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Abstract
Accurately predicting the amount of springback has always been a prior focus in metal forming industry, particularly for 
creep age forming (CAF), for its significant effect on tool cost and forming accuracy. In this study, a closed-form solution 
for CAF springback prediction covering deformation from elastic to plastic loadings was developed by combining the beam 
theory and Winkler’s theory, based on which an efficient springback compensation method for CAF was proposed. This 
developed solution extends the application area beyond the traditional beam theory-based springback prediction methods, 
maintaining its validity with large loading deflection in plastic range. Finite element (FE) simulation and four-point bending 
CAF tests adopting a 3rd generation Al-Li alloy were conducted in both elastic and plastic forming regions and the results 
showed close agreement with the closed-form springback predictions. For the proposed compensation method, an adjust-
ment factor was introduced for complex flexible tool CAF to consider its deviation from the uniform stress loading and can 
be obtained using the closed-form solution. The flexible tool CAF tests using the Al-Li alloy demonstrated the applicability 
of the proposed compensation method to obtain the target shape within reasonable iterations, which can be further reduced 
by combining FE simulation.

Keywords Springback prediction · Springback compensation · Closed-form solution · Creep age forming · Al-Li alloy · 
Multipoint flexible tool

Nomenclature
a, a’  Compensation factor for modified 

displacement adjustment method and 
adjustment factor for the solution-based 
springback compensation method

Ci, Ci+1 , Cj , Cj+1   Tool shape C in the ith and (i + 1)th , jth 
and (j + 1)th iterations respectively for 
displacement adjustment and modified 
displacement adjustment methods

D  Target shape to be formed
dll, dlm , d′

lm
   Loading displacements at the load-

ing points (four-point bending), at the 
midpoint, and at the midpoint adopting 
the flexible tool

drl, drm   Springback recovered deflection at 
loading points (four-point bending) and 
at the midpoint

E  Young’s modulus of the material
fc  Adopted constitutive model for 

creep-ageing
I  Moment inertia of yz plane for z axis
k1, k2, k3   Curvatures of sheet element in elastic 

loading, at the end of elastic loading, 
and in plastic loading, respectively

L, L1   Distance between supporting points 
and distance between the supporting 
and loading points

M1, M2, M3   Moments generated in local yz plane 
for z axis in elastic loading, at the end 
of elastic loading, and in plastic loading

Mload, Mend   Moments in yz plane for z axis at the 
end of loading stage and at the end of 
creep-ageing stage after stress relaxa-
tion before unloading

Oa, Ob   Centre points of loaded curvature and 
CAFed, i.e. final deformed curvature of 
the sheet
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O1, O2 , O3   Centre points of sheet segment with 
the polar coordinate in elastic loading, 
at the end of elastic loading, in plastic 
loading

Ra, Rb, Rc   Curvature radii of loaded shape, CAFed 
shape, and target shape

Rn1, Rn2,Rn3   Distances of the neutral plane to the 
origin point O1 in elastic loading, and 
to the origin point O2 at the end of 
elastic loading and in plastic loading, 
respectively

r, ri , ro   Distance of random specific plane to the 
origin point. Distances of the top and 
bottom elastic–plastic boundary to the 
origin point O2 in plastic loading state

Si, Sj   Obtained formed shape S in ith and jth 
iterations

t  Sheet thickness
ta  A certain time point during 

creep-ageing
Tol1  Error tolerances respectively for modi-

fied springback compensation method
x, y, z  Local Cartesian coordinate system, 

in which y - and z-axes form the plane 
perpendicular to the neutral plane, and 
x axis locates at centroid of yz plane 
and is parallel to the neutral plane

x’, y’, z’  Axes parallel to the length, thickness, 
and width directions of the specimen 
with the origin at the centre point of the 
specimen bottom surface

yd  Distance of layer d of the sheet to the 
neutral plane

∆df  Deflection at midpoint of the CAFed 
sheet compared with its undeformed 
initial state

∆e  The shape error at midpoint between 
the CAFed and target shape of the sheet

∆θ, Δ� , ΔM   Increments of the centre angle, strain, 
and moment in the transformation pro-
cess from a2b2c2d2 to a3b3c3d3

ε, ε2,εy  Strain generated along x direction, 
accumulated strain at the end of elastic 
loading, and strain at 0.1% offset yield-
ing point

εc, εe, εp  Accumulated creep strain, elastic strain, 
and plastic strain along x direction

θ, θa, θb  Centre angle of the sheet segment. 
Centre angles of loaded curvature and 
CAFed curvature of the sheet

θ1, θ2, θ3  Centre angles of deformed segment 
in elastic loading, at the end of elastic 
loading, and in plastic loading

σ, σe, σp  Stress along x direction, stress at layer 
r along x direction in elastic region 
and plastic region in plastic loading, 
respectively

σr  Relaxed stress along x direction in yz 
plane

1 Introduction

Creep age forming (CAF) is a metal forming method spe-
cially invented for fabricating large-scale aluminium alloys’ 
panel components. Normally CAF process is comprised 
of three stages, i.e. loading, creep-ageing, and unloading. 
Deformation in CAF resulted by creep strain evolution 
can be induced below yield strength of the material. When 
compared with other traditional metal forming methods 
for panel fabrication, CAF has its advantages to obtain the 
final deformed panel [1]. However, springback is still una-
voidable. Therefore, accurately predicting the springback 
becomes the key of applying CAF to deform panel with tar-
get shape/curvature. In the recent decade, advanced constitu-
tive models have been proposed to more accurately predict 
creep deformation [2–4], and improved adjustable forming 
tool was developed to facilitate obtaining formed panel with 
target curvature in CAF [5]. Nevertheless, large springback 
occurring in unloading stage due to the limited portion of 
creep strain accumulated in creep-ageing stage presents a 
strong challenge for tool shape design, which significantly 
affects the tooling cost and the efficiency of fabricating CAF 
panels with the required curvature [6].

Springback happens in the unloading stage of metal 
forming as a result of recovery of elastic strain induced in 
loading stage, which has long been a focus in the whole 
metal forming field due to its substantial association 
with forming accuracy and fabrication efficiency. In the 
past decades, as reviewed by Wagoner et al. [7], analyti-
cal solutions and methods utilising finite element (FE) 
analysis were proposed to predict springback regarding 
to different metal forming conditions such as pure bend-
ing [8], bending combined with tension [9, 10], and draw 
bending [11, 12]. Additionally, in recent years, investiga-
tion of springback has extended to the non-linear plastic 
bending behaviour with large deformation [13], bending 
of curved beam and tube [14, 15], and multiple recipro-
cating bending [16]. In the area of CAF, early investi-
gation of springback analysis was conducted based on 
Euler–Bernoulli beam theory for predicting the formed 
sheet shape in single-curvature case [17]. Latterly by inde-
pendently considering relations of moment and bending 
curvature derived from the beam theory along length and 
width directions, prediction of springback for double-cur-
vature bending was fulfilled [18]. With the development 
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of constitutive model for creep-ageing, by adopting the 
mechanism-based model to reflect stress-creep strain rela-
tionship in CAF, Jeunechamps et al. [19] further proposed 
an analytical springback prediction method which can be 
applied to double-curvature bending case of CAF sheet. Li 
et al. [20] further extended the application of springback 
prediction surpassing elastic region, by utilising the beam 
theory and FE analysis.

In practical fabrication, the idea of springback control 
by compensating tool shape to achieve the target shape/
curvature has been widely adopted. Displacement adjust-
ment (DA) method, initially proposed by Gan et al. [21], is 
a direct geometric iterative control method by continually 
adjusting tool shape to let shape/curvature of the formed 
sheet gradually approaching the target value. Figure 1 shows 
schematically the DA method. The iterative algorithm of the 
DA method can be expressed as:

where Ci and Si are the tool shape and the deformed shape 
after springback in ith iteration, and D is the target shape to 
be formed. Hence the term (Si – D) can be viewed as the 
geometric error between the deformed and target shape in ith 
iteration as shown in Fig. 1b. Ci + 1 is the tool shape taken in 
the (i + 1)th fabrication iteration, as demonstrated in Fig. 1c, 
which is directly obtained by compensating the tool shape 
Ci in previous ith iteration with the geometric error (Si – D).

Based on the proposed DA method and utilising FE simu-
lation, satisfactory convergence was reported to have been 
achieved between the shape of the sheet and its target surface 
formed by compensated flexible dies [22]. By considering 
compensation direction, Yang and Ruan [23] applied the 
DA method for the case of stamping of high strength steel, 
in which large displacement and rotation can occur during 
springback. In their study, errors between experimental and 
FE simulation results were observed after completion of one 
iteration. When the tool shape C and deformed sheet shape 
S were obtained from FE results to replace experimental 
ones, the validity of the DA method becomes highly depend-
ent on the accuracy of simulated springback prediction 
results [7]. Hence the simulation error can become an issue 
for adopting FE analysis as an alternative tool, especially 
for fabrication of components requiring high precision. On 
the other hand, when the values of C and S are determined 

(1)Ci+1 = Ci − (Si − D)

from experimental results without proper analytical method, 
it can be highly time-consuming and costly on approaching 
the target value by iterations. It is of significance to find the 
balance between prediction accuracy of springback and cost 
of practical experiments to ensure the validity and effective-
ness of the DA method.

Efforts have been made to seek progresses in DA method, 
aiming at reducing iterations and speeding up the conver-
gence to deform the sheet to target shape [24, 25]. The vari-
ation of the DA method can be generalised as:

By introducing a compensation factor � in the equation, the 
geometric error(Sj– D) in jth iteration is revised to speed up 
the convergence rate and to broaden its application in complex 
cases such as deforming with varied curvature. The value of 
the compensation factor � is highly dependent on the material, 
forming process and geometry of the forming tool [26]. As a 
result, � can be different in each iteration and unpredictable, 
especially in the case of nonlinear forming with varying cur-
vature [20]. To approach a proper value of α, a secant method 
was proposed by Li et al. [20] in recent study.

With continued advancements in new generation alu-
minium alloys possessing superior mechanical properties, 
these high strength aluminium alloys have been widely 
adopted in practical fabrication recently [27]. Among these 
high strength alloys, the latest 3rd generation Al-Li alloy has 
drawn much attention and is being viewed as a competitive 
substitution of its predecessors for its balanced synergy of 
strength, weight reduction, toughness, and corrosion resist-
ance [28]. However, with the prominent strength promotion 
for this Al-Li alloy, the creep resistance is enhanced simul-
taneously which in turn reduces the creep deformation in 
CAF: limited creep strain was observed in creep-ageing for 
this alloy [29]. Consequently, plastic strain can be needed 
and be introduced through large deformation in loading stage 
as supplement for CAF of the material. Hence, due to the 
required high stress in creep-ageing for the Al-Li alloy and 
large deformation in loading stage, the applicability of the 
beam theory for springback prediction may be limited. When 
large deformation is exerted which induces plastic region in 
outer bending layers of the forming sheet, the Euler–Ber-
noulli beam theory, established within elastic region with 
assumption of small deflection, becomes inappropriate to 

(2)Cj+1 = Cj − �(Sj − D)

Fig. 1  Schematic of DA method 
for springback compensation

(a) Loaded to tool shape (b) Geometric error (c) Loaded to tool shape 
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describe deflection and induced stress: the relation of bend-
ing strain � and curvature k can lose its geometry validity 
in the case of large deformation. Hence a new analytical 
method to properly reflect the stress states of material in 
large deformation for CAF with high strength Al-Li alloys 
is urgently required, based on which the prediction accuracy 
of springback and the validity of corresponding developed 
compensation method can be ensured.

To fill the gap of analytical springback prediction in CAF 
with large loading displacement, a closed-form prediction 
solution covering constitutive relations from elastic to plastic 
in CAF is developed in this study by combining the beam 
theory and Winkler’s theory. The solution is verified with 
four-point bending CAF tests adopting the latest 3rd genera-
tion Al-Li alloy. To improve the efficiency in experimental 
iterations and solve the accuracy issue raised by prediction 
error from FE analysis, an efficient springback compensa-
tion method, based on the developed springback prediction 
solution, is proposed by introducing an adjustment factor 
for CAF with complex flexible tool. The effectiveness and 
adaptivity of the proposed method are verified through CAF 
of targeted single-curvature sheets by using flexible tool and 
the same Al-Li alloy with different thicknesses.

2  Closed‑form solution of CAF springback 
prediction

2.1  Geometric relation in CAF of single curvature 
sheet

In practical CAF fabrication, metal sheets are formed in 
forming tools with designed curvature, which can be con-
tinuous upper and lower dies, lower supporting dies/ribs 
in vacuum autoclave, or flexible tool with multiple load-
ing and supporting points. Figure 2a schematically shows 
the sheet shape at various CAF stages. (i) Initially, the 
sheet is placed and supported on the forming tool, shown 
as the red initial shape. (ii) Then the downward loads/
displacement (F0, F1, etc.) are applied and the sheet is 
deformed to the designed loaded shape in blue. Oa is the 
centre point of the loaded shape with curvature radius Ra , 
and �a is the centre angle for the loaded curvature between 
the two supporting points on the edges. (iii) After deform-
ing to the loaded shape, the sheet is kept in this shape and 
creep-aged at elevated temperature for designed ageing 
time. (iv) Finally, the sheet is unloaded after completion 
of creep-ageing and the final CAFed sheet is obtained after 

Fig. 2  Schematic of forming 
in CAF fabrication and two 
proposed loading models

(a) Schematic of forming process      (b) Loading states with different tools

(c) Four-point bending loading model      (d) Uniform stress loading model 
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springback. As shown in Fig. 2a, the CAFed sheet has a 
curvature radius of Rb with Ob as the centre point and θb 
as the centre angle for the final CAFed shape. Δdf is the 
deflection at midpoint of the final CAFed sheet from its 
initial undeformed state.

Figure 2b illustrates schematically the loading states 
with different forming tools. For loading with continuous 
die or autoclave vacuum, the load is applied in the form 
of pressure and can be treated as a line load qLoad when 
considering unit width. When adopting multipoint flex-
ible tool, the sheet is deformed with multiple point loads 
Fx. When deforming with a flexible tool, elastic pads/
splines are normally added between loading points and 
forming sheet to achieve more uniformly distributed stress 
and smoother forming curvature, thus minimising surface 
damages [20, 22, 30]. Therefore, as shown in Fig. 2b, the 
loading state for flexible tool with splines can be treated 
as combination of point loads F′

x
 and line load q′

load
 . Fur-

thermore, when CAF fabrication is conducted in complex 
forming tool, the loaded structure is in hyperstatic state 
which significantly raises the difficulty of stress analysis 
for the deforming sheet. To simplify the analysis proce-
dure, as demonstrated in Fig. 2c and d, fundamental load-
ing models, i.e. four-point bending with two supporting 
and loading points and uniformly distributed stress bend-
ing, are adopted for the deforming process of the sheet. To 
approach the stress state of the sheet in complex forming 
tools, the sheet is deformed to the same shape using the 
loading models shown in Fig. 2c and d. Because the loaded 
shapes in Fig. 2c and d are the same as in Fig. 2a, the same 
centre point Oα and curvature radius Rα are used for the 
two loading models. In Fig. 2c, L is the distance between 
the two supporting points. L1 is the distance between the 
supporting point and the loading point with exerted loads 
of F′′

1
. dll is the loading displacement of the loading points 

to reach designed loaded shape. In Fig. 2d, q′′

load
 is the line 

load and dlm is the displacement of the midpoint. The geo-
metrical relation between loading point displacement dll 
and Rα can be obtained as:

For centre point displacement dlm and Ra , the geometric 
relation can be expressed as:

And the relation between �a and Ra can be derived as:

Hence, Ra and �a can both be determined with displace-
ment dll or dlm.

2.2  Strain and stress determination in loading 
stage

In loading stage, depending on the displacement exerted to 
achieve the target shape, the process can range from elastic 
to plastic loading. By dividing the initial undeformed sheet 
into equivalent m segments, Fig. 3a shows one of the sheet 
elements, defined as a0b0c0d0 . Within elastic loading, the 
sheet element a0b0c0d0 is deformed to the shape a1b1c1d1 . 
k1 is defined as the deflection curvature and O1 is the cen-
tre point of k1. A polar coordinate system (r, θ) with the 
origin at the centre point O1 is used to express the location 
of the sheet layers along thickness direction. As shown in 
Fig. 3a, θ1 is the centre angle of a1b1c1d1 . Rn1 is the distance 
of the neutral plane to the centre point O1 in elastic loading 
state, which can also be defined as the curvature radius in 
this state. Additionally, a local Cartesian coordinate system 

(3)R2

a
=
(
L∕2 − L1

)2
+

(√
R2
a
− (L∕2)2 + dll

)2

(4)Ra =

√
R2
a
− (L∕2)2 + dlm

(5)�a = 2 arctan

(
(L∕2)∕

√
R2
a
− (L∕2)2

)

Fig. 3  Schematic of deforming 
process in elastic loading and 
stress distribution through thick-
ness. The labels in bracket in b 
are for the condition at the end 
of elastic loading

(a) Elastic deforming                  (b) Stress distribution 
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( x, y, z ) is established to depict the plane perpendicular to 
the neutral plane of the sheet, in which y- and z-axes form 
the plane perpendicular to the deflection curvature and the 
neutral plane, and x axis locates at centroid of yz plane and 
is parallel to the neutral plane, as shown in the right half of 
Fig. 3a. Based on the assumption of Euler–Bernoulli beam 
theory, the neutral axis and neutral plane pass the centroid 
of yz plane as the mid layer of the sheet and no strain is 
generated at neutral plane. δb is the unit width of the sheet 
segment and is defined as 1 mm in this study. t is the sheet 
thickness.

When loading begins as exerting downward displacements 
on the sheet, elastic strain and stress are generated along x-axis 
direction in yz plane. The relation of deflection and induced 
moment depends on different loading model. For four-point 
loading model demonstrated in Fig.  2c, by utilising the 
Euler–Bernoulli beam theory, the relation between the load-
ing point displacement dll and the generated moment M1 in 
yz plane (Fig. 3b) in elastic loading can be expressed as [31]:

where E is the Young’s modulus and I is the moment iner-
tia of yz plane for z-axis. For uniform stress loading case 
demonstrated in Fig. 2d, the relation between the midpoint 
loading displacement dlm and the moment M1 in elastic load-
ing is derived as [32]:

Within linear elastic state, the distribution of stress in 
x direction along the thickness in yz plane is shown in Fig. 3b. 
In the figure, r is the distance of a random layer to the centre 

(6)dll =
M1

6EI
(3L1L − 4L2

1
)

(7)dlm =
40M1L

2

384EI

point O1 , −�� and �� are respectively the maximum compres-
sive and tensile stresses achieved at the top and bottom sur-
face of the sheet. The stress distribution can be expressed as:

As demonstrated in Fig. 3b, in elastic loading, the stress 
follows linear distribution along thickness (y direction).

With continued increasing of deflection, the strain and 
stress in x direction increases. When the absolute value of 
−�m and �m reaches the yield stress �y , the current stress 
state is defined as end of elastic loading state. As illustrated 
in Fig. 3b, the deformed sheet segment, curvature, centre 
point, centre angle, and moment at the end of elastic loading 
state are respectively defined as a2b2c2d2 , k2 , O2 , θ2 , and M2 , 
and the distance of neutral plane to the centre point O2 at the 
end of the state is defined as Rn2.

Further increase in deflection will lead to the stress 
surpassing the elastic region, i.e. reaching plastic region. 
Figure 4 shows the case after entering the plastic load-
ing state. In the plastic loading state, the elastically 
loaded shape of sheet element a2b2c2d2 further deforms 
to a3b3c3d3 , with deflection curvature increasing from 
k2 to k3 as shown in Fig. 4a. Simultaneously, the centre 
angle increases from θ2 to θ3, and the centre point and 
neutral plane respectively change from position O2 to O3 
and Rn2 to Rn3 ( Rn3 is the distance of neutral plane to the 
centre point O2 in plastic loading). In this situation, the 
linear elastic stress–strain relation is broken down in the 
outer bending layers, and plastic strain is generated in the 
plastic regions near the top and bottom surfaces of the 
sheet as shown in the red regions in Fig. 4b. The location 
of the transition boundary from elastic to plastic region 
near the top surface is defined using ri as the distance to 

(8)� =
M1

I

(
r − Rn1

)
, Rn1 −

t

2
≤ r ≤ Rn1 +

t

2

Fig. 4  Schematic of deforming 
process from elastic to plastic 
loading state in CAF and stress 
distribution through the thick-
ness of the sheet

(a) Schematic of deforming process        (b) Stress distribution 
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the centre point O2 , while ro is used to mark the distance 
for the position of transition boundary near bottom. The 
layers above ri and underneath ro are the plastic regions. 
With the increase of deflection, the upper elastic–plastic 
boundary will move downwards, and the lower bound-
ary will move upwards, i.e. ri increases and ro decreases. 
△� and △M in Fig. 4b are respectively the increment 
of stress and corresponding moment in deformation from 
a2b2c2d2 to a3b3c3d3.

By applying the Winkler’s theory, the strain generated at 
layer at position r when the element deforms from a2b2c2d2 
to a3b3c3d3 can be expressed as:

where Δ� is the strain accumulated at layer of position r in 
the transformation process from a2b2c2d2 to a3b3c3d3 , and 
△� is the change of centre angle as △� = �3 − �2 as illus-
trated in Fig. 4a. From Eq. (9), zero strain increment was 
derived in the layer of neutral plane Rn3 . When layer r locates 
underneath Rn3 , i.e. r > Rn3 , positive strain is generated and 
the layer in that position is in tension state. In contrast, when 
located above the neutral plane ( r < Rn3 ), negative strain is 
induced as in compression state. When r is equivalent to ri or 
ro , the layer is at the transition boundary from elastic region 
to plastic region. According to the definition, the strain at 
elastic–plastic boundary at ri and r0 equals to:

where �y is the strain at yield stress �y at transition bound-
ary ri and r0 . Additionally, under the assumption that trans-
verse shear strain is neglected in Winkler’s theory, �y can be 
derived as comprised of two parts as:

where �′

2
 is the strain generated at the same layer at ri or r0 

when the sheet is loaded to the end of elastic loading state. 
Δ�

� is the accumulated strain at ri or r0 during deformation 
from the end of elastic loading a2b2c2d2 to a3b3c3d3 in plastic 
loading state. By utilising the linear stress–strain relation 
shown in Fig. 3b and applying Eqs. (10) and (11), �y can be 
further expressed as:

Due to the linear relation for strain and stress within elastic 
region, Eq. (12) can be further extended to describe the elastic 

(9)Δ� =
Δ�(r − Rn3)

r�2

(10)�y =

{
−

�y

E
, r = ri

�y

E
, r = r0

(11)�y = �
�

2
+ Δ�

�

(12)

⎧⎪⎨⎪⎩

�
�

2
= �y(

r−Rn2

t∕2
)

Δ�
�

=
Δ�(r−Rn3)

r�2

�y = �
�

2
+ Δ�

�

, r = ri or r = r0

strain �e and stress �e at random position r within elastic region 
( ri ≤ r ≤ r0 ) when deforms to a3b3c3d3 as:

where �′′

2
 is the strain generated at position r in elastic 

region ( ri ≤ r ≤ r0 ) when deforms to a2b2c2d2 as the end of 
elastic loading. Δε’’ is the accumulated strain at r in plas-
tic loading state from a2b2c2d2 to a3b3c3d3 . �e and �e are 
respectively the strain and stress at position r in linear elastic 
region of a3b3c3d3.

As shown in Fig. 4b, plastic strain is induced in the lay-
ers located above ri and below r0 . To reflect the relation 
between plastic strain and flow stress beyond linear elastic 
relation in the plastic region, the classical power law func-
tion was used to express work hardening behaviour of the 
material as:

where �p is defined as the flow stress in the plastic region. �y is 
the yield stress of material and εp is the plastic strain. h and n are 
material constants. By combining Eqs. (9) and (14), the flow 
stress at specific layer r in plastic region can be expressed as:

In the yz plane of the sheet, the force equilibrium func-
tion can be derived as:

where A is the area of the yz plane of the sheet. With further 
transformation of dA = �bdy = dy = d

(
r − Rn2

)
= dr , the 

equation can be written as:

By inserting Eqs. (13) and (15) into Eq. (17), Eq. (17) 
can be expressed in a function which Rn3 is the only param-
eter as:

Detailed function derivation process is given in Appen-
dix 1. With the determination of Rn3 , by adopting Eqs. (13) 
and (15), the strain and stress in both elastic and plastic 
regions can be determined. Hence the moment in yz plane 

(13)

⎧
⎪⎪⎨⎪⎪⎩

�
��

2
= �y

�
r−Rn2

t∕2

�

△�
��

=
△�(r−Rn3)

r�2

�e = �
��

2
+△�

��

�e = E�e

, ri ≤ r ≤ r0

(14)�p = �y + h�n
p

(15)𝜎p = 𝜎y + h

(
Δ𝜃

(
r − Rn3

)
r𝜃2

)n

, r < ri or r > r0

(16)
∫

� dA = 0

(17)∫

Rn2+t∕2

Rn2−t∕2

�dr =
∫

r0

ri

�edr +
∫

Rn2−t∕2

ri

�pdr +
∫

Rn2+t∕2

r0

�pdr = 0

(18)f
(
Rn3

)
= 0
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around z axis for a3b3c3d3 , defined as M3 , can be derived 
as:

where M2 is the moment at a2b2c2d2 and △M is the moment 
increased during the deformation from a2b2c2d2 to a3b3c3d3 
as respectively shown in Figs. 3b and 4b.

2.3  Springback prediction after creep‑ageing

In creep-ageing stage, stress relaxation will be induced due 
to accumulation of the creep strain. For layer at location r in 
the deformed element with elastic loading a1b1c1d1 or plastic 
loading a3b3c3d3 , the stress variation in creep-ageing stage 
in respect of ageing time t� can be expressed as:

where �
(
ta
)
 is the stress at ageing time ta of the layer, σ is 

the stress generated at the end of loading stage. �r
(
ta
)
 is the 

extent of stress relaxation at ageing time ta due to generation 
of creep strain, which can be calculated as �r

(
ta
)
= E�c

(
ta
)
 

where �c
(
ta
)
 is the creep strain accumulated at layer r at 

ageing time ta . It is also known that the evolution of creep 
strain is determined by the stress in creep-ageing, by apply-
ing proper constitutive model reflecting the relation of stress 
and creep strain, �c

(
ta
)
 can be obtained as:

fc denotes the constitutive model being used. The creep strain 
accumulated after completion of creep-ageing at time of tend 
is denoted as εc(tend).

(19)M3 = M2 + ΔM =
∫

�(r − Rn2)dA

(20)�
(
ta
)
= � − �r

(
ta
)
= � − E�c

(
ta
)

(21)�c
(
ta
)
= fc

(
�
(
ta
))

In unloading stage, with the upward movement of the 
loading points and decrease of dl and dlm , driven by the 
recovery of remaining elastic strain after creep-ageing, 
springback of the deformed sheet is induced. The spring-
back of the sheet will stop when recovery of elastic strain is 
completed. Hence, the strain and stress in springback follows 
linear elastic relationship and the unloading process can be 
viewed as a reversed process of elastic loading. The strain 
distribution along the thickness of the sheet at the end of 
creep-ageing in elastic/plastic loading state is demonstrated 
in Fig. 5.

As shown in Fig. 5, after completion of creep-ageing, the 
remaining elastic strain �e(d) at specific layer d of the sheet, 
along with the induced moment Mend for yz plane around z axis 
as the recovery moment at the end of creep-ageing/start of 
unloading stage, can be expressed as:

where �(d) , �p(d) , and �c
(
tend

)
 are respectively the strain, 

plastic strain, and creep strain in x direction at layer d of the 
sheet, and yd is the distance of the layer to the neutral plane. 
For four-point bending cases, by applying Eq. (6), the recov-
ered deflection at loading point ( drl ) during springback can 
be obtained as drl =

Mend

6EI
(3L1L − 4L2

1
) . For uniform stress 

bending cases, by applying Eq. (7), the recovered deflection 
at midpoint of the sheet (drm) can be derived as 
drm =

40MendL
2

384EI
 . By utilising Eqs. (3) and (4) respectively for 

four-point bending and uniform stress bending cases, the 
curvature 1∕Rb , as the final curvature of CAFed sheet, can 
be derived as R2

b
= (L∕2 − L1)

2 +

(√
R
2

b
− (L∕2)2 +

(
d
ll
− d

rl

))2

 

for the former case and Rb =

√
R2

b
− (L∕2)2 +

(
dlm − drm

)
 

(22)
{

�e(d) = �(d) − �p(d) − �c
(
tend

)
Mend = ∫ E�e(d)yddA

(a) Elastic loading (b) Plastic loading

Fig. 5  Schematic of strain (x direction) distribution along thickness of the sheet (y direction) after completion of creep-ageing. � is the bending 
strain in x direction. The dotted lines stand for neutral plane of the sheet
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for the latter. By applying geometric transformation derived 
in Eq. (4), the final deflection of the sheet at the midpoint 
can be expressed as:

3  Springback compensation method based 
on closed‑form solution

The above closed-form solution of springback prediction for 
CAF is based on two simplified loading models, i.e. four-
point bending and uniform stress bending. In practical CAF 
fabrication, however, specialised forming tool may be used, 
in which a higher complexity of loading state for the form-
ing sheet is involved. Multipoint flexible tool, as one of the 
state-of-the-art forming tools, is characterised by its flexibil-
ity in setting required loading shape and has been adopted 
to not only CAF but also other sheet forming processes [5, 
22, 33]. When deforming with flexible tool, depending on 
the designed loaded shape, the loading process can span 
from linear elastic to nonlinear plastic loading. For elastic 
loading with a multipoint flexible tool, the loading state is 
varying with the increase of loading displacement, which 
can be difficult to analytically derive the relation between 
loading deflection and stress states of the forming sheet. 
Furthermore, the derived solution will lose its validity once 
the locations of loading points are modified. By applying the 
simplified uniform stress bending model and Eq. (7), when 
the sheet is deformed in elastic loading with flexible tool, an 
equation with higher convenience and robustness to express 
the relation between loading displacement d′

lm
 and induced 

moment M1 is proposed as:

where d′

lm
 is the displacement at midpoint of the sheet 

adopting flexible tool, and a’ is the adjustment factor to 
approach real relation between generated moment and d′

lm
 

within elastic loading. When d′

lm
 continues to increase and 

reach the end of elastic loading state, Eq. (24) can be fur-
ther written as d�

lm
= �

�

40M2L
2∕384EI  , where M2 is the 

moment induced at the end of elastic loading as illustrated 
in Fig. 3b.

When the stress surpasses elastic region during load-
ing, as shown in Eq. (9), the strain increment △� in plas-
tic loading state is derived based on geometrical change 
with the increase in deflection from the end of elastic 
loading. Consequently, the proposed solution for stress 
analysis and springback prediction in plastic loading state 
(from Eqs. (9) to (23) remains its validity in the case of 

(23)Δdf = Rb −

√
R2

b
− (L∕2)2

(24)d
�

lm
= ��

40M1L
2

384EI

multipoint flexible forming tool. Hence, by replacing 
Eqs.  (7) with (24), a modified closed-form springback 
prediction solution (Eqs. (8) to (24) is obtained for mul-
tipoint flexible tool. As can be noticed, the accuracy of 
this modified springback prediction solution for CAF with 
flexible tool is highly depending on the determination of 
adjustment factor a’. This adjustment factor not only helps 
to approach true relation of deflection and the generated 
moment within elastic loading, but also defines the trans-
formation boundary from elastic to plastic loading. The 
solution-based springback compensation method, aim-
ing at forming sheet with target curvature by approaching 
appropriate adjustment factor �′ through iterations, can be 
generalised as follows:

(1) With a determined target curvature as 1∕Rc and adjust-
ment factor �′

i
 , the loaded shape with curvature as 

1/Ri
a
 for ith iteration CAF can be derived based on 

the modified closed-form springback prediction solu-
tion (Eqs. (8) to (24). For the first iteration, the initial 
adjustment factor �′

i
 is set to be 1.

(2) The ith iteration CAF is conducted with flexible forming 
tool which is adjusted to the derived loaded curvature 
1∕Ri

a
 . After completion of CAF, curvature of the CAFed 

sheet in that iteration is obtained and denoted as 1∕Ri
b
 . 

Ri
b
 is then compared with the target curvature radius . Δe 

is the shape error at midpoint between the CAFed and 
target shape and can be obtained by using Eq. (23) as 
Δe =

(
R
c
−

√
R
c

2 − (L∕2)2
)
−

(
R
i

b
−

√
R
i

b

2
− (L∕2)2

)
.

(3) If the absolute value of shape error |Δe| exceeds the 
tolerance range Tol1 , with the obtained CAFed curva-
ture 1∕Ri

b
 in ith iteration, the adjustment factor ��

i+1
 for 

next (i + 1)th iteration is updated based on the modified 
closed-form springback prediction solution (Eqs. (8) 
to (24). With the updated adjustment factor, the next 
iteration is started from step (1).

A flowchart of the proposed closed-form solution-
based springback compensation method is demonstrated in 
Fig. 6, where i stands for the ith iteration with the method 
and function g stands for the modified springback predic-
tion solution (Eqs. (8) to (24).

4  Experimental procedure

4.1  Material

The material used was a 3rd generation Al-Li alloy with 
major compositions of 0.6–0.9 wt% Li, 3.4–4.5 wt% Cu, 
and 0.6–1.1 wt% Mg. The as-received material was in the 
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form of sheets with 2, 4, and 6 mm thickness in T8 temper 
which is the commonly adopted finish temper for the 3rd 
generation Al-Li alloys [27]. The material constants for 
this Al-Li alloy are listed in Table 1, where h and n are 
the constants used in Eq. (14). The adopted creep-ageing 
constitutive model fc is presented in Appendix 2.

Fig. 6  Flowchart of closed-
form solution-based springback 
compensation method

Table 1  Material constants for the Al-Li alloy

E   h   n   �y(0.1% offset)

69.8 GPa 91 0.53 453 MPa

Fig. 7  Schematic of four-point 
bending tool (dimensions in 
mm) and photo with loaded 
specimen

(a) Schematic of four-point bending tool        (b) Loaded specimen 
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4.2  Four‑point bending CAF experiments

Four-point bending tests were conducted to verify the estab-
lished closed-form springback prediction solution. Strip 
shape specimens with dimension of 220 mm × 20 mm and 
thickness of 2, 4, and 6 mm were adopted in the testes. The 
four-point bending tool is composed of two upper loading 
cylinders and two supporting cylinders as shown in Fig. 7. 
The specimen was placed on the two supporting cylinders 
of the four-point bending tool with dimension as illustrated 
in Fig. 7. The specimens were deformed with designed load-
ing displacement dll covering both elastic and plastic load-
ing by the loading cylinders which are then fixed during 

creep age forming at 143 °C for 5 h. After completion of 
the creep-ageing, the specimen was cooled down in the air 
to room temperature with the bending tool and unloaded to 
allow happening of springback to obtain the final deformed 
curvature. The test groups for CAF under constant maxi-
mum surface stress of 430 MPa in elastic loading and with 
constant target curvature are listed in Tables 2 and 3 respec-
tively. In Table 2, the specimens of different thicknesses 
were loaded with different displacements to reach the same 
maximum surface stress of 430 MPa within elastic region 
of the material. In Table 3, different loading displacements 
were adopted to creep age forming specimens with the same 
target curvature of 1/2000  mm−1.

Table 2  Four-point bending CAF experiments in elastic loading, with 
the same maximum loading surface stress of 430 MPa

Thickness 
(mm)

Designed loading  
displacement dll (mm)

Loading force 
F (N)

Maximum 
stress (MPa)

2 18.7 103.0 430
4 9.2 420.4 430
6 5.9 1036.4 430

Table 3  Four-point bending CAF experiments with the same targeted 
curvature

Thickness 
(mm)

Designed loading  
displacement dll (mm)

Target curvature 
 (mm−1)

Target Δdf  
(mm)

2 20.2 1/2000 2.03
4 10.8 1/2000 2.03
6 7.3 1/2000 2.03

Fig. 8  Multipoint flexible tool 
and its dimensions

(a) Flexible tool with loaded specimen (b) Setup of specimen with the tool 

(c) Geometry and pin arrangements (dimension in mm).

1125The International Journal of Advanced Manufacturing Technology (2023) 125:1115–1133



1 3

4.3  Flexible tool CAF experiments

Specimens of the same material were used in the tests to ver-
ify the proposed springback compensation method for CAF. 
The specimen dimensions were 335 mm × 165 mm for 2 mm 
sheets, and 320 mm × 165 mm for 4 mm sheets. A flexible 
tool as shown in Fig. 8a was employed. The setup, dimen-
sion and pin arrangements are illustrated in Fig. 8b and c. 
x’, y’ and z’ are the axes parallel to the specimen’s length, 
thickness, and width directions, and the origin of the coor-
dinate system x’y’z’ locates at the centre point of the speci-
men bottom surface as shown in Fig. 8c. A 3 (rows) × 6 
(columns) pin matrix was adopted for lower pins and a 3 
(rows) × 4 (columns) matrix for the upper pins. To achieve 
more evenly distributed pressure applied on the specimen, 
for each row of pins, two steel splines with a dimension 
of 400 mm × 30 mm and 1.2 mm thickness were placed on 
the top and bottom of the specimen, aligned with the pin 
row. Rubber sheets were used between the upper and lower 
splines and the specimen to eliminate/minimise any dam-
age to the specimen, as shown in Fig. 8b. The centre line 
interval for each two-neighbouring upper/lower pins in all 
rows (x’ direction) and columns (y’ direction) is 60 mm. The 
heights of the pins in each column were adjusted to be con-
sistent with the designed loading curvature of the specimen. 
The same target curvature of 1/2000  mm−1 was set for CAF 
fabrication with flexible tool as shown in Table 4. In each 
iteration, the specimen was deformed to the loaded curvature 
1∕R1

a
 and then fixed for creep-ageing at 143 °C for 5 h. After 

completion of the creep-ageing, the specimen was cooled 
down in the air with the flexible tool to room temperature 
and unloaded to obtain the final deformed curvature after 
springback. For verification purpose, the error tolerance Tol1 
of absolute shape error |∆e| was set to be 1/10 of the target 
Δdf as 0.56 mm.

5  Results and discussions

5.1  Four‑point bending CAF experiments

Figure 9 shows the springback results for all thicknesses, 
including the prediction curves of the midpoint loading 
deflection dlm with the final deflection Δdf at the same 

midpoint of the CAFed specimen, and the moment release 
curves in creep-ageing for the moment at the end of creep-
ageing stage Mend as a function of the moment at the end of 
loading stage Mload The evolutions of maximum absolute 
values of creep strain εc(tend) and plastic strain �p at the end 
of creep-ageing, which were obtained at upper surface layer 
of the sheet, are also demonstrated with the increase of Mload 
in the figure. These results (solid lines) were obtained using 
the closed-form solution proposed in this study. For com-
parison, the dotted lines are the prediction results derived 
from the traditional beam theory with assumption of small 
deflection as [20]:

where kb is the loaded curvature as 1∕Rb , σ(d) is the cor-
responding induced stress at layer d. The experimental data 
and numerical simulation results are also presented using 
diamond and star shape symbols respectively. The FE model 
for obtaining the presented data is presented in Appendix 3. 
In addition, the comparisons of all obtained results of spring-
back percentage (sp) in the two test groups with different 
thicknesses, calculated using sp =

(
1 − Δdf∕dlm

)
× 100% , 

are demonstrated in Fig. 10.
As demonstrated in Figs. 9 and 10, for all thicknesses, 

satisfactory convergences were achieved among results of 
the solution-based predication, four-point bending CAF 
experiments, and numerical simulation, indicating validity 
of the proposed closed-form solution. The predicted spring-
back results by the solution have a maximum difference of 
0.49 mm from the experiments and 0.27 mm from the FE 
simulations, while the beam theory-based results have much 
larger deviations, especially in the plastic loading region, 
with a maximum prediction error of 1.6 mm for the 4 mm 
thickness sheet. In addition, by comparing the obtained pre-
diction curves of the beam theory-based and the solution-
based solutions respectively in Fig. 9a, c, and e, a similar 
trend which can be identified for all thicknesses is that with 
the same loading displacement dIm, the prediction result dfc 
for the beam theory-based method is always lower than the 
solution-based method, indicating that a lower stress is cal-
culated by the former method than the latter.

In addition, based on the obtained prediction curves, dif-
ferent evolution trend can be observed in elastic and plastic 
loading conditions for all thicknesses as shown in Fig. 9. 
In elastic loading, the CAFed deflection Δdf and moment 
release (Mload–Mend) gradually increased at the beginning 
and surged with higher rate when approaching the plastic 
loading. In plastic loading, a high increase rate of Δdf and 
(Mload–Mend) were obtained for all thicknesses. On the other 

(25)

⎧⎪⎪⎨⎪⎪⎩

�(d) = kbyd , −t∕2 ≤ yd ≤ t∕2

�(d) = E�(d), −�y∕(Ekb) ≤ yd ≤ �y∕(Ekb)

�(d) = �y + h(�(d) + �y∕E)
n
, �y∕(Ekb) ≤ yd ≤ t∕2

�(d) = �y + h(�(d) − �y∕E)
n
, −t∕2 ≤ yd ≤ −�y∕(Ekb)

Table 4  Experiment programme for CAF of target curvature with 
flexible tool

Thickness (mm) Target curvature  (mm−1) Target Δdf  (mm)

2 1/2000 5.63
4 1/2000 5.63
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Fig. 9  Creep age forming 
behaviour for 2, 4, and 6 mm 
sheets, showing the predicted, 
FE simulated, and experimental 
final deflection Δdf vs loading 
displacement dIm; the moment 
Mend, strain εc, and plastic strain 
εp at the end of creep-ageing as 
a function of loading moment 
Mload

(a) Deflection prediction for 2 mm (b) Moment release and strain evolution for 2 mm

(c) Deflection prediction for 4 mm    (d) Moment release and strain evolution for 4 mm

(e) Deflection prediction for 6 mm    (f) Moment release and strain evolution for 6 mm

Fig. 10  Comparison of the 
springback percentage results 
in two test groups with differ-
ent thicknesses. The legends 
from left to right respectively 
stand for results of experiment, 
numerical simulation, closed-
form solution, and the beam 
theory-based solution

(a) Test group of elastic loading           (b) Test group of constant curvature
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hand, as demonstrated in Fig. 9b, d, and f, the final creep 
strain surged when approaching plastic loading state and 
maintained at a level slightly above 0.2% with minor increase 
in plastic loading, while the plastic strain during loading 
increased sharply with increasing moment. The observed 
surge for deflection Δdf, moment release (Mload–Mend), and 
maximum creep strain when approaching plastic loading can 
be attributed to the nonlinear increase of creep deforma-
tion of the alloy when the applied stress surpasses 400 MPa, 
which was observed in uniaxial creep-ageing tests at 143 °C 
for this material [29]. The high increase rate of Δdf and 

(Mload–Mend) achieved in plastic loading is due to the effects 
of plastic strain and larger creep strain respectively induced 
in stages of loading and creep-ageing. Additionally, for this 
Al-Li alloy, springback is high and can offset the majority 
of the loading displacement. As demonstrated in Fig. 10, 
the lowest springback percentage is 79.5% for 6 mm sheet 
for CAF of a target curvature of 1/2000  mm−1. It can be 
noted that due to high strength and creep resistance of the 
alloy, even for fabricating panels with a small curvature of 
1/2000  mm−1, CAF need be conducted with plastic loading 
state.

Fig. 11  Photos of CAF iteration 
results of sheets with different 
thickness

(a) 2 mm 

(b) 4 mm 

Fig. 12  Comparison of the 4th 
iteration loaded curvature 1/R4

a
 , 

CAFed curvature 1/R4

b
 , FE 

simulated result 1/R4

s
 , and target 

curvature 1/R
c
 , R

c
 = 2000 mm, 

for 2 mm and 4 mm sheets. 
The dot symbols are measured 
points at corresponding posi-
tions of x’ axis

(a) 2 mm                          (b) 4 mm

Fig. 13  Evolution of adjustment 
factor and shape error with 
increased iterations

(a) 2 mm sheet iterations         (b) 4 mm sheet iterations
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5.2  Flexible tool CAF experiments

Figure 11 shows the photos of the CAFed sheets using the 
solution-based springback compensation method proposed 
in this study. As demonstrated in Fig. 11, the final deflec-
tion increases with increasing iteration for both 2 and 4 mm 
sheets. Within 4 iterations, the final error in the shape/cur-
vature falls in the range of error tolerance Tol1 of 0.56 mm. 
Figure 12 is the comparison of the curvatures for the target 
value with the loaded, CAFed, and FE simulated results in 
the final 4th iteration for 2 and 4 mm sheets. As shown in 
the figure, similar to the four-point bending tests, for CAF 
of 1/2000  mm−1 curvature sheets using flexible tool, large 
loading displacement and high springback were observed. 
For 2 and 4 mm sheets, the maximum loading displacement 

dlm was respectively 12.9 and 7.4 times larger than the target 
deflection Δdf, with a springback percentage of 92.9% and 
87.4%.

Figure 13 presents the evolution of adjustment factor �′ 
and shape error ||△e|| with increasing iterations, together 
with the FE simulation results of adjustment factor (α's) 
and shape error ( ||△es

|| ) based on the loaded shape of 4th 
iteration. As shown in the figure, for 2 and 4 mm sheets, 

Fig. 14  Flowchart of bisection 
method

Table 5  Initial values for the 
constitutive equations [34]

�0 r   ε'p �th0(MPa)

0 1 0 105

Table 6  Material constants for the constitutive equations [34]

A1(h−1) A2(MPa) A3(h−1) B B1(MPa−1) Cp

26 14 8.43E-8 10.5 3.6E-2 6.5E-3
Cr(h−1) E’ (MPa) K k’1 k’2 m1

8E-2 6.26E4 9.36E-8 0.5 5.2E-2 5.42E-1
m1a m2 m3 m4 n

′
n1a

0.52 0.75 1.05 1.5 2.35 50
n2 Q �0 �end(MPa)
1.28 1.52 8 396
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after 4 iterations, the CAFed sheets satisfied the tolerance 
range of 0.56 mm with shape error of 0.5 mm for 2 mm and 
0.38 mm for 4 mm. The adjustment factors were derived 
with values greater than 1 for both thicknesses, indicating 
that lower stiffness of the structure was induced for both 
thicknesses when loading with flexible tool than the pro-
posed uniform stress bending model. With increasing itera-
tion, the adjustment factor increased for both thicknesses, 
but the increasing rate gradually decreased. This decreasing 
trend of the rate demonstrated that the factor was converg-
ing to an appropriate value to reflect the true relationship 
between the deflection and the generated moment with the 
increase of iterations.

In this study, the initial value of adjustment factor was set 
to 1 to investigate the proposed method. In practical fabrica-
tion, the initial value can be set based on FE simulation. As 
demonstrated in Fig. 13a and b, the FE simulation results 
are close to the experimental data. Therefore, by combining 
FE analysis as preliminary estimation, a more proper initial 
value greater than 1 can be adopted to decrease the required 
iterations for the target shape and to improve the cost effi-
ciency when deforming with flexible tool.

6  Conclusions

In this study, a closed-form solution for creep age forming 
springback prediction covering elastic to plastic behaviours 
of the material has been proposed. Based on the solution, a 
springback compensation method for CAF fabrication with 
complex flexible forming tool has been developed. Both the 
proposed solution and the compensation method have been 
verified with corresponding CAF tests adopting the latest 
3rd generation Al-Li alloy. Major conclusions can be sum-
marised as:

(1) Due to superior strength and creep resistance of the 
Al-Li alloy, a large loading displacement is required 
and a high springback percentage has been observed 
in CAF fabrication of a singly curved sheet with cur-
vature of 1/2000  mm−1. When adopting flexible tool, 
the loading displacement was 12.9 and 7.4 times larger 
than the target deflection with springback percentage 
of 92.9% and 87.4% respectively for the 2 and 4 mm 
sheets, which noticeably raised the difficulty of spring-
back prediction and compensation.

Fig. 15  Schematic of the FE 
model for four-point bending. 
Dimensions in mm. ‘RP’ stands 
for reference point

Table 7  Summary of the four-point bending FE model and boundary conditions

Part Element type Element size Boundary conditions Surface contact Friction coefficient

Loading cylinder Discrete rigid 2 × 2 mm All fixed apart fromUy′ Cylinder-specimen 0.25
Supporting cylinder Discrete rigid 2 × 2 mm All fixed Cylinder-specimen 0.25
Specimen S4R 2 × 2 mm None Specimen-cylinder 0.25
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(2) A closed-form springback prediction solution is devel-
oped by combining the traditional beam theory and 
Winkler’s theory, for CAF covering deformation from 
elastic to plastic loadings. Furthermore, an efficient 
springback compensation method for CAF is proposed 
based on the developed solution method.

(3) Good convergences have been achieved among the 
results from the developed prediction solution, FE 
simulation, and experiments for four-point bending 
CAF tests, conducted in both elastic and plastic loading 
ranges with different sheet thicknesses. The validity of 
the proposed closed-form springback prediction solu-
tion has been well supported with a maximum error of 
0.49 mm compared with the experimental results.

(4) Successful CAF fabrication of target single-curvature 
sheet using multipoint flexible tool has been achieved 
by utilising the proposed springback compensation 
method within four iterations and with acceptable tol-
erances. An adjustment factor greater than 1 has been 
obtained for both 2 and 4 mm sheets in CAF with flex-
ible tool, indicating a lower stiffness structure has been 
induced when loading with flexible tool than the pro-
posed uniform stress bending model.

(5) The applicability of the developed springback predic-
tion solution and the solution-based compensation 
method in plastic loading, verified through correspond-
ing CAF tests, has extended the application area beyond 
the traditional beam theory-based prediction and com-
pensation methods to elastic–plastic CAF covering 
cases of large deflection in plastic range.

Appendix 1

Derivation of Eq. (18)

Based on Eq. (12), ri and ro can be expressed as functions of 
Rn3, i.e. r∗ = f1(Rn3):

where A’, B’, and C’ are derived as:

with determined εy, θ2 , Δθ, t, and Rn2.
By substituting Eqs. (13) and (15) into Eq. (17), as the fol-

lowing equation can be obtained:

where A’’ is derived as:

By adopting Eq. (15) and applying Taylor expansion, B” 
can be derived as:

(26)r∗ =
−B� +

√
B�2 − 4A�C�

2A�
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Similarly, C” is expressed as:
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where h and n are determined material constants; Eq. (17) or 
(28) can be expressed as a function of Rn3 as Eq. (18), i.e. 
f(Rn3)= 0.

However, the derived function cannot be solved analytically 
to obtain the solution of Rn3. Bisection method is applied as 
an iterative algorithm tool to approach the value of Rn3. The 
process of utilising bisection method to obtain the value of 
Rn3 is manifested in Fig. 14. Considering the possible extent 

of deflection increase from a2b2c2d2 to a3b3c3d3 in CAF 
and corresponding potential neutral plane variation range in 
plastic loading state, in the first iteration, the initial values of 
Rn3α

i and Rn3b
i, as the upper and lower limits of Rn3 for bisec-

tion method, are given with values as R1

n3a
= Rn2 + t∕5 and 

R1

n3b
= Rn2 − t∕5 . Tol2 is defined as the error tolerance com-

paring with obtained results of f(Rn3), which is set to be the 
value of 5E-4 in this study.
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Appendix 2

Adopted constitutive model

The constitutive equations adopted in this study are shown 
below [34]:

where �c
(
ta
)
 and �

(
ta
)
 are respectively the creep strain and 

stress at layer r at creep-ageing time ta ; is the threshold 
stress; H is a creep variable to reflect the hardening effect 
induced by evolution of normalised dislocation density ρ 
and normalised precipitate radius r during creep-ageing. 
ε'p and �0 are respectively the plastic strain and the nor-
malised dislocation density accumulated in the loading 
stage. Other symbols used in the equations are material 
constants. The dot above a symbol indicates time deriva-
tive. The initial values and material constants used for the 
constitutive equations are presented respectively in Appen-
dix Table 5 and Appendix Table 6.

Appendix 3

Four‑point bending FE model

As shown in Fig. 15, a three-dimensional ABAQUS FE model 
was established according to the setup and dimensions in 
Fig. 7a. The constitutive model was implemented in the simu-
lation through CREEP subroutine. For the loading cylinders, 
as shown in Fig. 15, freedom for all directions apart from dis-
placement along y’ (Uy,) axis was fixed, allowing the loading 
cylinders only move parallelly along y' axis. The supporting 
cylinders were completely fixed in all directions. Surface con-
tacts were set up between the cylinders and specimen which 
were modelled with penalty tangential behaviour with friction 

(32)�̇�c
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= A3sinh
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)
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)
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2
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(34)�
�

p
= (� − �end)∕E

�

+ K
(
� − �end

)n�

(35)�̇�0 = A1(1 − 𝜌0)
|||𝜀

�

p

|||
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0
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(37)�̇� = A1(1 − 𝜌)||�̇�c||m1 − Cp𝜌
m2

(38)ṙ = Cr

(
Q − r

)m3
(
1 + 𝛾0𝜌

m4
)

coefficient of 0.25. The specimen was composed of S4R shell 
element with mesh size of 2 × 2 mm and 11 integration points 
through the thickness direction. The cylinders were composed 
of discrete rigid elements with size of 2 × 2 mm. The general 
information of the model is summarised in Appendix Table 7. 
During simulation, the specimen was deformed by the loading 
cylinders with the designed loading displacement (given in 
Tables 2 and 3) and was kept at the obtained shape for creep-
ageing with the required time. The final defection prediction 
result was obtained after the specimen was fully unloaded with 
the upward movement of the loading cylinders.
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