Laplace dictionary
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and their amplitudes are set as 1, 0.5, and 1, respectively. 
The sampling frequency is 12 kHz. Figure 5a and b show 
the waveforms of pure signal and polluted signal with noise 
level A0 = 0.4 , respectively.

According to the procedure shown in Fig. 4, the first step 
is to search for the optimal bi-damped wavelet atom using 
the CFA-PSO method by maximising the correlation coef-
ficient Kr (Eq. 8). For the polluted signal in Fig. 5b, the 

Fig. 10  Inner race fault signal: a time-domain waveform; b spectra; c envelope spectra

Fig. 11  Analysis results of cascaded dictionary: a recovered signal; b envelope spectra
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identified optimal parameters of the bi-damped wavelet are 
f̃ = 62 , �̃ = 0.1058 , �̃ = 0.2419 , and �̃ = 0.8568 , with the 
corresponding atom shown in Fig. 6a. From a global per-
spective, the optimal wavelet atom has a waveform similar 
to the impulse responses in the simulated signal. An initial 
bi-damped wavelet dictionary is then paved by changing 
the time-shift parameter � to form a period-assisted optimal 
wavelet. Figure 6b shows the signal reconstructed by the 
initial wavelet dictionary and original pure signal. It can be 
observed that there is a large difference between the impulse 
responses in the two signals in terms of both amplitude and 
decay characteristics, but the impulse locations are cor-
rectly identified. Next, the initial bi-damped wavelet dic-
tionary is substituted into the K-SVD algorithm to perform 
a secondary learning to form a cascaded dictionary, where 
the initial wavelet atoms are locally adjusted to match glob-
ally and locally with the fault features of interest. Finally, 

with the help of the OMP algorithm, Fig. 6c and d present 
the recovered signal resultant from the cascaded dictionary 
and its envelope spectrum. As shown in Fig. 6c, almost all 
impulse responses are perfectly recovered. More specifically, 
the locations, amplitudes, and decay characteristics of the 
impulse responses in the recovered signal are extremely 
identical to those of the pure signal. It is noteworthy that the 
reconstructed signal is almost completely free of noise. In 
the envelope spectrum (Fig. 6d), the spectrum peaks indica-
tive of fault frequency and its harmonics are prominent.

For comparison, a Laplace wavelet parameter dictionary 
is also applied to analyse the polluted signal. The Laplace 
wavelet is a complex wavelet being single-sided and damped 
exponential as shown in Fig. 1c. It is reported that the 
Laplace wavelet perform well on bearing fault feature extrac-
tion due to the fact that its waveform resembles the impulses 
induced by bearing faults. The Laplace wavelet is defined as.

Fig. 12  Analysis results of Laplace dictionary: a recovered signal; b envelope spectra

Fig. 13  Analysis results of K-SVD dictionary: a recovered signal; b envelope spectra
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The Laplace wavelet is determined by three parameters, 
i.e., (f , �, �) . To test the validity of the Laplace wavelet as a 
mathematical model for dictionary atoms, the CFA is also 
employed to choose its optimal parameters. With the help of 
the OMP algorithm, Fig. 7a and b show the recovered signal 
and its envelope spectrum obtained by using the Laplace 
wavelet dictionary with optimal parameters f̃ = 100 , 
�̃ = 0.2000 , and �̃ = 0.0600 . We can see from Fig. 7a that 
the impulse period cannot be easily observed from the time-
domain signal and the shape of the impulses differentiates 
greatly from the pure signal, although relatively obvious 
spectral peaks appear at the fault frequencies (see Fig. 7b).

(14)�(t) =

�
e

−�√
1−�2

2�f (t−�)

e−j2�f (t−�), t ∈ [�, � +Ws]

0, else

To further demonstrate the superiority of the cascaded 
dictionary with a secondary learning, the K-SVD algorithm 
is employed individually to handle the polluted simulation 
signal. Figure 7c and d illustrate the results of the K-SVD 
algorithm. In Fig. 7c, the periodic impulses are severely 
masked by noise. The feature extraction by the single use of 
the K-SVD algorithm is absolutely inferior to the proposed 
approach (Fig. 6d), which is also manifested in its envelope 
spectrum shown in Fig. 7d. In fact, the K-SVD algorithm 
along may be unsuited for extracting features directly as it is 
extremely susceptible to noise and harmonic interferences. 
Based on the analysis above, it can be inferred that the qual-
ity of the recovered signal using the cascaded dictionary is 
distinctly superior to those obtained by the single use of the 
Laplace dictionary or K-SVD algorithm.

Fig. 14  Analysis results of FK method: a FK; b envelope spectra

Fig. 15  JL-501 locomotive bearing dynamic testing platform Fig. 16  Wheel-set bearing with outer race fault
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To validate the anti-noise performance of the proposed 
approach, we increase the amplitude Ao of the random noise 
from 0.4 to 1.2 with a step of 0.2, resulting in five simu-
lated signals. The reconstructed signals using the cascaded 
dictionary are shown in Fig. 8a. In addition, the root-mean-
square error (RMSE) is employed to evaluate the quality of 
the recovered signals with the results listed in Table 2.

In the forgoing comparative study (Fig. 7), the per-
formance of the Laplace wavelet dictionary is obviously 
superior to that of the K-SVD algorithm. Therefore, the 
reconstruction results of the Laplace wavelet dictionary 
other than the K-SVD in various signal-to-noise ratio 
(SNR) scenarios are shown in Fig. 8b, and the RMSE of 
the recovered signals are presented in Table 2. It is evi-
dent in Fig. 8a that the periodic impulse responses are 
clearly revealed with a good noise interference cancella-
tion. In contrast, the shape and periodicity of the impulse 
responses are poorly captured by the Laplace wavelet dic-
tionary (Fig. 8b). From Table 2, we can observe that the 
RMSEs of the cascaded dictionary are significantly lower 
than those of the Laplace dictionary. Therefore, the pro-
posed approach has excellent anti-noise performance, and 
the feature extraction effect of the cascaded dictionary is 
significantly superior to that of the Laplace dictionary.

5  Application validation

5.1  Case 1: inner race fault from laboratory

The experimental signal was obtained from the fault 
simulation test bench (COINV-1618) shown in Fig. 9, 
which is provided by the China Orient Institute of Noise 
& Vibration. Different faulty bearings can be installed on 
this bench to conduct vibration experiments. The platform 
includes a base plate, motor, gearbox, rotor, rolling bear-
ings, and acceleration sensor. The bearing type used in the 
test was 6200Z with eight rolling elements. There was a 
fracture in the inner raceway of the bearing. The accelera-
tion signals were sampled at the frequency of 19,692.3 Hz 
as the bearing rotates at 1000 rpm. Correspondingly, the 
inner race fault characteristic frequency ( fi) is 75 Hz. The 
signal and its spectrum of the inner race fault are shown 
in Fig. 10a and b, respectively, although fi and its harmon-
ics can be identified from the envelope spectra (Fig. 10c), 
where substantial noise components remain.

Next, the proposed approach is employed to enhance the 
fault feature information. The identified optimal param-
eters of the bi-damped wavelet are f̃ = 1140 , �̃ = 0.1688 , 
�̃ = 0.5095 , and �̃ = 0.1271 . The recovered signal from the 
cascaded dictionary sparse representation and its envelope 
spectrum are shown in Fig. 11a and b respectively, where 
the fault-induced impulses as well as the characteristic fre-
quency and its harmonics are clearly evident.

To illustrate the advantage of the proposed approach in 
fault feature enhancement, three other signal reconstruction 
methods involving the Laplace dictionary, K-SVD algorithm, 
and fast kurtogram (FK) method were applied to analyse the 
experimental signal. The optimal parameters of the Laplace 
wavelet are identified as f̃ = 1968 , �̃ = 0.02 , and �̃ = 0.01 . 
Figure 12a and b present the results using the Laplace diction-
ary. We can observe from Fig. 12a that noise is essentially 
reduced, but some impulse responses are absent and the char-
acteristic frequencies deviate considerably in Fig. 12b. The 

Table 3  Parameters of NJ2232WB bearing

Bearing type NJ2232WB

Motor speed (rpm) 506
Sampling frequency (Hz) 20 k
Thickness (mm) 110
Pitch diameter (mm) 225
Contact angle α (°) 0
Outer race diameter (mm) 160
Inner race diameter (mm) 290
Roller number 17

Fig. 17  Signal of locomotive bearing: a waveform; b spectra; c envelope spectra
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results of the K-SVD are shown in Fig. 13. From the envelope 
spectra in Fig. 13b, the fault characteristic frequencies can be 
observed but submerged in rather heavy noise.

Meanwhile, the results of the FK method are shown in 
Fig. 14. The fault characteristic frequency fi and its harmon-
ics up to 4fi can be observed but with certain noise inter-
ference in Fig. 14b. Based on the results, the FK method 
demonstrates no superiority to the proposed approach. The 
investigations on the experimental signal prove that the 
cascaded dictionary can effectively enhance fault-induced 
impulses and thus has great potential to improve the extrac-
tion accuracy of fault features.

5.2  Case 2: outer race fault from engineering

The fault impulses of the experimental signal presented 
above are easily observable because of an artificial defect 

and a relatively low external interference. However, in real 
engineering applications, the working environment is much 
more complicated than that in a laboratory, resulting in more 
noise components in vibration signals.

To verify the practicality of the proposed approach, the 
signal from a wheel-set bearing with a real outer ring fault 
dismantled from a DF4 diesel locomotive was studied. The 
bearing testing platform is shown in Fig. 15 with the tested 
bearing presented in Fig. 16. Meanwhile, Table 3 lists the 
main parameters of the testing platform and the bearing. Fig-
ure 17a implies that the fault impulse responses in the real-
life signal are masked by severe noise. Figure 17b shows the 
spectra of the signal. The envelope spectra in Fig. 17c indi-
cate that the fault characteristic frequency is completely 
overwhelmed by noise.

Next, the proposed approach is applied to the real-life 
outer race fault signal. The identified bi-damped wave-
let parameters are f̃ = 3333 , �̃ = 0.0473 , �̃ = 0.0334 , and 

Fig. 18  Locomotive bearing analysis results of cascaded dictionary: a recovered signal; b envelope spectra

Fig. 19  Locomotive bearing analysis results of Laplace dictionary: a recovered signal; b envelope spectra
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�̃ = 0.1045 . Figure 18a and b show the analysis results using 
the cascaded dictionary. It can be inferred from Fig. 18a that 
the fault impulse responses are clearly recovered in time 
domain without any interference components. The fault 
characteristic frequency and its harmonics appear distinctly 
in the envelope spectra shown in Fig. 18b. Undoubtedly, 
this reliable evidence demonstrates the practicality of the 
proposed approach in engineering applications.

For comparison, the Laplace dictionary, K-SVD, and 
FK methods are applied to the same signal. The parame-
ters of the Laplace wavelet are ascertained to be f̃ = 4100 , 
�̃ = 0.025 , and �̃ = 0.33 . The results of the Laplace diction-
ary are shown in Fig. 19. No periodicity of fault impulses 
is observed in the recovered signal of the Laplace diction-
ary (Fig. 19a). Accordingly, there is no distinctive fault 

characteristic frequency in the envelope spectra (Fig. 19b). 
In addition, the results from the K-SVD are given in Fig. 20. 
Limited by the atom updating principle, K-SVD is extremely 
susceptible to interference components. Thus, in the enve-
lope spectra, a great deal of irrelevant noise interference 
is retained. Meanwhile, the results obtained using the FK 
method, which is known to be an effective tool for feature 
extraction, are shown in Fig. 21. As shown in Fig. 21b, 
although the fault characteristic frequency fo is presented 
in the envelope spectra, it is heavily disturbed by noise, and 
thus, this method is weak to extract fault features from a 
vibration signal in case of low SNRs.

Therefore, the cascaded dictionary outperforms the other 
three leading methods in terms of fault feature extraction, and 
therefore provides an effective tool for bearing fault detection.

Fig. 20  Locomotive bearing analysis results of K-SVD dictionary: a recovered signal; b envelope spectra

Fig. 21  Locomotive bearing analysis results of FK method: a FK; b envelope spectra

2379The International Journal of Advanced Manufacturing Technology (2023) 124:2365–2381



1 3

6  Conclusions

Based on the properties of the wavelet parameter diction-
ary and learning dictionary, we designed a cascaded dic-
tionary, which performs better in sparse representation 
than the Laplace dictionary, K-SVD algorithm, and FK 
method. In addition, inspired by the characteristics of 
the fault-induced impulses in real-life vibration signals, 
period-assisted bi-damped wavelets are adopted as the 
atoms for the initial parameter dictionary, which is then 
substituted into the K-SVD for a secondary learning, so as 
to achieve a much better agreement with the fault features 
and an effective noise reduction. The main conclusions can 
be summarised as follows.

(1)  The anti-noise performance of the cascaded dictionary 
was verified by simulation signals at different SNRs. 
Investigations on experimental signals confirm that the 
cascaded dictionary can effectively enhance impulse 
features, thus improving the accuracy of bearing fault 
diagnosis. The engineering application results indicate 
that the cascaded dictionary has outstanding perfor-
mance in handling signals with heavy background 
noise, which poses challenging to most existing sparse 
representation dictionaries.

(2)  The effectiveness of the proposed approach was vali-
dated on a simulated signal, an experimental signal, and 
an actual engineering signal. Meanwhile, the superior-
ity of the proposed approach was verified by comparing 
it with three other leading methods. In addition, the 
proposed approach is quite suited for practical engi-
neering applications.

Form all the results in this paper, we can observe that 
there are large fluctuations in the amplitudes of the recov-
ered signals. Investigation into this issue is to be conducted 
in the future.

Author contribution Long Zhang: methodology, conceptualisation, 
resources, writing—review and editing, supervision; Lijuan Zhao: 
methodology, writing—original draft, software; Chaobing Wang: 
visualisation, analysis.

Funding This work is supported by the National Science Foundation 
of China (no. 51665013), the Natural Science Foundation of Jiangxi 
Province (no. 20212BAB204007), and Jiangxi Province Graduate Stu-
dent Innovation Project (YC2021-S422).

Data availability The data used to support the finding of this study are 
available from the corresponding author upon request.

Code availability The algorithm described in this paper is still being 
studied by the research group, so the code has not been publicly 
disclosed.

Declarations 

Ethics approval Not applicable.

Consent to participate Not applicable.

Consent for publication The authors agree that the content of this arti-
cle can be published in the journal.

Conflict of interest The authors declare no competing interests.

References

 1. Liang M, Cao P, Tang J (2021) Rolling bearing fault diagnosis 
based on feature fusion with parallel convolutional neural net-
work. Int J Adv Manuf Technol 112(3):819–831. https:// doi. org/ 
10. 1007/ s00170- 020- 06401-8

 2. Youcef Khodja A, Guersi N, Saadi MN, Boutasseta, N (2020) 
Rolling element bearing fault diagnosis for rotating machinery 
using vibration spectrum imaging and convolutional neural net-
works. Int J Adv Manuf Technol 106(5):1737-1751. https:// doi. 
org/ 10. 1007/ s00170- 019- 04726-7

 3. Ma H, Li S, Lu J, Gong S, Yu T (2022) Impulsive wavelet based 
probability sparse coding model for bearing fault diagnosis. Meas-
urement 194:110969. https:// doi. org/ 10. 1016/j. meaur ement. 2022. 
110969

 4. Chen G, Yan C, Meng J, Wang H, Wu L (2021) Improved VMD-
FRFT based on initial center frequency for early fault diagnosis of 
rolling element bearing. Meas Sci Technol 32(11):115024. https:// 
doi. org/ 10. 1088/ 1361- 6501/ ac1613

 5. Lu Y, Xie R, Liang S (2019) Bearing fault diagnosis with non-
linear adaptive dictionary learning. Int J Adv Manuf Technol 
102(9):4227–4239. https:// doi. org/ 10. 1007/ s00170- 019- 03455-1

 6. Song Y, Liu J, Chu N, Wu P, Wu D (2019) A novel demodulation 
method for rotating machinery based on time-frequency analysis 
and principal component analysis. J Sound Vib 442:645–656. 
https:// doi. org/ 10. 1016/j. sv. 2018. 11. 024

 7. Li H, Liu T, Wu X, Chen Q (2020) An optimized VMD method 
and its applications in bearing fault diagnosis. Measurement 
166:108185. https:// doi. org/ 10. 1016/j. measu rement. 2020. 108185

 8. Wang H, Du W (2021) Early weak fault diagnosis of rolling 
element bearing based on resonance sparse decomposition and 
multi-objective information frequency band selection method. J 
Vib Control. https:// doi. org/ 10. 1177/ 10775 46321 10202 05

 9. Chui C, Jiang Q, Li L, Lu J (2021) Analysis of an adaptive short-
time Fourier transform-based multicomponent signal separation 
method derived from linear chirp local approximation. J Comput 
Appl Math 396:113607. https:// doi. org/ 10. 1016/j. cam. 2021. 11360 
107

 10. Liu D, Cheng W, Wen W (2020) Rolling bearing fault diagno-
sis via STFT and improved instantaneous frequency estimation 
method. Procedia Manuf 49:166–172. https:// doi. org/ 10. 1016/j. 
promfg. 2020. 07. 014

 11. Chen B, Shen B, Chen F, Tian H, Xiao W, Zhang F, Zhao C (2019) 
Fault diagnosis method based on integration of RSSD and wavelet 
transform to rolling bearing. Measurement 131:400–411. https:// 
doi. org/ 10. 1016/j. measu rment. 2018. 07. 04320 18. 07. 043

 12. Zhang K, Ma C, Xu Y, Chen P, Du J (2021) Feature extraction 
method based on adaptive and concise empirical wavelet trans-
form and its applications in bearing fault diagnosis. Measurement 
172:108976. https:// doi. org/ 10. 10116/j. measu ment. 2021. 108976

2380 The International Journal of Advanced Manufacturing Technology (2023) 124:2365–2381

https://doi.org/10.1007/s00170-020-06401-8
https://doi.org/10.1007/s00170-020-06401-8
https://doi.org/10.1007/s00170-019-04726-7
https://doi.org/10.1007/s00170-019-04726-7
https://doi.org/10.1016/j.meaurement.2022.110969
https://doi.org/10.1016/j.meaurement.2022.110969
https://doi.org/10.1088/1361-6501/ac1613
https://doi.org/10.1088/1361-6501/ac1613
https://doi.org/10.1007/s00170-019-03455-1
https://doi.org/10.1016/j.sv.2018.11.024
https://doi.org/10.1016/j.measurement.2020.108185
https://doi.org/10.1177/10775463211020205
https://doi.org/10.1016/j.cam.2021.11360107
https://doi.org/10.1016/j.cam.2021.11360107
https://doi.org/10.1016/j.promfg.2020.07.014
https://doi.org/10.1016/j.promfg.2020.07.014
https://doi.org/10.1016/j.measurment.2018.07.0432018.07.043
https://doi.org/10.1016/j.measurment.2018.07.0432018.07.043
https://doi.org/10.10116/j.measument.2021.108976


1 3

 13. Gu J, Peng Y (2021) An improved complementary ensemble 
empirical mode decomposition method and its application in roll-
ing bearing fault diagnosis. Digital Signal Process 113:103050. 
https:// doi. org/ 10. 1016/j. dsp. 2021.- 103050

 14. Dogan S, Tuncer T (2021) A novel statistical decimal pattern-
based surface electromyogram signal classification method using 
tunable q-factor wavelet transform. Soft Comput 25(2):1085–
1098. https:// doi. org/ 10. 1007/ s00500- 020- 05205-y

 15. Zhang S, Liu Z, He S, Wang J, Chen L (2022) Improved double 
TQWT sparse representation using the MQGA algorithm and new 
norm for aviation bearing compound fault detection. Eng Appl 
Artif Intell 110:104741. https:// doi. org/ 10. 1016/j. engap pai. 2022. 
104741

 16. Mallat SG, Zhang Z (1993) Matching pursuits with time-fre-
quency dictionaries. IEEE Trans Signal Process 41(12):3397–
3415. https:// doi. org/ 10. 1109/ 78. 258082

 17. Qin Y, Mao Y, Tang B (2013) Vibration signal component sep-
aration by iteratively using basis pursuit and its application in 
mechanical fault detection. J Sound Vib 332(20):5217–5235. 
https:// doi. org/ 10. 1016/ j-. jsv. 2013. 04. 021

 18. Wang S, Selesnick IW, Cai G, Ding B, Chen X (2019) Synthesis 
versus analysis priors via generalized minimax-concave penalty 
for sparsity-assisted machinery fault diagnosis. Mech Syst Signal 
Process 127:202–233. https:// doi. org/ 10. 1016/j. ymssp. 2019. 02. 
053

 19. Li J, Wang H, Song L (2021) A novel sparse feature extraction 
method based on sparse signal via dual-channel self-adaptive 
TQWT. Chin J Aeronaut 34(7):157–169. https:// doi. org/ 10. 1016/j. 
cja. 2020. 06. 013

 20. Song L, Yan R (2019) Bearing fault diagnosis based on cluster-
contraction stage-wise orthogonal-matching-pursuit. Measure-
ment 140:240–253. https:// doi. org/ 10. 1016/j. measu remen t.- 2019. 
03. 061

 21. Jiang F, Ding K, He G, Du C (2021) Sparse dictionary design 
based on edited cepstrum and its application in rolling bearing 
fault diagnosis. J Sound Vib 490:115704. https:// doi. org/ 10. 
1016/j. jsv. 2020. 115704

 22. Li Y, Zheng F, Xiong Q, Zhang W (2021) A secondary selection-
based orthogonal matching pursuit method for rolling element 
bearing diagnosis. Measurement 176:109199. https:// doi. org/ 10. 
1016/j. measu rement. 2021. 109199

 23. Sun R, Yang Z, Zhai Z, Chen X (2019) Sparse representation 
based on parametric impulsive dictionary design for bearing fault 
diagnosis. Mech Syst Signal Process 122:737–753. https:// doi. org/ 
10. 1016/j. ymssp. 2018. 12. 054

 24. Qin Y (2017) A new family of model-based impulsive wavelets 
and their sparse representation for rolling bearing fault diagnosis. 
IEEE Trans Industr Electron 65(3):2716–2726. https:// doi. org/ 10. 
1109/ TIE. 2017. 27365 10

 25. Fan W, Cai G, Zhu Z, Shen C, Huang W, Shang L (2015) Sparse 
representation of transients in wavelet basis and its application 
in gearbox fault feature extraction. Mech Syst Signal Process 
56:230–245. https:// doi. org/ 10. 1016/j. ymssp. 2014. 10. 016

 26. Wang S, Huang W, Zhu Z (2011) Transient modeling and 
parameter identification based on wavelet and correlation filter-
ing for rotating machine fault diagnosis. Mech Syst Sig Process 
25(4):1299–1320. https:// doi. org/ 10. 1016/j. ymssp. 2010. 10. 013

 27. Deng F, Qiang Y, Yang S, Hao R, Liu Y (2021) Sparse representa-
tion of parametric dictionary based on fault impact matching for 
wheelset bearing fault diagnosis. ISA Trans 110:368–378. https:// 
doi. org/ 10. 1016/j. isatr a.- 2020. 10. 034

 28. He G, Li J, Ding K, Zhang Z (2022) Feature extraction of gear 
and bearing compound faults based on vibration signal sparse 
decomposition. Appl Acoust 189:108604. https:// doi. org/ 10. 
1016/j. apaco ust. 2021. 108604

 29. Li J, Tao J, Ding W, Zhang J, Meng Z (2022) Period-assisted adap-
tive parameterized wavelet dictionary and its sparse representation 
for periodic transient features of rolling bearing faults. Mech Syst 
Signal Process 169:108796. https:// doi. org/ 10. 1016/j. ymssp. 2021

 30. Qin Y, Zou J, Tang B, Wang Y (2019) Transient feature extrac-
tion by the improved orthogonal matching pursuit and K-SVD 
algorithm with adaptive transient dictionary. IEEE Trans Industr 
Inf 16(1):215–227. https:// doi. org/ 10. 1109/ TII. 2019. 29093 05

 31. Yuan H, Wu N, Chen X (2021) Mechanical compound fault 
analysis method based on shift invariant dictionary learning and 
improved FastICA algorithm. Machines 9(8):144. https:// doi. org/ 
10. 3390/ machi nes90 80144

 32. Li N, Huang W, Guo W, Gao G (2019) Zhu Z (2019) Multiple 
enhanced sparse decomposition for gearbox compound fault diag-
nosis. IEEE Trans Instrum Meas 69(3):770–781. https:// doi. org/ 
10. 1109/ TIM. 2019. 29050 43

 33. Cui L, Gong X, Zhang J, Wang H (2016) Double-dictionary 
matching pursuit for fault extent evaluation of rolling bearing 
based on the Lempel-Ziv complexity. J Sound Vib 385:372–388. 
https:// doi. org/ 10. 1016/j. jsv. 2016. 09.- 008

 34. He G, Ding K, Lin H (2016) Fault feature extraction of rolling ele-
ment bearings using sparse representation. J Sound Vib 366:514–
527. https:// doi. org/ 10. 1016/j. jsv. 2015. 12. 020

Publisher's note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.

2381The International Journal of Advanced Manufacturing Technology (2023) 124:2365–2381

https://doi.org/10.1016/j.dsp.2021.-103050
https://doi.org/10.1007/s00500-020-05205-y
https://doi.org/10.1016/j.engappai.2022.104741
https://doi.org/10.1016/j.engappai.2022.104741
https://doi.org/10.1109/78.258082
https://doi.org/10.1016/j-.jsv.2013.04.021
https://doi.org/10.1016/j.ymssp.2019.02.053
https://doi.org/10.1016/j.ymssp.2019.02.053
https://doi.org/10.1016/j.cja.2020.06.013
https://doi.org/10.1016/j.cja.2020.06.013
https://doi.org/10.1016/j.measurement.-2019.03.061
https://doi.org/10.1016/j.measurement.-2019.03.061
https://doi.org/10.1016/j.jsv.2020.115704
https://doi.org/10.1016/j.jsv.2020.115704
https://doi.org/10.1016/j.measurement.2021.109199
https://doi.org/10.1016/j.measurement.2021.109199
https://doi.org/10.1016/j.ymssp.2018.12.054
https://doi.org/10.1016/j.ymssp.2018.12.054
https://doi.org/10.1109/TIE.2017.2736510
https://doi.org/10.1109/TIE.2017.2736510
https://doi.org/10.1016/j.ymssp.2014.10.016
https://doi.org/10.1016/j.ymssp.2010.10.013
https://doi.org/10.1016/j.isatra.-2020.10.034
https://doi.org/10.1016/j.isatra.-2020.10.034
https://doi.org/10.1016/j.apacoust.2021.108604
https://doi.org/10.1016/j.apacoust.2021.108604
https://doi.org/10.1016/j.ymssp.2021
https://doi.org/10.1109/TII.2019.2909305
https://doi.org/10.3390/machines9080144
https://doi.org/10.3390/machines9080144
https://doi.org/10.1109/TIM.2019.2905043
https://doi.org/10.1109/TIM.2019.2905043
https://doi.org/10.1016/j.jsv.2016.09.-008
https://doi.org/10.1016/j.jsv.2015.12.020

	Sparse representation by novel cascaded dictionary for bearing fault diagnosis using bi-damped wavelet
	Abstract
	1 Introduction
	2 Methods
	2.1 Sparse representation and OMP algorithm
	2.2 Cascaded sparse dictionary
	2.2.1 Bi-damped wavelet
	2.2.2 Building bi-damped wavelet dictionary
	2.2.3 K-SVD algorithm


	3 Proposed procedures for feature extraction
	4 Simulation verification and result analysis
	5 Application validation
	5.1 Case 1: inner race fault from laboratory
	5.2 Case 2: outer race fault from engineering

	6 Conclusions
	References


