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Abstract

Vibration-based bearing condition monitoring of rotating machinery is of great importance for improving production effi-
ciency and ensuring operational safety in the manufacturing industry. Sparse representation is able to effectively extract inher-
ent impulse features from fault vibration signals corrupted by noise and harmonic interference, of which the performance is
directly determined by dictionaries. In this study, the typical drawbacks of commonly used dictionaries are addressed using
anovel cascaded dictionary. Period-assisted bi-damped wavelets with specific shapes are employed as the initial dictionary
atoms to achieve overall matches with impulse features. Subsequently, the initial atoms are subjected to the K-singular value
decomposition (K-SVD) for a secondary learning to obtain a cascaded dictionary that matches the real impulse features
globally and locally. Finally, faulty vibration signals are recovered in segments using the cascaded dictionary and orthogonal
matching pursuit (OMP). The results on the signals from the simulations, experiments, and real-world engineering confirm
that the proposed cascaded dictionary consistently outperforms three other leading methods. Furthermore, the proposed
cascaded dictionary is proved to be suitable for practical engineering diagnosis because of its outstanding anti-noise capa-
bilities and self-adaptability.
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1 Introduction bearing fault occurs, the defect passes its mating surface

resulting in a short force pulse. As the bearing rotates in a

Rolling bearings play a paramount role in machine tools and
are primarily employed to support rotations and carry the
radical dynamic loads of spindles [1-3]. As a safety—criti-
cal component, rolling bearings usually work under harsh
operating conditions, and are therefore prone to various
failures, which may lead to production efficiency reduc-
tion and economic losses in the manufacturing industry [4].
Accurate fault diagnosis of rolling bearings is thus of great
importance for ensuring the high safety and high-efficiency
operation of manufacturing equipment. When a localised
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continuous fashion, the transient pulse repeatedly arises, and
thus, periodic impulse features take place in the vibration
signal. Hence, the bearing fault diagnosis technique based
on vibration signal analysis has attracted significant atten-
tion in recent years [5—8]. Nevertheless, vibration signals are
normally contaminated by noise and harmonic interference
due to poor operating conditions.

Numerous effective methods have sprung up for extract-
ing periodic fault features from vibration signals. Commonly
applied vibration signal analysis methods include the short-
time Fourier transform (STFT) [9, 10], wavelet transform
[11, 12], ensemble empirical mode decomposition (EEMD)
[13], and tuneable Q-factor wavelet transform (TQWT) [14,
15]. However, these methods suffer from threshold setting
and high computational costs, as well as the requirement of
abundant human expertise. Recently, sparse representation,
emerging as an active and valid signal analysis approach, has
garnered considerable attention because of its outstanding
performance in feature extraction.
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Sparse representation has two key components: dictionary
construction, and the determination of sparse coefficients.
The matching pursuit (MP) [16] and basis pursuit (BP) algo-
rithms [17] are two typical approaches employed to deter-
mine sparse coefficients. The advantage of the MP algorithm
over the BP algorithm is that the former is computationally
simpler and easier to implement [18]. The orthogonal match-
ing pursuit (OMP) algorithm is an improved derivate of the
MP algorithm, which has been extensively utilised in the
determination of sparse coefficients. For example, Li et al.
[19] applied the OMP algorithm and a self-adaptive com-
plete dictionary to obtain a sparse signal. Song et al. [20]
proposed a cluster contraction stagewise OMP (CcStOMP)
algorithm to detect the fault features of rolling bearings. In
fact, the coefficient solving algorithm mainly affects the
speed of feature reconstruction, whereas it is the dictionary
which truly underlies the accuracy of feature extraction [21].
Hence, designing an appropriate dictionary is essential to
fault feature extraction.

Among the existing dictionaries, wavelet parameter dic-
tionaries are extensively explored because of the flexibility
and variability of wavelet waveforms. Notably, the similar-
ity between the dictionary atoms and fault impulse directly
determines the performance of feature extraction [21]. The
unit impulse response, Laplace wavelet, and Morlet wave-
let are widely used as mathematical models of wavelet dic-
tionary atoms, where the first two are both single-sided and
damped exponential functions. By coincidence, a bearing
fault-induced impulse response is generally acknowledged
to be single-sided attenuation, which leads a wide applica-
tion of such two wavelets to bearing fault feature extraction.
For instance, Jiang et al. [21] used a unit impulse response
function as the mathematical model of atoms to design a
dictionary, which was employed in conjunction with the MP
algorithm to realise fault feature extraction for bearings. Li
et al. [22] applied the Laplace wavelet dictionary and a sec-
ondary selection-based OMP (SS-OMP) algorithm to suc-
cessfully detect the fault features of rolling bearings, whilst
Sun et al. [23] also utilised the Laplace wavelet parametric
dictionary to extract fault features of rolling bearings. Mean-
while, Qin et al. [24] constructed a new impulsive wavelet
as the dictionary atom model for a sparse representation of
rolling bearing fault-induced impulses. On the contrary, the
distinctive feature of the Morlet wavelet is that its waveform
has a shape similar to that of a gear fault-induced impulse
response with double-sided attenuation. Hence, Fan et al.
[25] constructed a parameter dictionary to diagnose gear-
boxes based on Morlet wavelets, whereas Wang et al. [26]
used the Morlet wavelet as a transient model and identified
the model parameters via a correlation filtering algorithm
(CFA) to diagnose gear faults within rotating machinery. In
the case of compound faults where gear and bearing faults
co-exist, Deng et al. [27] introduced the Laplace and Morlet
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wavelets as the mathematical models of dictionary atoms
to design corresponding dictionaries for diagnosing bearing
and gear faults simultaneously. He et al. [28] designed two
types of dictionaries for the sparse representation of gear
and bearing faults, where the mathematical models of their
dictionary atoms were a steady harmonic and unit impulse
response function.

The review of the previous literature indicates that the
wavelet mathematical model used for sparse representation
has a significant effect on the fault feature extraction. How-
ever, the commonly used wavelet functions exhibit single-
sided attenuation or bilateral symmetric attenuation because
of a single damping ratio. In fact, the impulse response
components in the real-life faulty bearing vibration signal
generally exhibit bilateral asymmetric attenuation because
of the influence of such factors as fault mechanism, trans-
mission paths, and sensor characteristics. Therefore, such
wavelet functions fail to be used to good effect when serving
as mathematical models for dictionary atoms in practical
engineering applications. To address the above issues, this
work makes use of a bi-damped wavelet as the mathematical
model of an atom to construct an initial parameter diction-
ary, where the bi-damped wavelet is able to take an asym-
metric bilateral shape resembling the fault-induced impulse
response [29]. As such, this initial dictionary is expected to
achieve a global match with the fault-induced impulses in
vibration signals.

Most wavelet dictionaries are paved by changing the
time-shift parameter of an optimal wavelet basis, so that the
waveforms of all the atoms are essentially identical. This is
also the case of the bi-damped wavelet parameter dictionary.
However, the fault-induced impulses in the vibration signals
are not identical in terms of amplitudes and oscillation char-
acteristics. A data-driven learning dictionary can automati-
cally update each column of the dictionary according to the
fault-induced impulses in the signal at hand. As a typical
dictionary learning model, K-singular value decomposition
(K-SVD) has been applied widely in fault diagnosis [30-32].
However, when the noise and harmonic components are
intensive, the K-SVD algorithm is prone to learning com-
ponents that are unrelated to fault-induced impulse features.

To improve the global and local matching of the initial
dictionary to the fault-induced impulse, we developed a cas-
caded dictionary construction method. In this approach, a
bi-damped wavelet is first employed as the wavelet math-
ematical model of the atom, which globally matches the
fault-induced impulses. Motivated by the periodicity char-
acteristic of the impulses in the vibration signal, the param-
eter dictionary atom is constructed with period-assisted
bi-damped wavelets. Next, the initial bi-damped wavelet
parameter dictionary is substituted into the K-SVD algo-
rithm to adjust the amplitude and oscillation characteris-
tics of each atom to achieve a local match with the fault
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impulses. Thus, a cascaded dictionary is obtained that takes
into account the global and local features of the vibration
signals.

The main contributions of this paper are as follows: (1)
The cascaded dictionary is proposed to merge the parametric
dictionary and the learning one, integrating the power of
individual dictionary and overcomes their own shortcomings
simultaneously. (2) Period-assisted bi-damped wavelets are
employed as the dictionary atoms, considering not only the
shape of the impulse response but also the periodicity in
real vibration signals. (3) The proposed method can achieve
excellent performance in the fault feature extraction of an
actual locomotive wheel-set bearing.

The structure of this paper is arranged as follows. In
Section 2, the individual methods utilised in the developed
approach are briefly described. The implementation details
of the proposed approach are introduced in Section 3. In
Section 4, the effectiveness of the proposed method is vali-
dated by simulation analysis. In Section 5, the performance
and superiority of the proposed method are analysed using
experimental and actual engineering signals. Finally, con-
cluding remarks are summarised in Section 6.

2 Methods
2.1 Sparse representation and OMP algorithm

A bearing fault vibration signal typically consists of periodic
transient impulse components and background noise. Thus,
the observed fault signal y can be described as.

y=h+e €h)

where h represents the periodic transient impulse com-
ponents and e denotes the background noise. In accord-
ance with the theory of sparse decomposition, the signal
y € R™! can be expanded with an over-complete dictionary
D eR™™, D =[d,.d,....,d,]. Then, the signal y can be
modelled as.

y=Dx+¢ 2)

where x € RM*! denotes the sparse coefficient vector and
€ is the reconstruction error. The purpose of sparse repre-
sentation is to use as few atoms as possible from the over-
complete dictionary D to represent the vibration signal y
with the minimum /, norm ||x||,. The sparse representation
is defined as.

mi;l”xllo’ S.1. ”y —D)C”% <Eg (3)

Determining the minimum [, norm ||x||, is a non-deter-
ministic polynomial hard problem. The OMP algorithm can
transform the /;-minimisation problem into an /,-minimisa-
tion problem, as follows:

mi’:”xlll, Ss.1. ||y—Dx||§ <€ (4)

To ensure that the solution is optimal, the OMP algorithm
performs a Gram-Schmidt orthogonalisation operation on
all selected atoms during each iteration. For clarity, a basic
description of the OMP algorithm is presented in Table 1.

2.2 Cascaded sparse dictionary

For better extraction of the transient impulse responses from
a vibration signal submerged in noise and harmonic compo-
nents, the construction of a dictionary that allows atoms to
follow impulse changes and not easily be affected by noise
interference is a subject worthy of attention. This paper
proposes a cascaded dictionary construction method that
satisfies the aforementioned demands and the accuracy of
rolling bearing feature extraction is expected to be improved.
Considering the asymmetric bilateral attenuation and perio-
dicity of the real-life impulse responses, a period-assisted bi-
damped wavelet is employed as the atom to design an initial
parameter dictionary. Then, the K-SVD algorithm is utilised
to refine the initial parameter dictionary locally. Finally, a
cascaded dictionary can be obtained that matches the real
impulse response globally and locally.

Table 1 Description of OMP
algorithm

Input: signal y, dictionary D, and sparsity threshold 7

Initialise: residual r,, =y, iteration number s = 1, initial atom set D, = @, and support index set A, = ¢

Procedure:
(Dfors=1,2,...,T,do

(2) Select the index A; that solves the optimisation problem: A = arg,_; _"*|< r,_,.d,, >|
(3) Update the index set A;: A, = A,_; {AS}, update initial set of atoms: D; = [D,_,d, |

(4) Search the approximate solution of least squares problem: X, = arg;"" ||y — D.X|l,

(5) Update the residual: ry =y — D

(6) end for
Output: %

X, iteration time: s = s + 1

s7vs?
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2.2.1 Bi-damped wavelet

Some researchers consider that the transient impulses
generated by a bearing fault exhibit strictly single-sided
attenuation characteristics [33, 34], with the impulse model
described as Eq. (5):

—£

(pimp(a)7 é, T, l) =e 1-¢

w(t—1)
sino(t —7),t > 7 (5)

where @ = 2zf represents the oscillation frequency, which
is denoted by f in the following equations. Meanwhile, ¢
denotes the time shift; £ represents the damping ratio, which

= w(t—1)
1-£2

is used to control the rate of wavelet attenuation; and ¢ is the
signal duration.

Figure 1 illustrates the commonly used wavelet functions,
from which we can see that the Laplace wavelet with single-
sided attenuation and the Morlet wavelet with double-sided
symmetric attenuation match poorly with the fault-induced
double-sided asymmetric attenuation impulses as shown in
Fig. 2, which come from the bearing vibration signals pro-
vided by the Western Reserve University. Therefore, based on
the characteristics of the bearing fault impulses, and consider-
ing the weaknesses of commonly used wavelet functions, this
study uses a bi-damped wavelet gimp(a), &,¢,7,1) as the atom
mathematical model to construct an initial parameter diction-
ary, which is expressed as Eq. (6):

£ w(t—7)
-2

o @ttt =4 Kt =7.0)-¢ Vg cos ((t — 7)) = Ky, (t = 1,0) - e V= " cos ((t — 7)), te[t — Wy, 7 + W,] (6)
" 0 else
1,t>0
Kimp @ 0= { 0, else
(a)1.5 (b) 1 (c)1
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Fig.1 Commonly used wavelet functions: (a) db4 wavelet; (b) Morlet wavelet; (c) Laplace wavelet
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Fig.2 Bearing fault signals: a outer ring fault signal; b inner ring fault signal
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where by carefully adjusting the two damping ratios & and
¢, we can refine the oscillation attenuations on the left and
right sides of the wavelet respectively, so as to match the
inherent impulse responses in faulty bearing vibration
signals. Figure 3 displays three bi-damped wavelets with
the parameter combinations of gimp(IOOO, 0.5,0.2,0.01),
8imp(1500,0.15,0.15, 0.03), and g,,,,,(1800,0.2,0.5, 0.05). It
is seen that a suitable selection of wavelet parameters has the
potential to yield a bi-damped wavelet matching perfectly
with the fault-induced impulse response.

2.2.2 Building bi-damped wavelet dictionary

(1) Optimise the bi-damped wavelet by CFA with respect
to the parameters (w, &, {, 7) (w = 2zf) to approximate
fault-induced impulses in the processed signal. First, in
accordance with Ref. [34], let fe[O, f,/2], 7¢[0, T,], and
both and(e[0, 1], where f; is the sampling frequency,
and T, is the signal time series used for correlation fil-
tering.

Next, the inner products of the wavelets of various
parameter combinations and the signal of interest are
calculated by CFA. The inner product measures the
correlation degree between the wavelet atom and the
signal, which can be defined as Eq. (7).

<gimp(t)’ y(t)> = “gimp(t)Ilzlly(t)HZCOS(e) (7)

As can be seen from Eq. (7), the inner product is
affected by the amplitude of the wavelet g,,,, () and the
signal y(f), as well as the angle 6. Actually, the smaller
the angle 6 is, the more similar of g,,,,(r) and y(z) will
be. To eliminate the amplitude effect of the wavelet and
signal, a correlation coefficient K, can be defined to
quantify the magnitude of the angle, i.e., the similarity
level of the wavelet to the signal. The correlation coef-
ficient K, is described as Eq. (8).

| <gimp(t)9y(t)> |
K, = cos6 = \/2
e \[ugim,,(r)uz NTOIR

®)

Considering that the process of identifying the
optimal parameters is computationally expensive, the

CFA is performed in conjunction with the particle
swarm optimisation (PSO) algorithm to speed up the
optimisation process. The correlation coefficient K, is
employed as the fitness function in the PSO algorithm,
as shown in Eq. (9). Finally, the optimal parameters
are selected as those maximising K. In the PSO algo-
rithm, the main parameters are the particle swarm size
A, maximum number of iterations M, and acceleration
factors c, and c,, prescribed as A = 50, M = 10, and
¢, = ¢, = 1.49445.
max
fitness = (. &6} (K,) 9)
(2) Construct the initial bi-damped wavelet parameter
dictionary. After the above parameter optimisation, the
optimal bi-damped wavelet g;,,,(i) is obtained for the
subsequent dictionary atom construction. The length of
the optimal wavelet is set to L,, = round(f,/f;) (where
/f; 1s the fault characteristic frequency of the bearings).
Inspired by the periodicity of fault impulses, period-
assisted optimal wavelets are employed as the diction-
ary atoms. The period number of the optimal wavelet
in an atom is set to 4 [29]. Thus, the length of an atom
is L, = 4 X L,,.. Meanwhile, we can observe from Fig. 3
that the parameter = controls only the position of the
bi-damped wavelet on the time axis and has no effect on
the wavelet waveform. Thus, paving the optimal wave-
let with varied time-shift parameter 7 gives rise to an
initial bi-damped wavelet parameter dictionary.

2.2.3 K-SVD algorithm

At present, K-SVD is the most widely used dictionary learn-
ing algorithm which can effectively reduce the sparsity of
the coefficient matrix. That is to say, the bi-damped wavelet
dictionary can represent signal features more effectively, if
the K-SVD is further utilised. The K-SVD can be defined as
an objective optimisation problem:

PNY = DX|[5s.lxlly < To, for i =1,2,...,n (10)
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where Y denotes the training sample, x; is the column vector
of the coefficient matrix X, and 7|, represents the sparsity con-
straint factor. The K-SVD algorithm first fixes the dictionary
D and then updates the sparse coefficients X using the OMP

- P 2 . L2
”Y—DX”2 - “Y_ Zj:ldjx,THQ - ”(Y_ ]#ldj'x]T> _dlellz

algorithm. Each column of the dictionary is then sequentially
updated during the above optimisation process with refer-
ence to the signal features to be extracted. The mathematical
formula for updating the dictionary is as follows:

2
= ||E, — dixb ]I, (11)

Original vibration signal

-5

0 02 04 06 08

Segment the original signal and use
the OMP algorithm to recovery the
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1
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(Application of cascaded dictionary based on bi-damped wavelet for bearing fault diagnos@

Fig.4 Flowchart of the proposed approach for fault diagnosis
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Fig.5 Simulation signal: a pure (a
signal; b noisy signal
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Fig. 6 The representation results of the simulated signal by using the proposed method: a the optimal wavelet atom; b the result of wavelet dic-
tionary; c the result of cascaded dictionary; d the envelope spectrum
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where E; denotes the residual matrix. Then, the residual
matrix is decomposed into various singular values via the
singular value decomposition (SVD) method.
m

E =UAVT = ZF]EU (12)
where E; = ojujva denotes the j-th singular component.
Meanwhile, o; denotes the j-th singular value and u; repre-
sents the j-th column vector of the singular matrix U.
Besides, v; is the j-th column vector of the singular matrix
V, and A =diag(o,,0,,...,0,) is the diagonal matrix.
According to the principle of K-SVD, 4, is updated by the
columns of U, and the solution to x' is 0, v!. All the atoms d,
(I=1,2,...,L) in D are updated sequentially.

The K-SVD has been recognised as an effective tool to
detect inherent fault features. However, the updating prin-
ciple of the K-SVD algorithm is based on the maximum
singular value. When the noise and harmonic components
are intense, it will learn some features unrelated to fault
impulses [29]. Therefore, through substituting the bi-damped
wavelet parameter dictionary into the K-SVD dictionary,
the influence of unrelated features can be avoided, and the

(@)
o 05
©
=
S 0 WJ
S
<
-0.5
-1 ' s . .
0 0.2 0.4 0.6 0.8
Time (s)
(c) 2

Amplitude

0 0.2 0.4 0.6 0.8
Time (s)

dictionary atoms can be learned in the way of a secondary
learning to obtain a cascaded dictionary that further suits the
local features of the fault vibration signals. Consequently,
the cascaded dictionary is promising in the sense that it can
achieve better feature extraction in bearing fault diagnosis.

3 Proposed procedures for feature
extraction

Based on the theory of sparse representation, this paper pre-
sents a novel cascaded dictionary construction method using
a bi-damped wavelet and the K-SVD algorithm. The steps of
the proposed approach are provided in detail as follows, with
the corresponding flowchart presented in Fig. 4.

Step 1: Input the original fault vibration signal of a roll-
ing bearing. First, a cascaded dictionary is constructed
based on the method mentioned in Section 2.2, which
can reduce noise and harmonic interference and learn the
characteristics of fault impulses.

0.2
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3 20 Hz
= 041
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<
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0 ! \ !
0 50 100 150 200
Frequency (Hz)
0.08 ‘
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Fig.7 a, b The processing results of the Laplace wavelet dictionary; ¢, d the processing results of the K-SVD algorithm
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Step 2: Determine the sparse coefficients. The fault
vibration signal is divided into several segments with the
lengths equal to those of the atoms in the cascaded dic-
tionary. The OMP algorithm is then applied to obtain a
sparse coefficient matrix X = (X;,%,, ..., X;).

Step 3: Detect the fault feature frequency. The fault vibra-
tion signals are recovered using the sparse coefficient
matrix and the cascaded dictionary. The recovered signal
is then demodulated by the Hilbert transform to get the
envelope spectra. Finally, bearing fault can be diagnosed
by identifying the fault characteristic frequency in the
envelope spectra.

Table2 Comparative analysis of reconstructed signals at different
SNRs

Noise level ~ Polluted signal Cascaded diction-  Laplace

(Ap) (SNR, dB) ary (RMSE) dictionary
(RMSE)

0.4 -6.532 0.059 0.139

0.6 —10.085 0.050 0.143

0.8 —12.457 0.062 0.158

1.0 —14.545 0.073 0.179

1.2 —16.153 0.064 0.183

4 Simulation verification and result analysis

To validate the effectiveness and adaptiveness of the pro-
posed approach to feature extraction, a quasi-periodic sig-
nal y(¢) is simulated, which is composed of three kinds of
impulse responses gimp(t) and a random noise n(?). The simu-
lated signal y(¢) is formulated as follows:

) = ZAigimp(t —iT,) + Apn(t) (13)

where the cyclic period T, = 0.1s, and A; and A, repre-
sent the amplitude of the impulse response and noise,
respectively. The parameters for the three types of impulse
responses are predefined as gl-mp(SO, 0.35,0.15,0.05)

8imp(80,0.25,0.25,0.35), and g,,,(80,0.15,0.35,0.65),
Digital speed Direct current|
regulator motor

Fig.9 COINV-1618 test bench
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Fig. 10 Inner race fault signal: a time-domain waveform; b spectra; ¢ envelope spectra
and their amplitudes are set as 1, 0.5, and 1, respectively. According to the procedure shown in Fig. 4, the first step

The sampling frequency is 12 kHz. Figure 5a and b show  is to search for the optimal bi-damped wavelet atom using
the waveforms of pure signal and polluted signal with noise ~ the CFA-PSO method by maximising the correlation coef-
level A, = 0.4, respectively. ficient K, (Eq. 8). For the polluted signal in Fig. 5b, the
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Fig. 11 Analysis results of cascaded dictionary: a recovered signal; b envelope spectra
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Fig. 12 Analysis results of Laplace dictionary: a recovered signal; b envelope spectra

identified optimal parameters of the bi-damped wavelet are
f=62,&=0.1058, = 0.2419, and 7 = 0.8568, with the
corresponding atom shown in Fig. 6a. From a global per-
spective, the optimal wavelet atom has a waveform similar
to the impulse responses in the simulated signal. An initial
bi-damped wavelet dictionary is then paved by changing
the time-shift parameter 7 to form a period-assisted optimal
wavelet. Figure 6b shows the signal reconstructed by the
initial wavelet dictionary and original pure signal. It can be
observed that there is a large difference between the impulse
responses in the two signals in terms of both amplitude and
decay characteristics, but the impulse locations are cor-
rectly identified. Next, the initial bi-damped wavelet dic-
tionary is substituted into the K-SVD algorithm to perform
a secondary learning to form a cascaded dictionary, where
the initial wavelet atoms are locally adjusted to match glob-
ally and locally with the fault features of interest. Finally,

(a)

Amplitude

0.1 0.15 0.2
Time (s)

0 0.05 0.25

with the help of the OMP algorithm, Fig. 6¢ and d present
the recovered signal resultant from the cascaded dictionary
and its envelope spectrum. As shown in Fig. 6¢, almost all
impulse responses are perfectly recovered. More specifically,
the locations, amplitudes, and decay characteristics of the
impulse responses in the recovered signal are extremely
identical to those of the pure signal. It is noteworthy that the
reconstructed signal is almost completely free of noise. In
the envelope spectrum (Fig. 6d), the spectrum peaks indica-
tive of fault frequency and its harmonics are prominent.
For comparison, a Laplace wavelet parameter dictionary
is also applied to analyse the polluted signal. The Laplace
wavelet is a complex wavelet being single-sided and damped
exponential as shown in Fig. lc. It is reported that the
Laplace wavelet perform well on bearing fault feature extrac-
tion due to the fact that its waveform resembles the impulses
induced by bearing faults. The Laplace wavelet is defined as.
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Fig. 13 Analysis results of K-SVD dictionary: a recovered signal; b envelope spectra
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Fig. 14 Analysis results of FK method: a FK; b envelope spectra
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The Laplace wavelet is determined by three parameters,
i.e., (f, &, 7). To test the validity of the Laplace wavelet as a
mathematical model for dictionary atoms, the CFA is also
employed to choose its optimal parameters. With the help of
the OMP algorithm, Fig. 7a and b show the recovered signal
and its envelope spectrum obtained by using the Laplace
wavelet dictionary with optimal parameters ]Nf =100,
E= 0.2000, and 7 = 0.0600. We can see from Fig. 7a that
the impulse period cannot be easily observed from the time-
domain signal and the shape of the impulses differentiates
greatly from the pure signal, although relatively obvious
spectral peaks appear at the fault frequencies (see Fig. 7b).

Collection
Eo
. aring

Fig. 15 JL-501 locomotive bearing dynamic testing platform
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To further demonstrate the superiority of the cascaded
dictionary with a secondary learning, the K-SVD algorithm
is employed individually to handle the polluted simulation
signal. Figure 7c and d illustrate the results of the K-SVD
algorithm. In Fig. 7c, the periodic impulses are severely
masked by noise. The feature extraction by the single use of
the K-SVD algorithm is absolutely inferior to the proposed
approach (Fig. 6d), which is also manifested in its envelope
spectrum shown in Fig. 7d. In fact, the K-SVD algorithm
along may be unsuited for extracting features directly as it is
extremely susceptible to noise and harmonic interferences.
Based on the analysis above, it can be inferred that the qual-
ity of the recovered signal using the cascaded dictionary is
distinctly superior to those obtained by the single use of the
Laplace dictionary or K-SVD algorithm.

Fig. 16 Wheel-set bearing with outer race fault
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Table 3 Parameters of NJ2232WB bearing

Bearing type NJ2232WB
Motor speed (rpm) 506
Sampling frequency (Hz) 20k
Thickness (mm) 110

Pitch diameter (mm) 225
Contact angle a (°) 0

Outer race diameter (mm) 160

Inner race diameter (mm) 290

Roller number 17

To validate the anti-noise performance of the proposed
approach, we increase the amplitude A of the random noise
from 0.4 to 1.2 with a step of 0.2, resulting in five simu-
lated signals. The reconstructed signals using the cascaded
dictionary are shown in Fig. 8a. In addition, the root-mean-
square error (RMSE) is employed to evaluate the quality of
the recovered signals with the results listed in Table 2.

In the forgoing comparative study (Fig. 7), the per-
formance of the Laplace wavelet dictionary is obviously
superior to that of the K-SVD algorithm. Therefore, the
reconstruction results of the Laplace wavelet dictionary
other than the K-SVD in various signal-to-noise ratio
(SNR) scenarios are shown in Fig. 8b, and the RMSE of
the recovered signals are presented in Table 2. It is evi-
dent in Fig. 8a that the periodic impulse responses are
clearly revealed with a good noise interference cancella-
tion. In contrast, the shape and periodicity of the impulse
responses are poorly captured by the Laplace wavelet dic-
tionary (Fig. 8b). From Table 2, we can observe that the
RMSEs of the cascaded dictionary are significantly lower
than those of the Laplace dictionary. Therefore, the pro-
posed approach has excellent anti-noise performance, and
the feature extraction effect of the cascaded dictionary is
significantly superior to that of the Laplace dictionary.

5 Application validation
5.1 Case 1:inner race fault from laboratory

The experimental signal was obtained from the fault
simulation test bench (COINV-1618) shown in Fig. 9,
which is provided by the China Orient Institute of Noise
& Vibration. Different faulty bearings can be installed on
this bench to conduct vibration experiments. The platform
includes a base plate, motor, gearbox, rotor, rolling bear-
ings, and acceleration sensor. The bearing type used in the
test was 6200Z with eight rolling elements. There was a
fracture in the inner raceway of the bearing. The accelera-
tion signals were sampled at the frequency of 19,692.3 Hz
as the bearing rotates at 1000 rpm. Correspondingly, the
inner race fault characteristic frequency (f;) is 75 Hz. The
signal and its spectrum of the inner race fault are shown
in Fig. 10a and b, respectively, although f; and its harmon-
ics can be identified from the envelope spectra (Fig. 10c),
where substantial noise components remain.

Next, the proposed approach is employed to enhance the
fault feature information. The identified optimal param-
eters of the bi-damped wavelet are 7 = 1140, E= 0.1688,
E =0.5095, and 7 = 0.1271. The recovered signal from the
cascaded dictionary sparse representation and its envelope
spectrum are shown in Fig. 11a and b respectively, where
the fault-induced impulses as well as the characteristic fre-
quency and its harmonics are clearly evident.

To illustrate the advantage of the proposed approach in
fault feature enhancement, three other signal reconstruction
methods involving the Laplace dictionary, K-SVD algorithm,
and fast kurtogram (FK) method were applied to analyse the
experimental signal. The optimal parameters of the Laplace
wavelet are identified as ? = 1968, E =0.02, and 7 = 0.01.
Figure 12a and b present the results using the Laplace diction-
ary. We can observe from Fig. 12a that noise is essentially
reduced, but some impulse responses are absent and the char-
acteristic frequencies deviate considerably in Fig. 12b. The
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Fig. 17 Signal of locomotive bearing: a waveform; b spectra; ¢ envelope spectra
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Fig. 18 Locomotive bearing analysis results of cascaded dictionary: a recovered signal; b envelope spectra

results of the K-SVD are shown in Fig. 13. From the envelope
spectra in Fig. 13b, the fault characteristic frequencies can be
observed but submerged in rather heavy noise.

Meanwhile, the results of the FK method are shown in
Fig. 14. The fault characteristic frequency f; and its harmon-
ics up to 4f; can be observed but with certain noise inter-
ference in Fig. 14b. Based on the results, the FK method
demonstrates no superiority to the proposed approach. The
investigations on the experimental signal prove that the
cascaded dictionary can effectively enhance fault-induced
impulses and thus has great potential to improve the extrac-
tion accuracy of fault features.

5.2 Case 2: outer race fault from engineering

The fault impulses of the experimental signal presented
above are easily observable because of an artificial defect
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and a relatively low external interference. However, in real
engineering applications, the working environment is much
more complicated than that in a laboratory, resulting in more
noise components in vibration signals.

To verify the practicality of the proposed approach, the
signal from a wheel-set bearing with a real outer ring fault
dismantled from a DF4 diesel locomotive was studied. The
bearing testing platform is shown in Fig. 15 with the tested
bearing presented in Fig. 16. Meanwhile, Table 3 lists the
main parameters of the testing platform and the bearing. Fig-
ure 17a implies that the fault impulse responses in the real-
life signal are masked by severe noise. Figure 17b shows the
spectra of the signal. The envelope spectra in Fig. 17¢ indi-
cate that the fault characteristic frequency is completely
overwhelmed by noise.

Next, the proposed approach is applied to the real-life
outer race fault signal. The identified bi-damped wave-
let parameters are 7 = 3333, E= 0.0473, E =0.0334, and
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Fig. 19 Locomotive bearing analysis results of Laplace dictionary: a recovered signal; b envelope spectra
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Fig.20 Locomotive bearing analysis results of K-SVD dictionary: a recovered signal; b envelope spectra

7 = 0.1045. Figure 18a and b show the analysis results using
the cascaded dictionary. It can be inferred from Fig. 18a that
the fault impulse responses are clearly recovered in time
domain without any interference components. The fault
characteristic frequency and its harmonics appear distinctly
in the envelope spectra shown in Fig. 18b. Undoubtedly,
this reliable evidence demonstrates the practicality of the
proposed approach in engineering applications.

For comparison, the Laplace dictionary, K-SVD, and
FK methods are applied to the same signal. The parame-
ters of the Laplace wavelet are ascertained to be f = 4100,
E = 0.025, and 7 = 0.33. The results of the Laplace diction-
ary are shown in Fig. 19. No periodicity of fault impulses
is observed in the recovered signal of the Laplace diction-
ary (Fig. 19a). Accordingly, there is no distinctive fault

fb-kurt.2 - Kmax=1 .8 @ level 3, Bw= 1250Hz, fc=9375Hz

level k

4000 10000

6000
Frequency (Hz)

0 2000 8000

characteristic frequency in the envelope spectra (Fig. 19b).
In addition, the results from the K-SVD are given in Fig. 20.
Limited by the atom updating principle, K-SVD is extremely
susceptible to interference components. Thus, in the enve-
lope spectra, a great deal of irrelevant noise interference
is retained. Meanwhile, the results obtained using the FK
method, which is known to be an effective tool for feature
extraction, are shown in Fig. 21. As shown in Fig. 21b,
although the fault characteristic frequency f, is presented
in the envelope spectra, it is heavily disturbed by noise, and
thus, this method is weak to extract fault features from a
vibration signal in case of low SNRs.

Therefore, the cascaded dictionary outperforms the other
three leading methods in terms of fault feature extraction, and
therefore provides an effective tool for bearing fault detection.
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Fig. 21 Locomotive bearing analysis results of FK method: a FK; b envelope spectra
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6 Conclusions

Based on the properties of the wavelet parameter diction-
ary and learning dictionary, we designed a cascaded dic-
tionary, which performs better in sparse representation
than the Laplace dictionary, K-SVD algorithm, and FK
method. In addition, inspired by the characteristics of
the fault-induced impulses in real-life vibration signals,
period-assisted bi-damped wavelets are adopted as the
atoms for the initial parameter dictionary, which is then
substituted into the K-SVD for a secondary learning, so as
to achieve a much better agreement with the fault features
and an effective noise reduction. The main conclusions can
be summarised as follows.

(1) The anti-noise performance of the cascaded dictionary
was verified by simulation signals at different SNRs.
Investigations on experimental signals confirm that the
cascaded dictionary can effectively enhance impulse
features, thus improving the accuracy of bearing fault
diagnosis. The engineering application results indicate
that the cascaded dictionary has outstanding perfor-
mance in handling signals with heavy background
noise, which poses challenging to most existing sparse
representation dictionaries.

(2) The effectiveness of the proposed approach was vali-
dated on a simulated signal, an experimental signal, and
an actual engineering signal. Meanwhile, the superior-
ity of the proposed approach was verified by comparing
it with three other leading methods. In addition, the
proposed approach is quite suited for practical engi-
neering applications.

Form all the results in this paper, we can observe that
there are large fluctuations in the amplitudes of the recov-
ered signals. Investigation into this issue is to be conducted
in the future.
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