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Abstract
In this paper, the injection molding technique is selected, and different internal and external defects have been evaluated, 
including warpage, short shot, and shrinkage. Different geometric and injection machine inputs such as gate type, filling 
time, part cooling time, holding pressure time, and melt temperature have been chosen, respectively. The Taguchi method 
is applied to find the best level of each parameter. In recent years, researchers have been focused on using machine learning 
techniques with a combination of meta-heuristic methods to calculate the optimal process parameters in injection molding to 
increase the quality of the final product. However, the computational load of the machine learning methods and meta-heuristic 
algorithms is far behind in handling real-time applications. The main motivation of this study is to reach an accurate model 
with a low computational load to handle the real-time computational load even in the presence of lower CPU power controller 
mechanisms. Then, the genetic programming method is employed to extract the optimal mathematical model of the injection-
molding process, which relates the processing parameters, including part cooling time, filling time, melt temperature, and 
holding pressure time, to output which is the combination of shrinkage rate, short shot, and warpage. The extracted optimal 
mathematical formulation of the genetic programming method is employed inside the interior point nonlinear programming 
solver via the fmincon function of MATLAB software to calculate the optimal parameters of the process as fast as possible. 
The genetic programming results are compared with previous methods such as decision tree, support vector regression, and 
multilayer perceptron to prove the acceptable accuracy of the first part of the paper with the lower computational load. Then, 
the means square error between the finite element method and the extracted result using the hybrid genetic programming 
and interior point nonlinear programming solver is 47.06%, 93.75%, and 83.63% lower than previous methods, including 
decision tree, support vector regression, and multilayer perceptron, respectively.
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1  Introduction

In many industries, such as the aerospace industries, auto-
mobile, biomedical technologies, and electronics, plastic 
materials are irreplaceable materials due to their flexibility, 
corrosion resistance, and transparency. For example, plastic 

materials are used in different applications, such as auto-
mobile windows, medical components, and food industries. 
Most plastic end-products are manufactured using injection-
molding processes. Three steps are involved in the injection-
molding process: (1) filling phase, in which molten polymers 
are injected into the cavity; (2) phase of packing, during 
which high packing pressure is applied to ensure that the 
cavity is properly filled; and (3) cooling phase, during which 
polymers solidify and mold temperature drops. Injection 
molding produces an end-product whose quality is deter-
mined by several parameters, including the process, design, 
and materials used. Here, three common defects leading to 
a reduction in end-product quality are examined: (1) war-
page, (2) short shot, and (3) shrinkage. An injection-molded 
warped component is considered a serious defect, especially 
the thin-walled components [1].
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A part shrinks when it comes into contact with its cav-
ity during injection molding. It is important to understand 
how shrinkage affects the final dimensions of molded plastic 
parts [2]. When a mold cavity is not filled, an incomplete 
part is called a short shot. When a mold is not injected with 
enough material, short shots result or when materials freeze 
before filling a cavity [3]. There are several reasons for this: 
incorrect selection of plastic materials, incorrect processing 
parameters, incorrect mold design, and incorrect design of 
parts.[4]. Moayyedian et al. [5] mentioned that the shape 
of the gate or runner at the filling stage contributes to short 
shots. Another investigation of the influence of gate design 
on injected parts was reported by Tsai [6]. An optical lens 
mold utilized a rectangular flow restrictor within a tertiary 
runner for having a uniform distribution of the melt tem-
perature and residual thermal stress and warpage reduction. 
Using numerical analysis, Kim et al. [7] investigated differ-
ent gate locations result in different polymer flow patterns, 
and found that incorrect positioning resulted in short shots 
when the gate was not positioned correctly.

Pandelidis and Kao [6] employed a fuzzy inference 
system (FIS) for the detection of defects in the injection 
molding process. Lee and Kim [7] introduced the modified 
complex method to minimize the numeric warpage value by 
considering six injection-molded part parameters, includ-
ing injection time, cooling, packing pressure, packing time, 
melt temperature, and coolant temperature. Their proposed 
method achieved more than 70% reduction in the warpage 
of injection-molded parts. The minimization of the warpage 
defects is the goal of recent studies via different methods. He 
et al. [8] extracted the optimal process parameters of injec-
tion molding using an adaptive neuro-fuzzy inference system 
(ANFIS) in order to reduce the number of trials. The defects 
of the injection molding process are reduced using their pro-
posed method based on the tested real case results. ANFIS 
is used in manufacturing fields for the prediction of optimal 
process parameters such as metal cutting [9]. Lotti et al. [10] 
proposed the first machine learning-based prediction model 
of the injection-molded plastic plaques shrinkage using 
mold temperature, meld temperature, flow rate, and holding 
pressure. They used the simple feedforward neural network 
as the suitable machine learning method for developing 
the prediction model because of the simplicity and cheap 
computational load. Mok and Kwong [11] determined the 
process parameters of injection molding based on MLP and 
FIS. The preliminary validation tests prove the efficiency of 
their proposed method. Later, Kurtaran and Erzurumlu [12] 
extract the dataset via the finite element method (FEM) of 
thin shell plastic parts injection molding. Then, they used 
analysis of variance (ANOVA) and response surface meth-
odology (RSM) to develop a mathematical relation between 
the process condition parameters, including melt tempera-
ture, mold temperature, cooling time, packing pressure, and 

packing time toward the warpage of thin shell plastic parts. 
Also, they employed a genetic algorithm (GA) to extract 
the optimal parameters of the thin shell plastic parts using 
the extracted mathematical model via RSM. Gao et al. [13] 
employed the global optimization-based Kriging surrogate 
linked to the FEM environment to extract the optimal pro-
cess and geometrical parameters of a box-shape part for vari-
ous wall thicknesses. Hassan et al. [14] and Tang et al. [15] 
investigated the installation of the cooling system in design-
ing the multi-cavity injection molds in points of location and 
size of the channel for the elimination of shrinkage via uni-
form solidification. Yin et al. [16] employed the feedforward 
neural network to estimate plastic parts’ warpage based on 
melt temperature, mold temperature, cooling time, packing 
time, and packing pressure. Tsai et al. [17] proposed the 
hybrid model using GA and to develop an injection mold-
ing algorithm for optical lens. The validation experiment 
proves the higher accuracy of the lens using their proposed 
method. Abbasalizadeh et al. [18] investigated the optimized 
amorphous thermoplastics and shrinkage behavior of semi-
crystalline using experimental extracted datasets. They 
discovered that the most effective parameter on shrinkage 
behavior of polycarbonate using ANOVA. Khosravani et al. 
[19] reviewed the injection molding manufacturing process 
based on implementation of artificial intelligence methods. 
Abdul et al. [20] estimate the width and length shrinkages 
of the injection molded in high-density polyethylene parts 
using multilayer perceptron (MLP) under different process-
ing parameters, including holding time, injection speed, and 
cooling time. They also developed the automatic machine 
lineaging-based tuning algorithm for mold machines to 
reduce the number of experiments compared to the error-
and-trial method. Song et al. [21] predicted the warpage 
and shrinkage of injection-molded thin-walled parts using a 
hybrid machine learning method which is the combination of 
MLP, GA, and support vector regression (SVR) with higher 
accuracy compared to previous methods.

Researchers have proposed a hybrid cooling model utiliz-
ing fluted conformal cooling channels with inserts manu-
factured from Fast cool material to create different cooling 
models. Traditional or conformal standard cooling meth-
ods cannot adequately cool the industrial part because of 
its geometry and the mold’s ejection system requirements. 
With a Fast-cool insert, heat is optimally transferred to 
the slender core of the plastic part. Comparing the hybrid 
design to traditional cooling systems, a transient numerical 
analysis showed a 27.442% reduction in cycle time for the 
analyzed part [22]. There is also a proposal for conformal 
cooling channels with triple hook shapes for thick optical 
parts that have deep cores and high dimensional and opti-
cal requirements. Traditionally, conformal cooling chan-
nels are not suitable for these applications due to the small 
core dimensions and high requirements regarding warping 
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and residual stresses [23]. Optical plastic collimators with 
conformal cooling channels are also proposed. This study 
presents conformal channels that outperform traditional 
and standard conformal channels in terms of thermal and 
dynamic performance, by implementing new sections of 
complex topology in order to meet both the geometric and 
functional requirements of an optical part, as well as the 
technological requirements of the additive manufacturing 
process for mold cavities [24].

In recent years, there has been a highly focused focus on 
optimizing the injection molding process parameters.

Gao et al. [25] used MLP and global optimization meth-
ods to design and develop the new machine learning-aided 
conformal cooling design injection molding to extract the 
optimal cooling process in order to minimize the injec-
tion molding process. Li et al. [26] proposed the Taguchi- 
and multiple linear regression-based prediction models in 
injection molding to predict the optimized molding param-
eters to reach the lowest dimensional deviation of the final 
product. Speranza et al. [27] predicted the variation of the 
fibrillar layer thickness in micro–injection molding using 
the mathematical model. Mahmoudian et al. [24] proposed 
that to improve the interaction of alumina nanoparticles and 
PMMA, in situ polymerization of methyl methacrylate was 
performed on alumina nanoparticles. The modified nanopar-
ticles were dispersed appropriately in the polymer matrix to 
act as effective additives. To design experiments and opti-
mize input parameters, the Taguchi method was used. Jung 
et al. [28] assessed the performance of different machine 
learning methods, including logistic regression, SVR, ran-
dom forest, gradient boosting, XGBoost, CatBoost, Light-
GBM, and autoencoder, in the prediction of injection mold-
ing quality. Uğuroğlu [29] used machine learning methods, 
including logistic regression, k-nearest neighbor, random 
forest, and MLP, to propose a real-time application for plas-
tic injection molding machines. Párizs et al. [30] investigated 
the performance of different machine learning methods, 
including a k-nearest neighbor, naïve Bayes, linear discri-
minant analysis, and decision tree (DT) in the prediction of 
multi-cavity injection molding’s quality. They discovered 
that the DT is the most accurate model among all the inves-
tigated methods, with more than 90% accuracy in the pres-
ence of little training data. Ke and Huang [31] proposed the 
optimized multilayer perceptron (MLP) using different types 
of stochastic gradient descent with momentum to predict 
the quality of injection-molded parts. They reached 95.8% 
accuracy during the testing process of the model using the 
Sigmoid activation function and learning rate = 0.1.

Based on the reviewed studies in this section, the predic-
tion model of the injection-molding process quality, such 
as shrinkage, warpage, short shot, etc., using the process 
parameters can be categorized into two main groups, includ-
ing mathematical-based neural network-based models. The 

neural network-based models are more accurate than the 
mathematical-based model. However, the neural network-
based models cannot be easily defined without an advanced 
controller machine for molding machines. In addition, the 
lower config CPU controllers cannot handle the computa-
tional load of the neural network-based prediction model 
in real-time applications. Then, this research gap is filled in 
this study by developing the model, which combines these 
two groups, including mathematical and neural networks. 
Genetic programming (GP) is invented by Koza [32, 33], 
which is an extension of the GA. It is used to generate the 
mathematical relation of the injection-molding process as 
inspired by Darwin’s theory of natural selection. The math-
ematical model can calculate the injection-molding process, 
such as shrinkage or warpage, quickly without computing 
complicated computing. In the second step of the project, 
the mathematical optimization method using an interior 
point nonlinear programming solver is employed to extract 
optimal processing parameters faster than the meta-heuristic 
algorithm.

The injection-molding process for the thin-walled poly-
propylene part is explained in the next section. Also, the 
strategy for gathering the datasets is explained in this sec-
tion. The methodology of this study is the combination 
of GP and interior point nonlinear programming solver is 
explained in Sect. 3. The proposed method is developed in 
MATLAB, and the results are generated and compared with 
previous methods in Sect. 4. The conclusions are remarked 
in Sect. 5.

2 � Thin‑walled polypropylene parts molded 
through injection molding

Regarding the literature survey, different defects have been 
considered in injection molding, and three different defects 
are selected, namely warpage, volume shrinkage, and short 
shot. Taguchi’s experimental design is applied to minimize 
the trial numbers and to determine the most significant 
parameters for the optimum design affecting the quality of 
the thin shell plastic part. The modeling of the selected part, 
including the sprue, runner, and gate, is conducted using 
SolidWorks, as shown in Fig. 1, and the simulation process 
is implemented using finite element analyses (FEA) and 
SolidWorks Plastic. The part selected is a plastic plate with 
a diameter of 100 mm and a thickness of 1 mm. The dimen-
sional details of two different gates are shown in Fig. 2. The 
runner and gate length in total are 280 mm for two circular 
parts. The sprue is of 60 mm length and 1.5 draft angle. 
Based on the selected defects like warpage and short shot 
in this study, it is necessary to consider the most critical 
conditions. Running the simulation trails for a part with a 
thickness of 1 mm will cover the critical conditions. Hence, 
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the optimum result will be applicable for any thicknesses of 
any plastic parts. Cool pipe model is selected in order to cool 
the plastic part and operates by drawing the cooling chan-
nels on the solid body representation of the mold. As the 
mold and cavity are heated, the transient thermal fields are 
calculated iteratively using the Cool solver. When the mold 
is heated for the first time, the ambient temperature is used. 
The solver uses the melting temperature of the uniform melt 
for the initial part temperature of the next cycle, but uses the 
mold temperature from the previous cycle to determine the 
initial part temperature of the next cycle.

A key role played by FEM in the simulation will be to 
ensure the analysis results are accurate. Finite element analy-
sis uses triangle meshes for surface meshes based on the 
geometry of samples, as shown in Fig. 3. For the injection 
part, a surface mesh size of 1 mm was chosen after evaluat-
ing different sizes. However, smaller sizes were considered 
for the injection system, which includes the sprue, runner, 

and gate, due to the sensitivity of the injection system that 
was a critical component of the simulation. For both ellip-
tical and round cross-sectional shapes of runner in Solid-
Works Plastic, surface mesh size of 0.3 mm is selected for 
sprues and runners, and 0.2 mm for gates. The direct solver 
option optimizes the Fill and Pack analyses. When hexahe-
dral elements mesh with relatively thick parts, the Direct 
solver provides a more accurate prediction of inertial effects.

2.1 � Injection molding machine and the selected 
material

Different processes and geometrical parameters are evaluated 
for this research. Based on the literature survey, 5 parameters 
have been selected: injection machine inputs and the gate 
design. The selected injection machine is the Poolad-Bch 
series, and the chosen material is PP (polypropylene).

2.2 � Selection of parameter level and Taguchi 
orthogonal array

The selected parameters in different levels are gate type, 
filling time, cooling time, holding pressure time, and melt 
temperature in three levels (low, mid, and high), based on 
Taguchi’s experimental design, as shown in Table 1. The 
first and most significant reason for Taguchi’s application is 
to reduce the number of trials, which reduces time and cost. 
Level selection for the selected parameters is based on dif-
ferent simulations to determine the effective minimum and 
maximum levels (level 1 and level 3, respectively) of each 
parameter. Level 2 is the average of two other levels. The 
main reason for having three different levels is to evaluate 
the effect of each parameter on the selected plastic defects.

Fig. 1   The 3D modeling of thin-walled polypropylene part of the 
injection channels (sprue, runner, and gate)

Fig. 2   A Rectangular cross-sec-
tion of an age gate; b elliptical 
cross-section of modified edge 
gate; c edge gate; d modified 
edge gate

300 The International Journal of Advanced Manufacturing Technology (2023) 124:297–313



1 3

Table 2 shows the selected L18 orthogonal array of Tagu-
chi according to the number and level of parameters. For 
any engineering application, the Taguchi method proposes 
three different quality evaluation concepts: smaller the bet-
ter, nominal the best, and larger the better [34]. This paper 
aims to reduce the selected defects to their minimum level. 
Hence, smaller, better-quality characteristics are applied 
according to the Taguchi method and relevant tools such 
as Signal to noise ratio (S/N ratio). The simulation of each 
trial is conducted using SolidWorks Plastic to determine the 
value of individual defects.

For quality evaluation, three plastic defects are consid-
ered, namely warpage, volume shrinkage, and short shot, 
as illustrated in Fig. 4. The initial weight of each plastic 
defect is calculated via analytic hierarchy process (AHP), 
as illustrated in Table 3, with reference to their classifica-
tion illustrated in Fig. 4. AHP can be applied in differ-
ent engineering fields. For instance, in air gasification of 
plastic waste, studies showed that in conventional biomass 
gasification, hydrogen production decreased linearly with 
an increasing equivalence ratio, but in plastic waste gasifi-
cation, an optimum equivalence ratio achieved the highest 

hydrogen output [35–37]. Based on Table 3, out of 100%, 
short shot has 50% contribution, volume shrinkage 20%, 
and warpage have 30% contribution.

The calculation of S/N ratio is conducted as shown in 
Table 4, based on Eq. (1) and Eq. (2) as follows, where N 

Fig. 3   Finite element analysis of the designed part

Table 1   The selected parameters are at different levels

Parameters Level 1 Level 2 Level 3

Gate design A 1 2 -
Filling time (s) B 0.2 0.6 1
Part cooling time (s) C 1 5 8
Holding pressure time (s) D 3 5 10
Melt temperature (°C) E 200 230 280

Table 2   L18 orthogonal array 
of Taguchi

Trial A B C D E

1 1 1 1 1 1
2 1 1 2 2 2
3 1 1 3 3 3
4 1 2 1 1 2
5 1 2 2 2 3
6 1 2 3 3 1
7 1 3 1 2 1
8 1 3 2 3 2
9 1 3 3 1 3
10 2 1 1 3 3
11 2 1 2 1 1
12 2 1 3 2 2
13 2 2 1 2 3
14 2 2 2 3 1
15 2 2 3 1 2
16 2 3 1 3 2
17 2 3 2 1 3
18 2 3 3 2 1

Fig. 4   The quality evaluation criteria

Table 3   The calculation of initial weight

S1 S2 S3 Initial weight

Step weight 0.5 0.2 0.3
Short shot 1 0 0 0.5
Volume shrinkage 0 1 0 0.2
Warpage 0 0 1 0.3
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is the number of experiments per trial and yi is the sum of 
the selected defects [38, 39].

Concerning Table 4, the minimum and maximum defects 
value is related to trial 18 and trial 1, respectively. The simu-
lation result for trials 1 and 18 is shown in Fig. 5a, b.

The next step is to determine the optimum level of the 
selected parameters based on the response table of Taguchi. 
Concerning Table 5, the highest value of individual param-
eters shows the optimum level of the selected parameters. 
Hence, gate design at level 2 (edge gate), filling time at level 
3, cooling time at level 3, holding pressure time at level 
3, and melt temperature at level 2 is the best combination. 
Also, the most important parameters affecting the selected 
defects are melt temperature and holding pressure time, fol-
lowed by gate type, cooling time, and filling time, respec-
tively, based on the difference value extracted from Table 5.

After finding the optimum level of individual param-
eters, the next step is to run the simulation to determine 
the value of the defect for the optimum design, as shown 
in Fig. 6. Regarding Table 6, the sum of the defects for the 
optimum design is 0.18, which is less than the minimum 
sum related to trial 18 in Table 6.

(1)
S

N
= −10log(MSD)

(2)MSD =
1

N

(

∑n

i
yi
2
)

Table 4   Signal to noise ratio 
calculation for 18 experiments

SS short shot (%), VS volume shrinkage (%), W warpage (mm), SSN short shot normalized (0.5), VSN vol-
ume shrinkage normalized (0.2), WN warpage normalized (0.3), S sum.

Trial SS VS W SSN VSN WN S S/N

1 100 16.46 0.82 0.500 0.008 0.089 0.60 4.49
2 63.18 18.25 0.93 0.214 0.082 0.143 0.44 7.15
3 50.8 21.08 0.92 0.118 0.200 0.138 0.46 6.83
4 56.32 18.18 0.99 0.161 0.079 0.172 0.41 7.69
5 45.03 20.94 1.15 0.074 0.194 0.251 0.52 5.71
6 66.94 16.40 0.64 0.244 0.005 0.000 0.25 12.08
7 64.69 16.27 0.79 0.226 0.000 0.074 0.30 10.46
8 54.66 17.96 0.76 0.148 0.070 0.059 0.28 11.13
9 44.48 20.48 1.25 0.069 0.175 0.300 0.54 5.29
10 40.86 21.09 0.95 0.041 0.200 0.152 0.39 8.09
11 58.55 16.44 0.95 0.179 0.007 0.152 0.34 9.42
12 50.27 18.24 0.86 0.114 0.082 0.108 0.30 10.34
13 36.28 21.03 1.10 0.006 0.198 0.226 0.43 7.34
14 83.10 16.44 0.65 0.369 0.007 0.005 0.38 8.38
15 45.06 18.23 0.92 0.074 0.081 0.138 0.29 10.66
16 43.75 18.11 0.77 0.064 0.076 0.064 0.20 13.81
17 35.53 20.71 1.16 0.000 0.184 0.256 0.44 7.13
18 50.80 16.8 0.74 0.118 0.022 0.050 0.19 14.40

Fig. 5   The short shot, shrinkage, and warpage for trial 1 (a): maxi-
mum; (b): minimum
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3 � Methodology

The neural network and meta-heuristic methods have 
been employed recently by many researchers to calculate 
the optimal processing parameters of the injection-mold 
machine to reach the highest quality in point of lowest 
shrinkage, warpage, and short shot. However, the high 
computational load of the neural network and meta-
heuristic algorithms are the main disadvantages of these 
methods despite their accuracy. Figure 7 shows the graphi-
cal abstract of this paper, which is the whole proposed 

methodology in this research. It consists of 9 stages, from 
selecting experiment parameters to extracting optimal 
injection-molding process parameters. In the first stage, 
the different sets of injection-molding process parameters, 
including part cooling time, filling time, melt temperature, 
and holding pressure time, are established using the Tagu-
chi method to reduce the number of experiments.

The motivation is to reduce the total run time of the 
FEM to reach the highest accuracy. In the second stage, the 
SolidWork Plastics software, as the selected candidate for 
the FEM environment, calculates the shrinkage rate, war-
page, and short shot. As explained in the previous section, 
the objective values combine these three down facts of the 
injection-molding process in the third stage of the work, 
which is calculated based on Eqs. (1–2).

In the fourth stage and after finishing the simulation 
stage, the datasets are gathered as.CSV files to be called 
and used in the next stages of the study. These four stages 
are straightforward, and they have been explained in detail 

Table 5   The response table of 
Taguchi

Level Gate type Filling time Cooling time Holding pres-
sure time

Melt temperature

L1 7.87 7.72 8.65 7.45 9.87
L2 9.95 8.64 8.15 9.13 10.13
L3 NA 10.37 9.93 10.15 6.73
Difference 2.08 0.92 1.78 2.71 3.40

Fig. 6   The short shot, shrink-
age, and warpage analysis for 
the optimum design

Table 6   The sum of defects for the optimum design using the Tagu-
chi method

Short shot Shrinkage Warpage Sum

Weight 0.5 0.2 0.3
43.7 18.1 0.73 0.18

303The International Journal of Advanced Manufacturing Technology (2023) 124:297–313



1 3

in the previous sections. The datasets should be pre-pro-
cessed before employing the machine learning method for 
training and developing the prediction model to reach the 
highest accuracy of the proposed method (stage 5). In this 
research, GP is employed to generate the mathematical 
formulation of the injection-molding process with accept-
able accuracy. GP is a machine learning method, while 
the outcome is in the form of a mathematical or statistical 
model. This job has been done in the sixth stage of the 
proposed work in Fig. 7. The method has been analyzed 
and evaluated with previous methods such as DT, SVR, 
and MLP to prove the acceptable accuracy of the proposed 
method in stage 7 of the work. Stages 6 and 7 are related 
to the first contribution of the research. The second part 
of the contribution is accomplished in the eighth stage of 
Fig. 7. The interior-point nonlinear programming solver 
extracts the optimal process parameters of the injection-
molding process in a fraction of the time. This section 
is composed of three subsections, including the descrip-
tion of data pre-processing (stage 5), GP (stage 6), and 
mathematical-based optimization (stage 8), respectively.

3.1 � Data pre‑processing

Three tasks should be implemented in the data before devel-
oping the model and applying the dataset. Initially, the data 
out of range should be removed to increase the robustness of 
the system. The second step is related to the normalization or 
standardization of the system to decrease the data complex-
ity for a system before training. Both methods are employed 
to decrease the complexity of the network’s input data and 
increase the system’s accuracy. The following formula is used 
to calculate the data standardization:

where xi , and �xi
 are respectively the ith raw and standard-

ized input data. �x and x are also the functions for extracting 
the standard and average deviation of the data. The normal-
ized data can also be obtained as:

(3)�xi =
xi − x

�x

(4)nxi =
xi − x

x − x

Fig. 7   The graphical abstract of 
the proposed method
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where nxi is the ith normalized input data. x
_
 and x are also 

the functions for extracting the minimum and maximum val-
ues of the data. During the final network pre-tuning process, 
the data is divided into 95% and 5% for the testing and train-
ing process of the network. The testing data is not shown to 
the system till the testing stage of the network in order to 
reach realistic results via the proposed models.

3.2 � Genetic programming

Nowadays, due to the incompetency of classical optimiza-
tion methods, applying nature-inspired optimization algo-
rithms has found great popularity in various engineering 
fields. One of the most important sources of inspiration is 
the evolutionary behavior of chromosomes in living beings 
which leads to generations with fewer defects and more effi-
ciency. Genetic algorithm, GA, is a sample of algorithms 
that imitate chromosomes’ behaviors in searching for the 
best solution to a given problem. GA aims to search the 
global optimum of a defined objective function in a limited 
search space by applying various operators on a population 
of number strings. One of the most applicable alternatives 
for GA that operates on the string of codes and functions, 
in addition to numbers, is GP. Firstly introduced by Koza in 
1992 [32, 33], GP combines the principles of automatic pro-
gramming and core precepts of evolutionary characteristics 
of chromosomes to approach a model-based optimization 

methodology. Applying various operators, chiefly crosso-
ver and mutation, on the strings of functions, numbers, and 
codes, GP, compared to GA, is more capable of solving more 
complicated problems. Introducing an accurate mathemati-
cal model based on input independent parameters and output 
measured values is another unique ability of the GP tech-
nique. In Fig. 8, samples of chromosomes in GP and opera-
tors to generate new offspring are illustrated.

In order to regenerate the mathematical model using GP, 
the below steps are as follows:

1.The initial population is created via the random selec-
tion of the genome using different lengths.
2.The fitness function is estimated for every genome.
3.The initial population’s genomes are sorted using the 
fitness functions.
4.The next generation’s genome is selected based on the 
minimum cost function value.
5.The generation is calculated using the selected genomes 
and the GP’s probabilities.
6.The termination criteria are checked. The unsatisfied 
termination criteria lead to step 2. The satisfied termina-
tion criteria lead to the evaluation of the next iterations.

The depth of the tree is defined using initial depth and 
operation depth. The operations of GP, including muta-
tion, reproduction, and crossover, act in the tree’s different 
branches and components. There are two types of random 

Fig. 8   Mathematical operations and members in GP
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mutation in GP, including replacement/termination of func-
tion with other function and swapping the sub-branches, as 
shown in Fig. 8.

GP is used to express the mathematical relation of the 
model known as the symbolic regression tool, which is the 
optimized version of the system based on the provided data-
sets. Based on the represented steps of GP, the initial version 
of the equation is generated via random combinations of 
mathematical functions, constant values, independent vari-
ables, and arithmetic operations. Based on Fig. 8, the ter-
minal branches are the system’s variable or constant values.

In this paper, a genetic equation was extracted to the 
model of the cost function based on input molding param-
eters, including filling time ( B ), part cooling time ( C ), hold-
ing pressure time ( D ), and melt temperature ( E ) in injection-
molding process of thin-walled polypropylene. To obtain the 
genetic equation, arithmetic functions are defined as follows:

The number of chromosomes, mutation rate, and crosso-
ver rate were selected as 30, 0.1, and 0.044, respectively. 
The algorithm was terminated after 200,000 generations, 
and the best model was presented as the answer to the mod-
eling process.

3.3 � An interior point nonlinear programming solver

An interior-point method for solving the nonlinear program-
ming problem is initially introduced by Fiacco and McCor-
mick in the 1960s [40]. It is one of the powerful algorithms 
for solving large-scale nonlinear problems. The concept of 
the interior point is more complicated because of adding 
some new challenges, such as updating interior-point param-
eters, progress toward the solution, and nonconvexity treat-
ment. The interest in the usage of interior-point solvers was 
raised in the 1980s after showing its power in solving the 
linear problem. It was used to solve the nonlinear problem 
by the late 1990s as there was a need to generate new meth-
ods and software. The interior-point proves its efficiency in 
handling large-scale nonlinear problems faster than other 
methods, such as the active set. The main motivation of the 
interior point method is to create the barrier function for 
keeping the constraints inside the objective function. This 
strategy leads the potential solutions inside the feasible area 
with higher efficiency compared with other nonlinear solvers 
in the point of computational time.

A perturbation factor ( � ) is defined as the nonlinear solver 
program inside the feasible area via penalizing solutions close 
to the boundaries. The movement of the selected solutions 
toward the boundaries will increase the perturbation factor. 
Then, the feasible region center is selected if the perturbation 
factor is very large. On the other hand, the optimal solution is 

(5)T =
�

+,−,×,÷, 1∕x, x2, x3,
√

x, 3
√

x
�

traced out of the central path with the small perturbation fac-
tors. Then, reducing the perturbation factor at every iteration 
leads to a smooth curve for the central path. This mentioned 
method is accurate and extremely intense in the point of com-
putational load. Then, Newton’s method is employed to reduce 
the computational load of the solver in an approximation of the 
central path of the nonlinear programming. The logarithmic 
interior-point function is used as:

The interior-point is used mostly in the solution of the 
week-known optimal power flow problems. In optimal power 
flow problems, the goal is to extract the optimal solution of a 
power network using reliability and speed. In order to solve the 
nonlinear programming, the general form of the optimization 
can be defined as follows:

The equations are modified using the slack variables con-
vergence properties, Karush–Kuhn–Tucker conditions, and 
perturbation factor as:

The nonlinear equations are solved iteratively using New-
ton’s methods. Initially, Δx and Δ�h are determined by reduc-
ing the linear equations. Then, slack variables Δs and corre-
sponding multipliers Δ�g are calculated using:

The perturbation factor μ can be extracted via the pri-
mal–dual distances as follows:
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where � , pdad, and niq are the optimal solution trajectory, 
the average distance of the primal–dual and inequality con-
straints. It should be noted that � varies from 0 to 1, while 
� = 0 refers to the affine-scaling direction, and � = 1 uses 
to centralization direction.

4 � Results and discussions

The presented method in Sect. 3 consists of two main mod-
els, including GP and the interior point method. The GP 
model is designed and trained using the captured datasets 
via the GPLAB toolbox of MATLAB developed by S. Silva 
[41]. It is used to extract the mathematical model of the 
investigated system. Then, the interior point method is 
implemented using the fmincon of MATLAB software based 
on the extracted mathematical model using GP.

In order to evaluate the proposed methodology:

1.The first contribution of the work related to the extrac-
tion of the mathematical models using GP has been com-
pared with the common previous methods, including DT, 
SVR, Taguchi, and MLP, to show the efficiency of the 
proposed method in the point of accuracy and extraction 
of the full mathematical model.
2.The second step extracts the optimal process parameters 
using the interior point method. It has been compared 
with GA as the most common phrase of the meta-heu-
ristic method. The accuracy is in the acceptable range, 
while the computational load of the interior point method 
is extremely lower than the GA method.

A genetic equation was developed to determine the rela-
tionship between input molding parameters and output cost 
function in the injection-molding process of thin-walled 
polypropylene. The best genetically reached model consid-
ering mentioned arithmetic functions in Eqs. (1–2) using 
mathematical operation (+ , − , × and /), exponential, root, 
and trigonometric functions were presented as follows:

where B , C , D, and E are filling time (s), part cooling time 
(s), holding pressure time (s), and melt temperature (○C), 
respectively. Equations (1–2) are the complicated version of 
the extracted GP-based prediction model of the cost function 
concerning the process parameter. This model is named GP1 
in the rest of the paper.

In addition, the simpler mathematical model (named 
GP2) is extracted via the GP using mathematical operation 
(+ , − , × , and /), exponential, and root as follows:

Also, other methods, including DT, SVR, and MLP, are 
used to estimate the cost function value in Eqs. (1–2). The 
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Table 7   The obtained results 
using different sets of process 
parameters via FEM, DT, SVR, 
MLP, and GP

No FEM DT SVR MLP GP1 GP2

1 0.596408 0.596408 0.380699 0.530517 0.595215 0.594126
2 0.439221 0.360508 0.408138 0.469188 0.388819 0.471308
3 0.455717 0.50603 0.443785 0.37309 0.426531 0.398435
4 0.412622 0.396763 0.401215 0.3567 0.428249 0.428183
5 0.518273 0.50603 0.469935 0.482573 0.477912 0.470327
6 0.248996 0.270969 0.237258 0.242054 0.322005 0.262358
7 0.299922 0.260487 0.265766 0.276254 0.30638 0.262138
8 0.277504 0.260487 0.444363 0.27174 0.235528 0.282871
9 0.544101 0.50603 0.462434 0.442836 0.531909 0.522862
10 0.393796 0.411676 0.370042 0.393816 0.411704 0.434685
11 0.338046 0.360508 0.400146 0.485575 0.333874 0.316113
12 0.304256 0.360508 0.480591 0.419514 0.367664 0.343432
13 0.429557 0.411676 0.24525 0.488599 0.439761 0.399329
14 0.380903 0.396763 0.382566 0.263218 0.336655 0.352289
15 0.292943 0.270969 0.276423 0.38338 0.2972 0.308768
16 0.204034 0.260487 0.452355 0.275405 0.242806 0.23847
17 0.43997 0.50603 0.255416 0.520022 0.460191 0.486725
18 0.190632 0.260487 0.274064 0.221392 0.171846 0.189113
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estimation of a cost function based on Eqs. (1–2) using FEM, 
DT, SVR, MLP, GP1, and GP2 are presented in Table 7. The 
best-estimated value for each trial in comparison with FEM 
is shown in the bold mod. Based on the represented results 
in Table 7, the prediction power of the MLP and GP1 during 
the training process is equal to 3-times best estimations of 
the cost function. However, the traditional methods, includ-
ing DT and SVR methods, reach the weakest power of cost 
function estimation during the training process of the net-
work. It should be mentioned that the highest accurate model 
should be selected based on the represented results during 
the testing process of the network, as the model should be 
used for all possible situations. Our proposed GP models 
(including GP1 and GP2) are the most accurate in predicting 
the cost function value during the testing process, with five 
times best value extraction out of 6 times trials.

In addition, the accuracy of obtained methods including 
DT, SVR, MLP, GP1, and GP2 using mean square error 
(MSE), root means square error (RMSE), normalized root 
means square error (NRMSE), and correlation coefficient 
(CC) are given in Table 8. Based on the represented result, 
the GP2 is the best accurate model among others, with the 
lowest MSE, RMSE, mean of error, variation of error, and 
higher CC.

Figure 9 shows the calculated objective function value 
based on Eqs. (1–2) using FEM, DT, SVR, MLP, GP1, and 
GP2. Based on the represented results in Fig. 9, CC between 
the actual value (using FEM) and predicted value via GP1 
improved by 2.07%, 70.59%, and 20.19% compared to those 
of DT, SVR, and MLP, respectively. Then, GP1 can reach 
better results while representing the mathematical model 
used in a real-time application with a little computational 
load. In addition, the CC of GP2 is 0.78% higher than GP1.

In addition, Fig. 10 shows the error between the calcu-
lated objective function between the target (via FEM) and 
the predicted value (via DT, SVR, MLP, GP1, and GP2). 
Based on the represented results in Fig. 10, the RMSE of 
predicted objective value using GP is 16.30%, 71.29%, and 
53.95% better than DT, SVR, and MLP models. In addi-
tion, GP2 is more accurate than GP1, with 25%, 8.14%, 
26.89%, and 8.19% lower MSE, RMSE, mean error, and 
STD, respectively.

Figure 11a–d shows the regression of the investigated 
method in this study, including DT, SVR, MLP, GP1, and 
GP2, during the training and testing processing of the net-
works, respectively. It shows the acceptable accuracy of 
using GPs compared to other methods as the most accu-
rate method in the point of higher regression. The GP mod-
els, including GP1 and GP2, are the most accurate models 
among the investigated models, including DT, SVR, and 
MLP. Among the previously studied models (including DT, 
SVR, and MLP), it should be noted that MLP is the most 
accurate model. However, the extracted MLP model has 
some short come. Firstly, the proposed model is Blackbox. 
The information inside the box is complicated. Secondly, 
based on the deepness of the MLP structure, the model gets 
computationally heavy. It is the biggest disadvantage of this 
model against its real-time applicability.

Table 8   The obtained results using different sets of process param-
eters via FEM, DT, SVR, MLP, and GP

Method MSE RMSE Mean error STD CC

DT 0.0017 0.0411  − 0.0076 0.0416 0.9325
SVR 0.0144 0.1198 0.0065 0.1231 0.2799
MLP 0.0055 0.0747  − 0.0072 0.0765 0.7596
GP1 0.0012 0.0344  − 4.0817 × 10−4 0.0354 0.9518
GP2 0.0009 0.0316 2.984 × 10−4 0.0325 0.9592

Fig. 9   The calculated objective 
function using FEM (Target), 
DT, SVR, MLP, GP1, and GP2
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However, the main novelty of this study is the lower com-
putational load of the system compared to the neural net-
work-based models. The computational time for calculation 
of the cost function in the injection-molding process is eval-
uated using the tic/toc function of MATLAB, and the results 
show that the average computational time of 18 trials using 
DT, SVR, MLP, GP1, and GP2 is 0.0560, 0.0445, 0.4859, 
0.0383, and 9.4710 × 10−4 (seconds), respectively. It proves 
the efficiency of the proposed GP-based prediction method 
in handling the real-time application computational com-
plexity even in the presence of lower specification PCs. As 
it is obvious, the simplicity of the GP2 model in comparison 
with the GP1 model can decrease the computational time 
of the model from 0.0383 to 9.4710 × 10−4 (seconds). Also, 
MLP is the highest computationally expensive model, with 
0.4859 (seconds) in each iteration. It should be noted that 
the code has been tested using a PC with Intel(R) Core(TM) 
i7-9007 CPU @ 3.60 GHz.

In the next step, the extracted mathematical model is 
solved using the interior point method, and the results are 
reported in Fig. 12a–d. Figure 12a, b shows the selected 
optimal solution and the convergence plot using the fmin-
con function of MATLAB, which is terminated after 20 
iterations for the GP1-based prediction model, respec-
tively. Also, Fig. 12c, d shows the selected optimal solu-
tion and the convergence plot using the fmincon function 
of MATLAB, which is terminated after 20 iterations for 
the GP2-based prediction model, respectively. Then, the 
selected optimal solution parameters using GP1 model are 
filling time = 0.9944 (seconds), part cooling time = 4.300 
(seconds), holding pressure time = 9.9363 (seconds), and 
melt temperature = 256.0398 (○C). In addition, the selected 
optimal process parameters are filling time = 0.9944 (sec-
onds), part cooling time = 4.300 (seconds), holding pressure 
time = 9.9363 (seconds), and melt temperature = 256.0398 

(○C) using the GP2 model, which is extracted via fmincon 
function of MATLAB.

This study’s contribution was to propose the appropriate 
model to predict the optimal molding process parameters 
without facing the higher computational load, which is com-
mon in neural networks and meta-heuristic methods. Also, 
the results prove the acceptable accuracy of the proposed 
model using GP and fmincon compared to previous models, 
including DT, SVR, and MLP.

5 � Conclusion

In order to reduce the defects in the injection molding process, 
a quality evaluation model consisting of Taguchi, AHP, and 
SolidWorks plastics was applied to evaluate the optimum pro-
cess and geometric parameters. According to the simulation 
results, the proposed quality evaluation model can establish 
injection molding process parameters that are efficient and 
geometrically accurate. Previously, DT, SVR, and MLP mod-
els are investigated in extracting optimal process parameters of 
the injection-molding process as traditional (DT and SVR) and 
neural network (MLP) models. However, the accuracy of the 
traditional model, including DT and SVR, is not appropriate. 
Also, the neural network-based models are computationally 
expensive regarding the deepness of the network. In addition, 
the extracted neural network-based model is like a Blackbox 
without any knowledge from inside of the function. In this 
study, the lower computational load is targeted to extract the 
optimal process parameters of the injection-molding process. 
Two GP-based models are trained and extracted with the 
definition of mathematical operation (+ , − , × , and /), expo-
nential, root, and with/without trigonometric functions called 
GP1 and GP2, respectively. The GP-based mathematical 
model is extracted using the GPLAB toolbox of MATLAB. 

Fig. 10   The error of the calcu-
lated objective function between 
the target (via FEM) and 
predicted value (via DT, SVR, 
MLP, GP1, and GP2)
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The proposed GP1 and GP2 prove the higher efficiency com-
pared with the DT, SVR, and MLP models in point of accu-
racy with lower MSE, RMSE, and higher CC. Also, the lower 
computational time of the GP2-based prediction model is the 
most interesting discovery of this study. In the next step, the 
proposed mathematically based prediction models, includ-
ing GP1 and GP2, are solved using the fmincon function of 

MATLAB software interior point method. The extracted solu-
tions are tested in SolidWorks Plastics, and the results show the 
lower objective functions using the extracted optimal process 
parameters with higher efficiency. As a future study, the other 
highly advanced shape of machine learning methods as well as 
meta-huerestic optimization can be employed to increase the 
efficiency of the model [42–47].

Fig. 11   The regression between 
the actual objective function 
value via FEM and predicted 
value using (a): DT; (b): SVR; 
(c): MLP; (d): GP1; (e): GP2
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