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Abstract
Vibration monitoring of CNC high-speed machining (HSM) centers under non-stationary conditions, characterized by vary-
ing operating parameters and uncertainties affected by the change of speed and load during operation currently presents a 
particular challenge. Therefore, bearing condition monitoring is important. Indeed, this variation has a considerable impact 
on the vibratory response delivered by the accelerometers and therefore can mask any fault. The change in speed causes 
considerable changes in the spectrum of the vibration such that defect signatures become almost undetectable with con-
ventional tools. The order tracking method based on time–frequency representation is regarded as an effective tool for fault 
detection of bearings with varying rotating speeds. This study aims to propose non-stationary tools based on tachometer 
order tracking to detect bearing faults in high-speed milling centers during run-up and coast-down conditions. Developed 
tools are compared to stationary technics in this study, remaining limited to detect faults. Indeed, the speed variation would 
cause spectrum smearing if classic tools are used in non-stationary conditions. These latter methods are based on constant 
rotating speed and would fail to detect faults of bearings with variable spindle rotating speeds.
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1  Introduction

High-speed milling machines (HSM), which are frequently 
employed in machining operations, are essential in industrial 
manufacturing. They produce high-quality products with 
tighter tolerances because of their low cutting forces and 
high material removal rates. Unfortunately, process instabil-
ity has a negative impact on product surface polish, lowers 
dimensional accuracy, speeds up tool wear, and can even 
result in spindle-tool unit failure. In the industrial world, 
machine monitoring is becoming more and more crucial as 
a result of the requirement to increase machine dependabil-
ity and minimize production capacity loss owing to failures 
brought on by various flaws.

In the field of rotating equipment monitoring, the use 
of vibration signals is relatively contemporary. It takes a 
high level of expertise in the currently existing approaches 
to successfully apply them; new techniques are needed to 

enable unqualified operators to make trustworthy deci-
sions without understanding the mechanism of the system. 
One of the main research challenges in the field of rotating 
machinery diagnostics is machine’s condition monitoring in 
non-stationary operation. Applications are everywhere: in 
vehicles, energy systems, and manufacturing facilities. For 
these reasons, the current work is focused on measurement 
techniques and signal processing methods for tracking the 
condition of bearings exposed to non-stationary operating 
conditions in high-speed machining centers.

Monitoring the condition of machines while they are 
in non-stationary operation is one of the main research 
issues in the field of rotating machine diagnostics, such as 
gearboxes [1, 2]. The majority of published works center 
on validating condition monitoring methodologies through 
test bench measurement surveys. For instance, in [3], the 
viability of instantaneous angular velocity (IAS) monitor-
ing as a way to keep track of the gear’s health subjected to 
varying load conditions was investigated. A conventional 
shaft encoder can be used to monitor the instantaneous 
angular velocity of a gear shaft to detect changes in the 
condition of the gear, according to an experimental study 
on a test rig. [4] Provides a reference study on the topic. 
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On a gearbox test rig, tests were performed with varying 
degrees of tooth damage severity and the capacity to apply 
varying loads to the gear system. Various intensities of 
sinusoidal, step-and-jerk, and fluctuating constant loads 
were weighed. To account for the variation in rotational 
speed brought on by the fluctuating loads, the test data was 
sequentially tracked and averaged synchronously with the 
shaft rotation.

Cyclostationarity has gained popularity in recent years 
across a variety of applications, such as acoustic analysis and 
mechanical vibrations. The general idea is to include signals 
whose statistical properties change periodically over time in 
the class of stationary signals. The similarities in [5], Differ-
ences between cyclic and classical spectral analysis are dis-
cussed, as well as potential pitfalls. The preservation of the 
cycle energy variations can help to estimate the influence of 
the rotation speed variation on the signal energy, according 
to a method proposed in [6] for extracting the second-order 
cyclostationary components of a vibrational signal. A wind 
turbine, which is a significant validation case, is provided. 
An energy conversion device operating under harsh non-
stationary circumstances is a classic example.

The fact that monitoring the actual state of machines 
operating in their working environment is much more chal-
lenging than doing so in a lab underscores a crucial point 
about condition monitoring of machines operating under 
non-stationary conditions. Power conversion systems, like 
wind turbines, are a classic example because they are subject 
to random loads and wind turbulence. Monitoring the rolling 
elements and bearings is particularly challenging for MW-
scale wind turbines because they typically use a gearbox 
to convert slow rotor rotation into fast generator rotation 
[7–9]. It should also be noted that the control system moves 
a very high inertia nacelle in response to changes in wind 
speed, which may have an impact on things like yaw [10, 11] 
and/or pitch [12] life. The critical point for small horizontal 
axis wind turbines is that they are significantly affected by 
fatigue because of the load variability that is modulated by 
extremely high rotational speeds of the small rotor [13].

Machine tools are widely used in a variety of industries, 
including the automotive, aerospace, and military. These 
industries are currently working to improve their produc-
tivity, precision, and tolerances in order to create higher-
quality products with less waste and impact on the environ-
ment. Machine tools are composed of several subassemblies 
where the spindle unit is an important structural element 
located in different positions, depending on the machine tool 
configuration. The spindle unit plays an important role in 
the functionality and performance of a machine tool. The 
spindle performs two important functions: first, to give 
precise rotational motion to the tool (e.g., drilling, milling, 
and grinding) or to the workpiece (e.g., turning). Second, 
it transmits energy to the cutting area to remove material. 

Spindle problems are one of the most important sources of 
machine tool downtime in the manufacturing industry.

In a German study [14], where maintenance information 
was collected from 250 machine tools in the automotive 
manufacturing sector, four major subsystems were identified 
as being responsible for most downtimes. Within these, the 
spindle and tool changer accounted for 26% of the downtime 
within these four subsystems, being the second major cause 
after the drive axes. The degree of vibration in spindle units 
is regarded as a crucial factor in determining the health of a 
machine over its lifetime in machine tools. This parameter 
is frequently linked to a broken bearing, an imbalance, or a 
spindle issue. Although vibration levels are significant, there 
is no ISO standard for determining spindle health. The plan-
ning of maintenance chores for these high-precision systems 
is somewhat hampered by this circumstance. Several authors 
propose that bearing damage is the primary cause of spindle 
failure. In the industrial sector, spindle bearings are consid-
ered “the most sensitive components” [14].

In fact, bearing damage is by far the most common in 
motor spindles according to [15]. Another study, within the 
aerospace industry, cited in [16] indicates that bearing dam-
age accounts for 60% of electrospindle failures. Due to the 
importance of bearing damage on spindle life and therefore 
condition monitoring, this will be discussed in more detail 
in this article in stationary and non-stationary conditions. 
An example of anomalous operating conditions in spindles 
that lead to bearing damage is tool breakage. As pointed out 
by [17] in their real-time monitoring of three motor spindles 
over a 7-month period in the aerospace industry, tool break-
age was attributed as the primary cause in the front bearing 
of one of the spindles. The authors explain that during tool 
failure (0.5 s), high forces were generated, which caused the 
ceramic balls to indent on the steel raceway. This indentation 
leads to plastic deformation. This damage is further devel-
oped by strong vibrations due to cutting with a broken tool 
(for several minutes before being discovered) and harmonics 
produced by the passage of the tool frequency.

Bearings are critical components of rotating equipment 
and machine tool spindles are no exception. As mentioned 
earlier, many researchers and experienced professionals 
attribute bearing damage as the leading cause of spindle 
failure. Fortunately, bearing failure has been the subject 
of much research over the past few decades, so there is a 
great deal of literature research on the subject. Although lit-
tle research has been conducted on the detection of bearing 
damage on machine tool spindles, the purpose of this sub-
section is to provide an overview of different approaches to 
detect and evaluate bearing damage on spindles. The focus 
will be on the methods, results, and limitations of these stud-
ies. In order to identify localized bearing deterioration on 
bearings, Hoshi proposed using the vibration spectrum as 
an indicator [18]. A different study [19] compares several 
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spindles-bearing monitoring methods. These included tem-
perature, vibration, and sound emissions. In this instance, 
just like in Hoshi’s work, the spindle bearing was overloaded 
in an effort to cause damage. However, axial, radial, dynamic 
static, and spindle-driven stresses were utilized in this exper-
iment along with a motorized spindle. Improved indications 
for evaluating support circumstances have also been sug-
gested by other researchers, such as [17]. The authors of 
this study investigated bearing failures brought on by actual 
operating conditions in an industrial setting. The vibration 
evolution of three identical electro spindles utilized in the 
aerospace industry was investigated by the authors.

The experimental development of an instrumented smart 
spindle, which can assess tool wear by monitoring axial shaft 
displacement in real-time and therefore applicable to drill-
ing processes, is shown by the authors in [18]. Cutting trials 
utilizing a Kistler dynamometer and an instrumented smart 
spindle have revealed a strong correlation between measure-
ments of the axial displacement and axial drilling force. The 
drilling engagement with each copper layer can be deter-
mined using the axial displacement. The instrumented smart 
spindle can also be used to prevent overloading a thrust bear-
ing and, most critically, to identify tool wear as it occurs. 
A method for evaluating the health of motorized spindles 
was proposed by Yang H. and other authors in [19] using 
an optimized variational mode decomposition (VMD) and 
a Gaussian mixture model-hidden Markov model (GMM-
HMM). The motorized spindle performance monitoring test 
platform is used to conduct the rotor unbalanced fault exper-
iment. The tested motorized spindle’s condition is assessed 
using the suggested method, and the results demonstrate its 
superiority.

In the current industry 4.0 Era, intelligent spindles are 
core components of the next generation of intelligent/smart 
machine tools. Clarifying the concept of intelligent spin-
dles and offering an in-depth review of the state-of-the-art 
in related technologies are the targets of the paper’s work in 
[20]. The authors then describe the required qualifications, 
key enabling technologies, and anticipated intelligent func-
tions before proposing a new integrated concept for intel-
ligent spindles.

The operating regime (i.e., speed and/or load) is assumed 
to be constant or maybe varying in a stationary manner by 
all of these strategies. Unfortunately, in order to complete 
the duties for which they were intended, the majority of the 
machines monitored in the industry operates in non-sta-
tionary regimes. These methods fall short in this instance 
of vibration signal analysis. The scientific world has been 
preoccupied with this issue for the past 10 years, and sophis-
ticated signal-processing techniques have been developed 
to handle regime fluctuations. The theoretical formaliza-
tion of the non-stationary framework is provided in [21] by 
the authors through the methodical creation of novel signal 

processing tools. Assumed to be known a priori, the non-sta-
tionarity of the regime in this work is only that of the veloc-
ity, which is defined as changing velocity and constant load. 
The strategy is to expand cyclostationary framework with 
its specialized tools to reach this goal. By distinguishing 
between two different signature kinds, authors have devised 
a technique. The first class consists of first-order cyclosta-
tionary deterministic signals. The suggested remedy entails 
extending the first-order cyclostationary class to encompass 
deterministic signals with variable speeds. This is known 
as first-order cyclo-non-stationary. The second category 
consists of second-order cyclostationary random signals, 
which are periodically correlated random signals. Three dif-
ferent but complimentary points of view have been put out 
to address the variances brought on by the operating speed’s 
non-stationarity. A cyclostationary angle approach is used 
in the first, an envelope-based technique in the second, and 
a cyclo-non-stationary (second order) approach in the third. 
Numerous instruments have been created, and real-world 
and computer-simulated vibration signals have been used to 
examine how well they operate. Only a few strategies have 
been examined under load/speed variation, and condition 
monitoring is typically used to diagnose the performance 
of mechanical systems under steady state settings, such as 
typically at a constant speed.

Cutting parameters, the cutting state, and traditional 
time–frequency domain cutting features all change signifi-
cantly under variable cutting conditions. Recurrence plot 
(RP) is a time series method that can reflect the non-station-
ary characteristics and state differences of the signal system 
to analyze the cutting force signal in the cutting process. It 
was proposed by authors in [22] in order to achieve precise 
monitoring of chatter under such cutting conditions. Accord-
ing to experimental results, the method can accurately deter-
mine the stable cutting state and chatter state all through 
variable cutting conditions.

For the identification of bearing problems in non-
stationary settings and with gear noise interference, the 
authors of [23] suggest a comprehensive demodulation 
transformation. In [24], the authors looked into the viabil-
ity of employing time–frequency analysis methods like the 
Wigner-Ville distribution and its benefits in the diagnosis 
of machines operating in variable regimes by spotting par-
asitic energy leakage in various spectral regions. A com-
parable piece of work for the monitoring of variable speed 
gearboxes may be found in [25]. To address the impact of 
speed fluctuation on the vibration of gear transmissions, 
[26] proposes two indicators normalized by the instanta-
neous frequency. Authors in [27] describe the use of the 
instantaneous angular spectrum to track torsional vibra-
tions in a diesel engine. It was discovered that the order 
analysis can only manage the frequency responses due to 
changes in speed; it cannot, however, handle changes in 
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resonant energy or the complexity of modulation effects 
that follow. Complexity brought on by the signal’s modu-
lation effects. In order to try to divide the velocity profile 
into various pseudo-stationary regimes, a new method to 
generalize the synchronous averaging technique has been 
devised in [28]. To identify fault characteristics for vari-
able speed machines, the same researchers used a different 
technique of spectral preprocessing mixed with envelope 
analysis in [29]. A variety of methods have been created 
to detect bearing faults over time and at various speeds. 
Order tracking [26–29] is one of these techniques that is 
thought to be effective.

The order tracking analysis is a measurement method 
appropriate for non-stationary and variable speed 
machines. It calls for sampling the vibration signal at 
fixed angle intervals, and as a result, at a sampling rate 
proportional to the machine’s shaft speed. The frequency 
spectrum components can thus be represented in a water-
fall plot as stationary lines against orders (multiples of 
the shaft rotation) rather than frequency, in Hz. An order 
spectrum relates the signal’s amplitude and phase to the 
harmonic order of the rotational frequency. This means 
that regardless of the machine’s speed, a harmonic or sub-
harmonic order component remains in the same analysis 
line.

Indeed, in the order tracking method, the original sig-
nal is resampled at constant angle intervals and, thus, the 
fault-induced pulses are reordered to be equal in the angu-
lar domain. A stationary signal in the angular domain is 
created by translating the non-stationary signal in the time 
domain. The velocity smearing and spectrum smearing 
effects are eliminated by the order tracking method. The 
diagnosis of ball bearings in high-speed milling centers 
under stationary and non-stationary settings is the main 
topic of this research. Non-stationary operating condi-
tions have an impact on the vibration signal, disguising 
the presence of impending flaws or masking the impact 
of a defect caused by a machine’s higher energy impacts, 
that is, impacts from the machine’s regular operation. In 
this study, a tachometer order analysis approach for high-
speed milling center bearing failure diagnosis under vari-
able rotational speed conditions is provided.

The rest of the document is structured as follows. The 
order tracking algorithm is introduced in Section 2 (OTA). 
The experimental equipment used to carry out this study is 
described in Section 3 of the article. The stationary analysis 
is introduced in Section 4. This section studies and analyzes 
indicators of frequency, time–frequency, and stationary sta-
tistics. The method proposed in Section 5 is used to identify 
bearing faults. On vibration signals, a variety of non-sta-
tionary methods 5 based on order tracking, including RPM 
order, average order spectrum, and relative RMS, are exam-
ined and put to the test. Finally, Section 6 draws conclusions.

2 � Order tracking algorithm “OTA”

The study of rotation-induced vibrations in rotating sys-
tems is known as order analysis. These vibrations’ fre-
quencies are frequently inversely correlated with rotational 
speed. The orders are the constants of proportionality. 
Under most experimental circumstances, the rotational 
speed is typically determined separately and varies over 
time. Resampling and interpolation of the observed signal 
are required for proper analysis of rotation-induced vibra-
tions in order to acquire a fixed number of samples per 
cycle. This method converts signal elements into constant 
tones whose frequencies are multiples of the rotational 
speed that are constant. This transformation lessens spec-
tral component interference, which develops when the fre-
quency fluctuates quickly over time [30]. The rpm-order 
representation is performed by following these steps:

1.	 In the first step, the rotational speed signal RPM is 
extracted from the tachometer pulse signal. The tachom-
eter signal’s low and high states are first determined. 
Then, the beginning and ending times of each pulse are 
calculated. The time of each pulse is then determined 
by averaging these readings. After that, the time inter-
vals between the pulse centers and the RPM values 
are computed at the midpoints of the interval using 
RPM = 60∕Δt . Finally, linear interpolation is used to 
estimate the rotational speed signal.

2.	 The second step is to calculate the phase angle using the 
equation for the time integral of the rotational speed (1). 
In this instance, the RPM signal is estimated using the 
tachometer signal:

3.	 Signal upsampling and lowpass filtering: this process 
prevents high-frequency components from being aliased 
when the signal is interpolated at unsampled time points.

4.	 In the phase domain, linearly interpolate the sampled 
signal upwards on a regular grid. Due to the variable 
speed operations that spread the spectrum, the initial 
signal is not stationary in the time domain. Based on 
the estimated instantaneous phase information from 
the first step, the original signal is resampled at equal 
angular intervals to get around this issue. Based on the 
estimated instantaneous frequency from the signal, the 
formula calculates the instantaneous phase. As a result, 
the time-domain non-stationary signal is transformed 
into an angular-domain stationary signal.

(1)∅(t) =

t

∫
0

RPM(�)

60
d�.
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5.	 The sample rate and the system’s maximum rotational 
speed together determine the measurement’s highest 
accessible order:

Fs is the sample frequency.
To capture this highest accurately, it is necessary to 

sample the signal at twice Omax at least. For better result, 
the signal is oversampled by an extra factor of 4. The 
resulting phase-domain sample rate, fp is:

The default order resolution, r , is:

6.	 The interpolated signal’s short-time Fourier transform 
(STFT) is computed as the final step. By default, the 
function divides the signal into L-sample segments and 
windows each of them with a flat-top window. There are 
Noverlap

samples of overlap between adjoining segments, where 
poverlap is equal to 50% in this application. The DFT length 
is set to L. The resolution is related to the sample rate and 
segment length through

where k is the equivalent noise bandwidth of the window 
without a unit. In fact, the equivalent noise bandwidth of 
a window is the width of a rectangle whose area contains 
the same total power as the window. The height of the rec-
tangle is the peak-squared magnitude of the window’s Fou-
rier transform. Assuming a sampling interval of 1, the total 
energy for the window, w(n), can be expressed in the fre-
quency or time-domain as:

The peak magnitude of the window’s spectrum occurs 
at f = 0 . This is given by �W(0)�2 = ��

∑
n w(n)

��
2 . The width 

of the equivalent rectangular bandwidth ( k ) is obtained by 
dividing the area by the height and the result is presented 
in this equation:

(2)Omax =
Fs∕2

max
(

RPM

60

)

(3)fp = 4 × 2 × Omax

(4)r =
fp

256
=

4 × 60

256

2 × Fs∕2

max(RPM)
=

15

16

Fs

max(RPM)

(5)Noverlap = min

�
⌈
poverlap

100
× 100⌉, L − 1

�

(6)r =
kfp

L

(7)∫
1

2

−
1

2

|W(f )|2df =
∑

n

|w(n)|2

3 � Methodology and taxonomy

Like all rotating machines, machining centers contain 
parts wear, in particular the bearings, which are subject to 
dynamic stresses inherent in their modes of operation. Cut-
ting forces, centrifugal forces, high rotation speeds as well as 
the contaminated environment influence the dynamic behav-
ior of the milling machine spindles and the useful lifetime of 
bearings. However, statistics reveal that only 3% of bearings 
reach their theoretical lifespan, unlike the remaining 97%, 
which fail to reach their theoretical lifetimes due to multiple 
reasons such as lubrication inadequate, contamination of the 
lubricant, poor assembly, or inadequate operating conditions 
inducing excessive stresses (vibrations, temperature, speed, 
current flow, overload, etc.). This observation is reinforced 
in the CNC by the highly transient nature of the operating 
conditions—amplitudes, directions, frequencies of cutting 
forces, and speed of rotation.

From there, it becomes clear that the dynamic behavior 
of CNCs is strongly linked to the health of the most critical 
components, such as bearings. Bearing defects can be det-
rimental to the machine, especially if they are coupled with 
other machining conditions, producing regenerative chatter 
phenomena.

In fact, specialists in machining use stability lobe dia-
grams, making it possible to locate the conditions of stable 
cuts depending on the operating parameters. This diagram 
requires knowledge of the dynamic characteristics of the 
tool-tool holder assembly [31]. These characteristics may 
vary in the operational mode of the machine and in the pres-
ence of bearing defects [32]. A review of the most recent 
and pertinent studies in the area of dynamics in micro-mill-
ing processes is provided in [33] by Heitz, T. and all other 
authors. The definition of dynamics in machining is revised, 
along with the mathematical principles used in micro-mill-
ing with consideration of the size effect and common phe-
nomena impacting the dynamic model. They also discuss 
common techniques for detecting vibration and chatter as 
well as techniques for suppressing it.

With this in mind, this article presents a variety of 
methods for detecting bearing defects in a machining 
center in stationary and non-stationary conditions. In 
stationary conditions, the acquired vibratory signals will 
be processed in the time, frequency, and time–frequency 
domains. The evolution of certain statistical indicators is 
also presented. In non-stationary conditions, up run and 

(8)k =
∫ 0.5

−0.5
�W(f )�2df

�W(0)�2
=

∑
n �w(n)�

2

��
∑

n w(n)
��
2

1257The International Journal of Advanced Manufacturing Technology (2023) 124:1253–1271



1 3

coast run, signals are processed in order domain and the 
order tracking algorithm is applied to detect and track the 
bearings defects.

The process is initiated by acquiring data from the sys-
tem in stationary and non-stationary conditions and in the 
presence of a bearing defect. For this reason, accelerome-
ters and tachometer sensors are implemented on the system 
in two positions at different directions to collect multiaxial 
data. Then, the collected data is processed, analyzed, and 
interpreted using simple and advanced signal-processing 
tools. The different steps of the proposed methodology are 
discussed in detail in the following subsections.

3.1 � Experimental data acquisition

All the experimental milling processes are performed in 
non-stationary conditions (up and down run) and in station-
ary conditions in different rotation’s speeds (from 3000 to 
28000 rpm). The accessibility of the rotor and the structural 
complexity of the electro-spindle make it difficult to insert 
the sensors. Indeed, only the tool is accessible from the out-
side. For convenience, the accelerometers are placed on the 
spindle body at the bearing’s levels.

The different tests are carried out without machining 
and using a vertical machine center K2X10 which is able 
to operate at high rotational speeds (28000 rpm). Figure 1 
shows the experimental setup used to achieve tests at differ-
ent conditions. Three-axial piezoelectric accelerometers are 
used to capture the vibrations from 1 to 10 kHz. The meas-
urement range is ± 500 g pk. The accelerometers are attached 
to the non-rotating part of the spindle (spindle support) on 
the lower and upper part of the bearing level (Fig. 1). The 
tachometer sensor is placed in front of the tool holder and 
makes it possible to deliver a square signal whose frequency 
is the frequency of rotation of the spindle. Data acquisition 
was conducted with a 24-bit accuracy in two cases (Fig. 6). 
It is configured to obtain signals during 1 s with a maximum 
sampling rate of 48 kHz for each spindle speed and 10 s for 
up/coast run. The acquisition is controlled by the BETAVIB 
system. The parameters and procedure of experimental data 
acquisition are synthesized in Fig. 2.

The most relevant information in the spectrum is the 
presence of frequency components at frequencies that are 
usually inaccessible to standard accelerometers. Rotation 
at 28000 rpm (466.66 Hz) implies bearing fault frequen-
cies between 4000 and 6000 Hz (see Table 4), whereas the 

Fig. 1   Experimental setup: (1) non-rotating part of the spindle, (lower 
and higher level), (2) three-axial accelerometer, (3) tachometer sen-
sor, (4) holder, and (5) reflective tape. Red arrows indicate the data 
transfer to the data acquisition system

Fig. 2   The proposed approach for testing several spindle speeds in two cases. a (Cass I) up/down diagram: in non-stationary conditions, from 
3000 to 28000 rpm. b (Case II) staircase diagram: in stationary conditions at different spindle speed during 1 s for each speed
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bandwidth of industrial (conventional) accelerometers barely 
reaches this range. The fault frequencies, which generally 
occur at the 2nd or 3rd harmonic, are not detectable, because 
the cut-off frequencies are between 5 and 8 kHz depending 
on the nature of the fastener used (magnet, wax, screwed…). 
For this experimental analysis (Fig. 4), particular attention 
was paid to the measurement chain, and PCB accelerometers 
type 352C04—cutoff frequency starting at 15 kHz—were 
used to reach the frequencies of interest as well as their 1st, 
2nd, and 3rd order harmonics, with a sensitivity of 10 mV/g 
allowing the measurement of high vibratory amplitudes—
especially in cross-section—without saturating the sensor 
(Table 1).

The electro-spindle is the most sensitive part of a high-
speed machine. Indeed, it is subjected to high power, 
vibrations, and high rotational speeds (today Huron spin-
dles rotate up to 28,000 rpm—1). This is the part the more 
complex and expensive the machine. To optimally use 
an HSM machine, it is necessary to master the dynamic 

behavior of its spindle and detect all faults that may 
appear, in particular, bearing faults. Therefore, the differ-
ent parameters machining (depth of cut, cutting and feed 
speed, etc.) are adapted in order to obtain high productiv-
ity and manufacturing quality, while preserving the means 
of production. Figure 3 shows the schematic diagram of 
HURON electro-spindle UGV-28000 rpm.

3.2 � Bearing characteristics

Huron electro-spindle (28000 rpm, 70 kW) has been stud-
ied and monitored. The bearing arrangement can be found 
in Fig. 3. It is equipped with hybrid ball bearings at the 
front and at Table 2 presents the bearing geometric char-
acteristics and the bearing fault orders/frequencies that 
have been provided by the manufacturer. In this study, 
theoretically calculated frequencies are compared with 
experimentally determined frequencies.

Their calculation formulas are given in Table 3.
� is the contact angle, d is the ball or roller diameter and 

D is the pitch circle diameter of the bearing. According to 
the above equations, the bearing fault characteristics in the 
order domain are independent of the shaft rotating speed. 
Therefore, bearing fault detection based on the order 
domain can exclude the influence of speed fluctuation.

Table 1   Summary of the machining for bearing fault tests

Case Test no Spindle speeds (Krpm)

I. Stationary condi-
tions (case II)

1 … 16 3, 5, …28

II. Non-stationary 
conditions (case I)

Run up and run 
down

From 3 to 28 Krpm

Fig. 3   a Schematic diagram of 
HURON electro-spindle UGV-
28000 rpm, (1) hybrid ball bear-
ings, (2) tool. b Real HURON 
electro-spindle UGV
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4 � Stationary analysis

4.1 � Frequency analysis

To properly identify the signatures of a particular fault 
during the diagnosis of rotating machines in the frequency 
domain, it is very important to properly configure the spec-
trum (spectral resolution, windowing, etc.) and to know 
the kinematics of the installation to be able to target the 
specific signatures of this fault. For example, in the case of 

a bearing, characteristic frequencies such as BPFO, BPFI, 
and FTF or their harmonics will be determined. The sever-
ity of the fault is related to the values of the amplitudes 
corresponding to these frequencies and their harmonics. 
The more the amplitude of the peaks at these frequencies 
is significant and the greater the number of harmonics and 
modulation frequencies is, the more advanced the defect 
is in the degradation stage.

The frequency spectrum of vibration signal acquired in 
stationary conditions is plotted for each rotational speed 
which varies from 3000 to 28000 rpm and identified the bear-
ing fault frequencies namely BPFO, BPFI, and FTF. Table 4, 
below summarizes all the experimental values identified from 
the frequency spectra and the theoretical values obtained 
by applying the formulas given in Table 3. The theoretical 
values are close to the experimental values. This difference 
can be explained by the influence of ball sliding which will 
introduce fluctuations in the speed of rotation and therefore 
fluctuations in the characteristic frequencies of the defect.

Table 2   Bearings characteristics

fr , spindle frequency rotation; O , order; BPFO , ball pass frequency outer; BPOO , ball pass order outer; 
BPFI , ball pass frequency inner; BPOI , ball pass order inner; FTF , fundamental train frequency; FTO , 
fundamental train order; n , number of balls; Nb , number of balls

Outer race Inner race Cage

Number of 
balls n

BPFO BPOO BPFI BPOI FTF FTO

Hybrid ball 
bearings

20 8.84*fr 8.84 11.1*fr 11.1 0.44*fr 0.44

Table 3   Calculation formulas

BPFO = fr.
n

2

{
1 −

d

D
cos�

}
;

BPOO = n

2

{
1 −

d

D
cos�

}

BPFI = fr.
n

2

{
1 +

d

D
cos�

}
;

BPOI = n

2

{
1 +

d

D
cos�

}

FTF = fr.
1

2

{
1 − (

d

D
cos�

}
;

FTO = 1

2

{
1 − (

d

D
)
2
cos2�

}

Table 4   Experimental and theoretical frequency faults (BPFO, BPFI, and FTF) as a function of spindle speed

Spindle 
speed 
(Rpm)

Spindle speed (Hz) Experimental 
FTF frequencies

Theoretical 
FTF frequen-
cies

Experimental 
BPFI frequencies

Theoretical 
BPFI frequen-
cies

Experimental 
BPFO frequen-
cies

Theoretical 
BPFO frequen-
cies

3000 50,00 22,46 583,00 585,90 438,86 440,20
5000 83,33 37,43 971,67 974,90 731,43 733,20
7000 116,67 52,40 52,70 1360,33 1365,00 1024,01 1027,00
9000 150,00 67,37 67,38 1749,00 1754,00 1316,58 1320,00
11000 183,33 82,34 82,03 2137,67 2143,00 1609,15 1614,00
13000 216,67 97,31 96,68 2526,33 2531,00 1901,73 1907,00
15000 250,00 112,28 112,10 2915,00 2919,00 2194,30 2200,00
17000 283,33 127,25 127,10 3303,67 3304,00 2486,87 2494,00
19000 316,67 142,22 142,10 3692,33 3688,00 2779,45 2788,00
21000 350,00 157,19 157,50 4081,00 4086,00 3072,02 3081,00
23000 383,33 172,16 172,90 4469,67 4470,00 3364,59 3375,00
24000 400,00 179,64 180,20 4664,00 4650,00 3510,88 3521,00
25000 416,67 187,13 187,50 4858,33 4851,00 3657,17 3669,00
26000 433,33 194,61 194,50 5052,67 5049,00 3803,45 3815,00
27000 450,00 202,10 201,40 5247,00 5251,00 3949,74 3962,00
28000 466,67 209,58 209,20 5441,33 5448,00 4096,03 4019,00
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The values of the defect frequencies extracted from the 
frequency spectra are plotted, as a function of the spindle 
speed for the frequencies BPFO (Fig. 4a), BPFI (Fig. 4b), 
and TFT (Fig. 4c). The curves confirm the linear relation-
ship between the fault frequency and the spindle speed and 
the linearity factor presented by the slope of the line can be 
found. For Fig. 4a, the ratio between the BPFO fault fre-
quency and the spindle speed is 11.64, 8.74 for the BPFI 
fault (Fig. 4b), and 0.44 for the TFT fault (Fig. 4c). these 
experimental values are close to the theoretical values pro-
vided by the manufacturer (Table 2).

Figure 5 shows a waterfall graph which is a view of suc-
cessive FFT spectra taken at different spindle speeds. In 

other words. The x-axis represents the frequency, the y-axis 
is the spindle speed rotation and the z-axis is the amplitude. 
This waterfall graph is used to show the progression of fre-
quencies’ characteristics according to the spindle speed rota-
tion. The evolution of the FTF as a function of the speed of 
rotation of the spindle can be observed and the appearance 
of the frequency of the electrical network at 60 Hz.

Another waterfall plot is the plot used to represent the sig-
nal in time–frequency such that the signal is decomposed to 
a several number of blocks with a constant time interval. The 
FFTs of these blocks are plotted in a cascade fashion. This 
representation is useful to track changes in the signal over a 
short period such as during machine run-up or coast-down. 

Fig. 4   a BPFO bearing fault frequencies as a function of spindle speeds. b BPFI bearing fault frequencies as a function of spindle speeds. c TFT 
bearing fault frequencies as a function of spindle speeds

Fig. 5   Waterfall graph of accel-
erometers signals
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The frequency and amplitude of each component can be 
tracked and useful information such as resonance conditions 
can be found. In the next section, the signal is analyzed in 
time–frequency domain.

4.2 � Time–frequency analysis

Non-stable regimes correspond to the operating states of 
a rotating machine with variations in its speed, mainly 

generated by start-up procedures, load change conditions, 
and operating disturbances. Under these conditions, usually 
caused by load and speed fluctuations, conventional signal 
processing techniques such as pure spectral analysis are 
ineffective in diagnosing machine faults [34]. To address 
this problem, time–frequency analysis offers the possibility 
of representing non-stationary signals in these two spaces. 
In this category, the short-time Fourier transform (STFT), 
the operation from which the spectrogram is determined, 

Fig. 6   a 3D time–frequency 
spectrogram of acceleration 
signal acquired at 3000 rpm 
in Y direction (250–600 Hz). 
b power spectra of the same 
signal estimated by welch algo-
rithm. The dotted line in figure 
b shows the harmonics of the 
rotation speed

Fig. 7   Left) time–frequency spectrogram of acceleration signal 
acquired in run-up, steady-state and coast down in the frequency 
range of 0 at1100 Hz. Right) time–frequency spectrogram of accel-

eration signal acquired in run-up, steady-state, and coast-down in the 
frequency range of 3500 to 4600 Hz
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has been widely applied for fault diagnosis in both station-
ary and non-stationary modes [35, 36]. The authors of [37] 
state that the major limitation of STFT analysis lies in the 
trade-off considered between the two dimensions in terms 
of resolution. A good localization in time requires the use of 
a small window, which therefore leads to a poor frequency 
resolution and vice versa.

Figure 6a and c shows the frequency-time spectrogram in 
2D of vibration signal acquired at 3000 rpm in the frequency 
range of 250 at 600 Hz. The two frequency components of 
BFFO (440 Hz) and BPFI (585 Hz) frequencies can be seen.

If the operating conditions are not stationary, insofar as 
we consider a speed varying progressively from 0 to 466 Hz 

(28000 rpm) in run-up or coast-down, in transient condi-
tions, and on a time–frequency spectrogram by fast Fourier 
transform (STFT) (Fig. 7). In Fig. 7 (Right), an amplification 
of vibration around the resonance frequencies of the bearing 
(4000 Hz) is observed; the excitation is coming from the 
shock generated at each ball passage on the defect, which 
excites the harmonics of BPFO.

4.3 � Stationary statistics indicators

In the next set of graphs, four different vibration sever-
ity normalized indicators were evaluated for all spindles 
along their operating speed. These statistics are done for 

a b

c d

Fig. 8   a The evolution of normalized statistics (Peak to peak, crest 
factor, Variance, and kurtosis) as a function of the rotation spindle 
speed and the position of the accelerometer in X direction according 
to the two measurement points P1 and P2. b The evolution of normal-
ized statistics (Peak to peak, crest factor, Variance, and kurtosis) as a 
function of the rotation spindle speed and the position of the accel-
erometer in Y direction according to the two measurement points P1 
and P2. c The evolution of normalized statistics (Peak to peak, crest 

factor, Variance, and kurtosis) as a function of the rotation spindle 
speed and the position of the accelerometer in Z direction according 
to the two measurement points P1 and P2. d The evolution of normal-
ized statistics (Peak to peak, crest factor, Variance, and kurtosis) as a 
function of the rotation spindle speed and the position of the acceler-
ometer in X, Y, and Z directions according to the two measurement 
points P1
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both sensor positions as mentioned in paragraph 3.1 (see 
Fig. 1) and for X, Y, and Z directions. Figure 8a–c shows the 
evolution of normalized statistics as a function of the spin-
dle speed rotation in the two positions of the accelerometer 
and according to the three directions X, Y, and Z. Figure 8d 
compares the results of one position (lower position of non-
rotating part) and the different directions of acceleration (X, 
Y, and Z). These indicators are Crest factor, peak-to-peak, 
variance, and kurtosis, they are normalized to enclose their 
values from 0 to 1. The equation for calculating them is sum-
marized as follows (Table 5).

Note that for the all spindles studied, each of the vibra-
tion severity indicators varies significantly along the spin-
dle speed. The indicators peak-to-peak and variance trends 
to increase with speed in a similar manner, while variance 
increases slowly at low spindle speed than peak-to-peak 
indicator. Crest factor and kurtosis, on the contrary, tend 
to decrease in value with higher speed of the spindle when 
they are compared with their own initial values. Some peaks 
identify along spindle speed for these indicators, do not nec-
essarily occur at critical speeds. These peaks are explained 
by high vibration amplitude at relatively low frequency 
(low energy). Because of the fluctuations of values among 
these severity indicators along the spindle speed, they must 
be used carefully when using them for evaluating spindle 
condition.

Most conventional vibration monitoring techniques 
assume that machines operate in a steady state and that the 
change in vibration behavior describes the evolution of the 
degradation state of the machine, thus neglecting the impact 

Table 5   Stationary statistics indicators

Crest factor Peak-to-peak Variance Kurtosis

1

2
(max(xi)−min(xi))√

1

N

∑N

i=1
(xi)

2

max
(
xi
)
− min(xi)

1

N

∑N

i=1
(xi − x)

2 1

N

∑N

i=1
(xi−x)

4

(
1

N

∑N

i=1
(xi−x)

2
)
2

Fig. 9   a Run-up acceleration signal in red color and tachometer signal in blue color. b Coast-down acceleration signal in red color and tachome-
ter signal in blue color. c RPM signal estimated from tachometer signal in run-up. d RPM signal estimated from tachometer signal in coast-down
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caused by the variation of the operating conditions. How-
ever, the operation of machines operating in variable regimes 
practically rejects this hypothesis. Finding a method to com-
pensate for the effects caused by the variation of the speed 
and the load is speed and load is, therefore, of significant 
practical value. Several approaches related to this problem 
have been limited to testing machines at no load or at condi-
tions that do not often deviate from a steady state.

The following study shows how to analyze a vibration 
signal from a high-speed milling machine using order analy-
sis. Order analysis is used to quantify noise or vibration in 
rotating machines whose rotational speed varies over time, 
in other words, under non-stationary conditions. An order 
refers to a frequency that is a certain multiple of a reference 
rotational speed. For example, a vibration signal with a fre-
quency equal to twice the rotational frequency of a motor 
corresponds to an order of two, and similarly, a vibration 
signal with a frequency equal to 0.5 times the rotational fre-
quency of the motor corresponds to an order of 0.5. In this 
paper, the high amplitude orders are determined to study the 
bearing fault from the high-speed milling vibration signals.

5 � Order analysis

5.1 � Introduction

In this study, vibration data from an accelerometer in a 
machine center’s non-rotating spindle during the run-up and 
coast-down of the spindle motor are analyzed. In a center 

milling, the spindle, tool, and spindle bearings are just a few 
of the rotating parts. Each component rotates with respect to 
the main motor at a known, fixed rate, and each one could 
cause unwelcome vibration. The spindle motor’s rotational 
speed as well as frequency faults in the spindle bearings can 
both affect the frequency of the dominant vibration compo-
nents. Important center milling-related vibrational compo-
nents can be detected at integer multiples of the spindle’s 
rotational frequency and at non-integer multiples of the bear-
ing frequencies.

The signal in this study is a time-dependent acceleration 
in g (Fig. 9a, b), sampled at a rate Fs equal to 48000 Hz. The 
data used include RPM, the angular speed of the accord-
ing to the time instants. A spindle speed signal commonly 
consists of a sequence of tachometer pulses (Fig. 9a, b). The 
pulse sites of a bilevel tachometer waveform are identified, 
extract the RPM signal from the tachometer pulse signal, 
and compute the pulse interval to determine rotational speed. 
The predicted RPM signals are shown in Fig. 9c, d in the 
run-up and coast-down conditions, respectively. Figure 9 
shows spindle speed, in run-up and coast-down operations, 
and vibration signal acquired. The spindle of the machin-
ing center rotates from 0 to 28000 rpm in run-up regime or 
from 28000 to 0 rpm in coast-down regime and the spindle 
speed increases during the run-up and decreases in the coast-
down. Therefore, the vibration amplitude changes as a func-
tion of rotational speed. This type of RPM profile is typical 
for analyzing vibration in rotating machinery, among others 
high-speed machining.

a) b)

Fig. 10   a RPM-frequency map for the vibration data in run-up case, diagonal dashed lines present orders, and horizontal lines present other fre-
quencies. b 3D RPM-frequency map for the vibration data in run-up case
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5.2 � RPM‑frequency map vs RPM‑order map

The short-time Fourier transform of the vibration signal 
yields an RPM-frequency map, which can be used to visu-
alize the vibration signal in the frequency domain.

An RPM-frequency map, an RPM versus time curve, and 
several numerical indicators that can be used to quantify 
vibration components are all included in Fig. 10. Root-
mean-square (RMS) amplitude is represented by the map’s 
amplitude. The waterfall plot generates a three-dimensional 
is generated and is shown in Fig. 10b.

Many of the tracks have frequencies that change with 
spindle speed in the RPM frequency maps (here, the accel-
eration regime is shown). The tracks may be orders of the 
spindle’s rotational frequency, according to this evidence. 
Near the RPM peak, there are components with high ampli-
tude and frequencies between 4 and 6 kHz. The resolution 
is equal to 30 Hz. A Hann window is used. Some frequency 
components might be more easily resolved if the resolu-
tion were set to a lower value. For instance, at peak RPM, 
the low-frequency components are not separated. The high 
amplitude tracks seem to mix at low RPM values.

The RPM-frequency map to resolve these components is 
shown in Fig. 11 with a resolution of 5 Hz. At the peak RPM, 
the low-frequency components can now be distinguished, 
but as the RPM changes more quickly, there is significant 
smearing. As the motor speed increases or decreases, the 
vibration orders change the frequency in each time window, 
resulting in a wider spectral track. Due to the longer time 
windows needed for finer resolution, this smearing effect is 
more pronounced. In this instance, the increase in smearing 
artifacts during the acceleration and deceleration phases was 
brought on by the improvement in spectral resolution. This 
compromise can be avoided by creating an order map.

For the order analysis, Fig. 12 shows a spectral map of 
order versus RPM. By resampling the signal at fixed phase 
increments and creating a stationary sinusoid for each order, 
the technique eliminates smearing artifacts. In order to pro-
cess the resampled signal, a quick Fourier transform is used. 
Since the reference spindle rotation speed is a fixed multiple 
of each order. The spectral axis of the map is now order 

Fig. 11   a RPM-frequency map for the vibration data in run-up case, 
the frequency resolution is 5 Hz

a) b)

Fig. 12   a RPM-Order map for the vibration data in run-up case, horizontal dashed lines present orders, and curved lines present other frequen-
cies. b 3D RPM-Order map for the vibration data in run-up case. The order resolution is 0.005
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rather than frequency, and the resolution parameter is now 
expressed in orders rather than Hz. This map is computed in 
a flat-top window. 0.06 is the resolution’s value.

Each order’s straight-line trace on the map demonstrates 
that the vibration occurs at a constant multiple of the spindle 
speed. It is simple to connect each spectral component to 
the spindle speed using the order maps. Comparing this to 
the RPM frequency map, smearing artifacts are significantly 
reduced.

5.3 � Average order spectrum

The RPM-Order map is used to evaluate the average order 
spectrum by computing the RMS amplitude for each order 
and determine the locations of the peaks of the order 
map. Figure 13a shows the average order spectrum which 

is a presentation of the RMS amplitude according to the 
order number. Order values corresponding to 30 peaks are 
extracted (see Fig. 13b). The peaks of the spectrum cor-
respond to the ridges seen in the order-RPM map (Fig. 13).

Order values which are integer multiples represent the 
order of the spindle rotation (k.O1), where vibration gener-
ated by this spindle would occur. O1 represents the spin-
dle rotation order and k in an integer. On the other hand, 
order values which are not integer multiples correspond 
to the bearing order faults, their harmonics, and the lateral 
bands of amplitude modulation by the rotation of the spin-
dle, more specifically to the BPOI, BPOO,.BPPI, k.BPOO, 
k.BPOI ± n.O1, and k.BPOO ± n.O1.

BPOO is the ball pass order outer, BPOI is the ball 
pass order inner, O1 is the spindle rotation order, and k are 
integers.

Fig. 13   a Average order spec-
trum. Order RMS amplitude 
according to the order number. 
b Order value extracted from 
average order spectrum

a) b)

Table 6   Orders values of spindle rotation and bearing faults

Peak Order Value Characteristic Peak Order Value Characteristic O1 1

1 14.6520 OBPFI+3.O1 16 12.6630 OBPFI+1 OBPFO 8,77
2 11.7350 OBPFI 17 37.9230 3*OBPFI+3 OBPFI 11,66

3 13.6570 OBPFI+2.O1 18 41.0390 41*O1
4 23.3370 2*OBPFI 19 38.9830 39.O1
5 10.6080 OBPFI-1.O1 20 24.3310 2*OBPFI+1
6 28.2430 3*OBPFO+2 21 36.0000 36.O
7 8.7510 OBPFO 22 34.9390 3*OBPFI
8 26.3200 3*OBPFO 23 16.6410 2*OBPFI-1
9 18.5640 2*BPFO+1 24 17.6350 2*OBPFO
10 20.6190 2*BPFO+3 25 48.5970 4*OBPFI+2
11 39.9780 40.O1 26 0.9940 O1
12 15.6460 2*OBPFO-2 27 36.9940 37.O1
13 31.0940 31*O1 28 47.8010 4*OBPFI
14 27.3150 3*OBPFO+1 29 31.9560 3*OBPFI-3
15 21.6130 2*OBPFI-2 30 53.7020
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The presence of lateral bands modulating the orders of 
the bearing defect confirms the bearing defect and its sever-
ity depends on the number of components in this band. Note 
that the maximum value of the order does not exceed the 
value of { fs

2 × max

(
RPM

60

)}.  

5.4 � Relative RMS vs order

Table 6 is used to plot the relative RMS graph as a function 
of the order. The spindle rotation order and its harmonics, 

the BPOO and BPOI fault orders, their harmonics, and their 
modulations by spindle rotation can be identified. Figure 14 
shows the graphs for the X and Y directions; the same observa-
tions are noted. This type of graph seems relevant for monitor-
ing bearing defects in non-stationary conditions, in particular 
for high-speed machining centers, despite the stresses that the 
spindle will be able to withstand at high speeds and the non-
linearities that may appear, among other the gyroscopic effect.

In [27], a study was conducted on the relationship 
between envelope analysis and spectral correlation in the 

a) b)

Fig. 14   Relative RMS according to the order for vibration signal in run-up regime and in X (b) and Y (a) direction. Green dotted lines present 
BPOI order, its harmonics, and its bands modulation. Red dashed lines present BPOO its harmonics and its bands modulation

Fig. 15   RMS amplitude of 
BPOI and BPOO order tracking 
over time
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diagnosis of bearings operating at variable speeds. It has 
been verified that the variation of the load causes a modula-
tion at the level of the amplitude of impulsive events and 
thus increases the slippage effect which manifests itself at 
the level of the spectrum. In addition, varying the rotational 
speed spreads the characteristic spectrum of the faulty bear-
ing by adding a frequency modulation component to the 
already amplitude-modulated signal.

Figure 15 shows the evolution over time of the RMS 
amplitude of the BPOI and BPOO orders and the first three 
harmonics. The sudden increase in RMS at certain times is 

noted, this is perhaps due to the crossing with the resonances 
of the bearings. Harmonics orders increase in amplitude 
slowly as the rotational speed of the spindle increases.

Next, a time-domain order waveform is extracted for each 
peak order using Vold-Kalman filter. Order waveforms can 
be compared directly to the original vibration and can be 
used also to monitor bearing faults. Figure 16 shows the 
order waveforms of BPOO, BPFI, and their harmonics in 
time and time–frequency domains.

Figure 17 shows a 3D waterfall, the contribution of each 
order in the frequency domain. On the energetic level, the 

Fig. 16   Order waveforms 
BPOO and BPOI

Fig. 17   3D waterfall diagram, 
frequency representation for 
each order component
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presence of three classes can be observed. The first 15 orders 
contribute the most, then from order 20 to order 30 partici-
pates moderately.

6 � Conclusion

In order to identify wear and flaws in moving parts and fix 
them before the machine breaks down, vibration analysis of 
rotary milling machines is a crucial component of industrial 
predictive maintenance programs. This leads to lower operat-
ing and maintenance expenses. In order to identify bearing 
defects in high-speed milling centers, this research suggests a 
vibration analysis technique based on tachometer order moni-
toring. This technique has never been used on high-speed 
machining centers to find spindle bearing flaws, but it is effec-
tive for rotating machine status monitoring in non-stationary 
processes. Tachometer order tracking is a frequency analysis 
method that uses multiple operating speeds (orders), instead 
of absolute frequencies (Hz), as the frequency base. Order 
tracking data acquisition uses information issued from the 
tachometer to sample at a rate proportional to spindle speed. 
A calculated order tracking process samples at a constant rate 
(i.e., Δt uniform), and then uses an algorithm to resample the 
data at constant angular increments. Different signal process-
ing tools are proposed to detect bearing faults in high spindle 
milling centers in stationary and non-stationary conditions. 
Firstly, RPM-order map is computed, analyzed, and compared 
with RPM-frequency map. This tool seems the most relevant 
to analyze milling signals in non-stationary conditions and at 
high spindle speeds. Furthermore, Average order frequency is 
used to highlight the presence of bearing faults and the cor-
respondence between fault frequencies and fault orders. At the 
end, Relative RMS order presentation is extracted, this dia-
gram is useful and presents the severity of faults through the 
modulation component of bearing faults. In this paper, signals 
are analyzed by classical tools in stationary conditions to show 
their limits under the non-stationary conditions. An important 
interest must be taken in the bandwidth of the accelerometer. 
in fact, the characteristic frequencies of defects appear in the 
high frequencies, especially when the speed of the spindle 
reaches 28,000 rpm. The sampling frequency must be taken 
as the highest value to maximize the range of the commands.
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