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Abstract
In this work, machine learning approach based on polynomial regression was explored to analyze the optimal processing 
parameters and predict the target particle sizes for ball milling of alumina ceramics. Data points were experimentally collected 
by measuring the particle sizes. Prediction interval (PI)-based optimization methods using polynomial regression analysis 
are proposed. As a first step, functional relations between processing parameters (inputs) and quality responses (outputs) are 
derived by applying the regression analysis. Later, based on these relations, objective functions to be maximized are defined 
by desirability approach. Finally, the proposed PI-based methods optimize both parameter points and intervals of the target 
mill for accomplishing user-specified target responses. The optimization results show that the PI-based point optimization 
methods can select and recommend statistically reliable optimized parameter points even though unique solutions for the 
objective functions do not exist. From the results of confirmation experiments, it is established that the optimized parameter 
points can produce desired final powders with quality responses quite similar to the target responses.

Keywords Alumina · Wet ball mill · Machine learning · Polynomial regression analysis · Prediction interval · Parameter optimization

1 Introduction

Machine learning (ML) methods have accelerated the scien-
tific advancement in recent times since they are capable of 
analyzing of large amounts of data (big data), and thus, they 
can select the optimal processing parameters more precisely. 
Due to their longer cycles and low efficiencies, traditional 
methods, such as the empirical trial and error methods, 
are unable to keep pace with the development of material 
analysis and design. Accordingly, due to their low compu-
tational costs and short development cycles, ML methods 
coupled with powerful data processing and high prediction 
performance are widely used. ML methods have been suc-
cessfully applied in various fields including glasses [1–5], 
ceramics [6, 7], biomaterials [8], and material science [1, 4, 

9, 10] for the prediction of various mechanical properties, 
kinetic properties, thermal resistance properties, and many 
more. These ML methods demonstrated their efficacy by the 
way the input data is processed and analyzed quantitatively. 
ML methods are successfully applied for the discovery of 
high-entropy ceramics [11] and alloys [12]. And also, for the 
prediction of permittivity for microwave dielectric ceram-
ics [13], the melting temperature of ultra-high temperature 
ceramics [14], and the bending strength of silicon nitride 
ceramics [15].

Reliable, robust, and accurate experimental input data 
is essential for ML since many methods are based on 
supervised learning approaches, in which the models are 
trained properly through the input data. It is also possible 
to predict the target values with a great accuracy through 
these ML methods, and therefore, selection of appropriate 
method is very important. Regression models are capable 
of predicting continuous outputs and are generally trained 
by minimizing a squared error loss function of a training 
data set. Regression-based ML methods have been applied 
efficaciously on different materials for the optimization and 
prediction of various properties [2, 3, 6–8]. For instance, 
Yang et al. [2] predicted the Young’s modulus of silicate 
glasses by combining ML with high-throughput molecular 
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dynamics. The dissolution kinetics of silicate glasses by 
topology-informed ML was predicted by Liu et al. [3]. And, 
interfacial thermal resistance between graphene and hexago-
nal boron nitride was predicted by Yang et al. by artificial 
neural network (ANN) models [6]. However, ML methods 
have been applied very rarely to address the issues in the 
field of ceramics ball milling.

Ball mill is one of the most popular comminution 
machines used to produce desired reduced particle sizes 
and particle size distributions (PSDs) of starting pow-
ders [16–18]. It has been widely applied for fine grinding 
of materials in various fields including ceramics, mineral 
processing, and electronics. Ball milling in general and wet 
ball milling in particular is a complex process governed by 
various processing parameters such as slurry amounts [19], 
powder and ball loadings [20], milling speeds and times [21, 
22], container and ball sizes [23], and so on; the quality of 
produced powders also depends on the types and properties 
of starting powders. Therefore, optimizing these processing 
parameters is absolutely needed in ceramics processing to 
achieve user-specified target values.

Many of present-day industrial applications demand 
comprehensive theoretical simulations before experimental 
design. Therefore, for the optimization of engineering manu-
facturing processes, statistical experiment design techniques 
(e.g., Taguchi method and response surface method (RSM)) 
and computer modeling techniques such as ANN and genetic 
algorithms (GA) have been used. Numerous studies have 
been made to optimize input parameters of ball milling pro-
cesses for different materials including  TiO2 [24], WC–Co 
[25], WC–MgO [26], zeolite [27], calcite [28], refractory 
ores [29, 30], and Al 2024 alloy powders [31]. Hou et al. 
[24] integrated the parameter design of the Taguchi method, 
RSM and GA and applied to optimize the milling process 
parameters for titania nanoparticles. Patil and Anandhan [32] 
employed Taguchi method to analyse the effect of planetary 
milling of fly ash and analysis of variance (AVOVA) was 
used to decide the effect of significance of input parameters. 
Central composite design (CCD), a standard RSM designed 
experiment, was implemented by Erdemir [33] to determine 
the effects of high energy milling parameters for micro and 
nano boron carbide powders. The adequacy of mathematical 
models and the significance of the regression coefficients 
were analyzed using ANOVA. Petrovic et al. [34] optimized 
the ball milling parameters for  TiO2–CeO2 nano powders 
through RSM by utilising CCD. Regression analysis showed 
good agreement of experimental data with second-order 
polynomial model. Taguchi methodology was used by Hajji 
et al. [35] for the mechanosynthesis of hydroxyfluorapatite 
using planetary ball milling. Recently, Santosh et al. [36] 
optimized the mill parameters by carrying out systematic 
design experiments on the selected low-grade chromite ore. 
For this purpose, stirrer speed, grinding time, feed size, and 

solids concentration were varied as per CCD design. How-
ever, these studies have several limitations; for instance, 
most studies focused on optimizing milling parameters using 
only one quality response (mostly median particle size, d50). 
If, in addition to the d50, the shape of PSDs is also consid-
ered as quality responses, multiple response optimization 
(MRO) problems should be dealt with. The methods based 
on the main effect plots cannot handle the MRO problems 
in which the trade-off between multiple responses should 
be treated. And also, most studies had little regard to solve 
such optimization problems in ball milling that desired target 
values for quality responses are set up. Main effect plots can 
maximize or minimize quality responses but cannot mini-
mize the differences between the response values and their 
target values. Moreover, very few studies have attempted to 
optimize both milling parameter points and their intervals. 
The optimized parameter intervals can help to operate the 
target mill more flexibly by considering process uncertain-
ties caused by measurement errors for quality responses, 
setting errors of processing parameters, and errors occurred 
by omitting uncontrollable factors (e.g., temperature and 
humidity).

This paper proposes prediction interval (PI)-based opti-
mization methods for optimizing a wet ball mill using 
polynomial regression analysis. The aim of the proposed 
methods is to optimize both parameter points and intervals 
of the target mill by solving such MRO problems that user-
specified target values are set up for some quality responses. 
After deriving the regression functions from the collected 
dataset and defining objective functions, the proposed PI-
based optimization methods were applied for optimizing 
both parameter points and intervals of the target mill. To 
verify the effectiveness of the optimized parameter points, 
confirmation experiments were also performed several 
times. Herein, we report on the applicability of polynomial 
regression-based ML approach for ball milling of alumina 
ceramics. Experimental data points were collected system-
atically via particle size analysis. Using this model, the opti-
mal processing parameters can be selected and the response 
values can be predicted based on the values of processing 
parameters. In particular, a quantitative analysis of the fac-
tors affecting the particle size was conducted. Although this 
study focuses on the ball milling of alumina ceramics, the 
proposed new approach reported could be applied for other 
ceramic materials as well.

2  Experimental details

The five processing parameters (inputs) and the three qual-
ity responses (outputs) of the target mill are summarized 
in Table  1.  Al2O3 powders (AES-11, purity of 99.9%, 
d50 = 0.7 μm, d90 = 1.96 μm, Sumitomo Chemical, Japan) 
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were used as starting powders. The value of d50 (y1), and 
the values of width and skewness (y2 and y3) reflecting the 
shape of PSDs are employed as quality responses to assess 
milled alumina powders. The volume percent of slurry (x1), 
solid content (x2), milling speed (x3), milling time (x4), and 
ball size (x5) are considered as key processing parameters 
affecting these responses. In this paper, the proposed PI-
based optimization methods are applied to the same experi-
ment dataset used in our recent publication [37]. Except for 
the milling time (x4) and the ball size (x5), the ranges and 
levels of the x1, x2, and x3 were set up, and fifteen times 
milling experiments were designed by CCD. The same set 
of the milling experiments (i.e., the fifteen times experi-
ments) was repeated with three different ball sizes (i.e., 3, 
5, and 10 mm); the total number of conducted experiments 
were 45 (= 15 × 3). At each experiment, milling was carried 
out for 24 h, and after 4, 8, 12, and 24 h from the start of 
milling, the values of the quality responses were measured 
and calculated. The total of 180 (= 45 × 4) data pairs were 
prepared, each of which consists of the setting values of the 
five milling parameters (inputs) and the measured values of 
the three responses (outputs) (see supplementary informa-
tion). More experimental details about the ball milling and 
processing parameters can be found elsewhere [37].

Figure 1 summarizes the procedure for the proposed PI-
based optimization methods, which is roughly divided into 

preliminary and optimization phases. In the preliminary 
phase, first, functional relations ŷl(�) , l = 1,…, L, between p 
inputs (i.e., processing parameters) and L outputs (i.e., qual-
ity responses) are derived by applying the regression analy-
sis to an experimental dataset {(�i ∈ ℜp;�i ∈ ℜL)}n

i=1
 . Sec-

ond, based on the ŷl(�) , importance values of p inputs for 
each output are estimated by Monte Carlo (MC)-based 
method; the importance matrix �imp. ∈ ℜL×p that consists of 
the estimated importance values can be employed to prior-
itize processing parameters and to optimize parameter inter-
vals. Third, objective functions D(x) to be maximized for 
solving MRO problems are defined by desirability approach. 
In the optimization phase, first, the proposed point optimiza-

tion method is applied to D(x) for obtaining K' optimized 
parameter points {�∗

(1)
, ..., �∗

(K�)
} to be recommended for the 

users (e.g., process operators and engineers). After that, the 
proposed interval optimization method is used to find upper 
and lower bound vectors �∗

LB
= [x∗

LB,1
, ..., x∗

LB,p
]T  and 

�∗
UB

= [x∗
UB,1

, ..., x∗
UB,p

]T that can define parameter intervals 
[x∗

LB,j
, x∗

UB,j
] , j = 1,…, p, enclosing an optimized point 

x*∈ {�∗
(1)
, ..., �∗

(K�)
}.

3  Polynomial regression analysis

Second-order polynomial regression analysis [29, 38–40] 
has been popularly used to optimize processing parameters 
in various industrial fields including powder processing 
using ball milling, since it can construct highly interpret-
able regression models that can appropriately capture the 
nonlinearities contained in such experimental datasets with 
relatively low model complexity. For example, RSM was 
employed by Costa and Garcia [41] to optimize the effi-
ciency of a refrigeration cycle demonstration using MRO 
approach. Mostafanezhad et al. [42] analysed the formability 
of aluminium in two-point incremental forming process by 
employing RSM. Parida et al. [43] employed RSM with full 

Table 1  Five processing parameters x1,…, x5 and three quality 
responses y1,…, y3 of target mill

Symbol Variable

x1 Volume percent of slurry (vol%)
x2 Solid content (wt%)
x3 Milling speed (%)
x4 Milling time (hour)
x5 Ball size (mm)
y1 Median particle size (d50)
y2 Width of PSD
y3 Skewness of PSD

Fig. 1  Procedure for the proposed PI-based optimization methods for optimizing parameter points and intervals
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factorial design for the modelling and analysing the response 
parameters in the case of reduction of emissions in a vari-
able compression ratio engine. RSM based quadratic models 
have been established between the parameters and proposed 
characteristics by Yaliwal et al. [44] in the case of biodiesel-
producer gas operated compression ignition engine.

Functional relations between p inputs x1,…, xp and lth 
output yl (l = 1,…, L) are formulated by the regression analy-
sis as follows [37]:

where εl is an error term,� l
0
 is an intercept, and � l

j
,� l

jk
 , and � l

jj
 

are regression coefficients associated with linear, interaction, 
and quadratic terms, respectively. In Eq. (1), the total num-
ber of coefficients to be estimated is p' = 1 + 2p + p(p − 1)/2. 
Let yl = [y1l,…, ynl]T ∈ ℜn and Z = [z1,…, zn]T ∈ ℜn×p� be the 
output vector that consists of n observations for lth output 
and the design matrix, respectively; the ith row of Z is 
�T
i
= �(�i)

T =[1, xi1,…, xip, xi1xi2,…, xi(p−1)xip,…, x2
i1
,…,x2

ip
 ], 

where �(⋅) ∶ ℜp
→ ℜp� . Without loss of generality, it can be 

assumed that the values of all inputs x1,…, xp have been 
standardized to be in the range [− 1, 1]. The coefficient vec-
tor �l ∈ ℜp� composed of the p' coefficients can be estimated 
by the method of least squares as follows:�̂l = (�T�)−1�T�l . 
An unbiased estimator for the standard deviation ��l of the 
εl is sl = 

�
1

n−p�

∑n

i=1
(yil − ŷil)

2 , where ŷil = �T
i
�̂l , i = 1,…, n. 

The standard error (SE) of the j'th component 𝛽 l
j′
 in �̂l is 

SE(𝛽 l
j�
) = sl

√
(�T�)−1

j�j�
 , j' = 1,…, p', where (�T�)−1

j�j�
 is the j'th 

diagonal element of the matrix (ZTZ)−1. The t-statistic used 
to test the statistical significance of the j'th term in the vector 
� ∈ ℜp� is calculated as tl

j�
= 𝛽 l

j�

/
SE(𝛽 l

j�
) , and it follows the 

t-distribution t(n − p') with degree of freedom n − p'. The p 
value of tl

j′
 is defined as Pr(|T| > tl

j�
) , where T ~ t(n − p'); the 

lower the p value, the higher the statistical significance of 
the j'th term in z. In this paper, the terms with p values 
smaller than 0.1 are regarded to be statistically significant.

The output of the lth regression function in Eq. (1) for 
a new input vector xnew = [xnew,1,…, xnew,p]T can be calcu-
lated as ŷl(�new) = �(�new)

T �̂l = �T
new

�̂l , and its 100(1 − α)% 
PI,[PIl

LB
(�new), PIlUB(�new)] , is calculated as

where α is significance level for PI, and t1−α/2(n − p') is the 
1 − α/2 percentile of the t distribution t(n − p').

(1)

yl = fl(�|�l) + 𝜀l = 𝛽 l
0
+

p∑
j=1

𝛽 l
j
xj +

∑
j<k

𝛽 l
jk
xjxk +

p∑
j=1

𝛽 l
jj
x2
j
+ 𝜀l

(2)

PIl
LB
(�new) = ŷl(�new) − t1−𝛼∕2(n − p�)sl

√
1 + �T

new
(�T�)−1�new

PIl
UB
(�new) = ŷl(�new) + t1−𝛼∕2(n − p�)sl

√
1 + �T

new
(�T�)−1�new

3.1  MC‑based method for estimating importance 
values of inputs

In this work, the following Monte Carlo (MC)-based method 
is used to estimate importance values of p inputs xj (j = 1,…, 
p) for the lth output yl (l = 1,…, L); this is a modified version 
of the method presented in [45, 46]. First of all, after gener-
ating N uniform random vectors x(1),…, x(N) with p dimen-
sions, these vectors are substituted into the lth regression 
function ŷl(�) = fl(�|�̂l) to obtain N output values 
y
(1)

l
, ..., y

(N)

l
 , and their median yl,med is calculated. The random 

vectors can be partitioned into two sets as follows:Xl
larger

=

{x(i)| ŷ(i)
l

 ≥ yl,med, i = 1,…, N} and Xl
smaller

={x(1),…, 
x(N)}\Xl

larger
 . And then, two empirical cumulative distribution 

functions (ECDFs),Fl
larger

(xj) and Fl
smaller

(xj) for each input xj 
are estimated based on the jth elements of the vectors in 
Xl
larger

 and Xl
smaller

 , respectively. In [45, 46], Kolmogorov 
Smirnov distance between Fl

larger
(xj) and Fl

smaller
(xj) was 

regarded as the importance value of the jth input xj for the 
lth response yl. In this paper, to estimate the importance 
value more precisely, the total area of the region(s) sur-
rounded by the two ECDFs are calculated by numerical inte-
gration. Finally, the calculated total area is regarded as the 
importance value of xj for yl. Finishing the above procedure, 
importance matrix �imp. ∈ ℜL×p composed of the estimated 
importance values is returned.

4  Optimization of parameter points 
and intervals

4.1  Desirability approach

Desirability approach [47–49] has been commonly employed 
for defining objective functions for MRO problems in which 
multiple quality responses with different ranges are handled. 
Depending on whether a response yl should be minimized, 
maximized, or as close as possible to a target value yl,target, 
different desirability functions are used, and these functions 
transform the output value ŷl(�) to have the range of 0 to 1. 
If there are user-specified target values for yl, the following 
is used as its desirability function:

where yl,min and yl,max are the lower and upper limits of yl, 
respectively, both of which can be obtained from the obser-
vations y1l,…, ynl; yl,target ∈[yl,min, yl,max] is a target value for 

(3)dl
�
ŷl(�)

�
=

⎧
⎪⎪⎨⎪⎪⎩

0 if ŷl(�) < yl,min�
ŷl(�)−yl,min

yl,target−yl,min

�s

if yl,min ≤ ŷl(�) ≤ yl,target�
ŷl(�)−yl,max

yl,target−yl,max

�t

if yl,target ≤ ŷl(�) ≤ yl,max

0 if ŷl(�) > yl,max
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yl, and s and t are design values that determine the shape of 
Eq. (3). If the lth response should be minimized, the follow-
ing desirability function is used:

The desirability function used when the response should 
be maximized is similar to Eq. (4), and thus omitted due to 
space constraints. In this paper, both design values of s and 
t in Eqs. (3) and (4) are set to 1.

The following overall desirability function D(x), a 
weighted geometric mean of dl(∙), l = 1,…, L, is used as 
objective functions for MRO problems:

where wl is a weight value assigned to lth response; in this 
paper, all weight values are set to 1. Depending on the 
priority of quality responses, their weight values can be 
differently set up. For example, if making the value of d50 
(y1) to be closer to its target value is more preferable than 
minimizing the value of width (y2), the value of w1 should 
be set to be larger than the value of w2 (e.g., w1 = 5 and 
w2 = 1).

4.2  PI‑based method for optimizing parameter 
points

It should be noted that unique solutions do not exist in such 
MRO problems that some quality responses want to be equal 
to user-specified target values. That is, whenever executing 
optimization algorithms (e.g., quadratic programming and 
particle swarm optimization (PSO)) to maximize D(x), dif-
ferent solutions are discovered each time. It is, therefore, 
essential to decide which of these different solutions to be 
selected and then recommended for users. Among these dif-
ferent solutions, the proposed PI-based point optimization 
method (Fig. 2) selects statistically significant solutions 
(i.e., optimized parameter points) based on the lengths of 
their PIs. Here, it is assumed that as the length of PIs for a 
solution becomes shorter, its uncertainty is reduced from a 
statistical viewpoint. The proposed method is an advanced 
version of the method in [50] so that it can be also applicable 
for MRO problems, and the quality of the different solutions 
is quantified in terms of PIs instead of confidence intervals. 
PIs for optimized parameter points need to be calculated 
beforehand to optimize their parameter intervals, as will be 
described in Section 5, PIs are also helpful to interpret the 

(4)

dl
�
ŷl(�)

�
=

⎧
⎪⎪⎨⎪⎪⎩

1 if ŷl(�) < yl,min�
yl,max − ŷl(�)

yl,max − yl,min

�t

if yl,min ≤ ŷl(�) ≤ yl,max

0 if ŷl(�) > yl,max

(5)D(�) =
��L

l=1
dl
�
ŷl(�)

�wl

�1∕
∑

l wl

prediction results of quality responses and the results of con-
firmation experiments.

In the proposed method in Fig. 2, firstly, K different solu-
tions �∗

k
 , k = 1,…, K, are obtained by applying an optimiza-

tion algorithm to maximize D(x) K times. To do this, any 
optimization algorithm (derivative-based or derivative-free) 
can be employed. In this work, PSO [51–53], a well-known 
global optimization algorithm, was applied to find these 
solutions; the ‘particleswarm’ MATLAB function built into 
Global Optimization Toolbox can be used to maximize D(x). 
The detailed explanations for PSO algorithm are redundant, 
so they are omitted due to space constraints; for more details 
of PSO, readers are invited to see Refs. [51–53]. After find-
ing the K solutions, the lengths of L PIs,PIl

k
=PIl

UB
(�∗

k
)−

PIl
LB
(�∗

k
) , l = 1,…, L, for all k are calculated using Eq. (2); 

the upper and lower limits yl,max and yl,min of yl are used to 

Fig. 2  Flowchart of the proposed PI-based method for optimizing param-
eter points
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standardize the values of PIl
k
 . Finally, PIk, k = 1,…, K, 

obtained by summing all the standardized values of PIl
k
 , are 

sorted in ascending order (i.e., PI(1) < PI(2) < ⋯ ), and then the 
K' solutions �∗

(1)
, ..., �∗

(K�)
 relevant with the first K' PIk are 

returned.

4.3  PI‑based method for optimizing parameter 
intervals

To deal with the process uncertainties, in addition to an 
optimized parameter point x* = [x∗

1
,…,x∗

p
]T, it is also neces-

sary to obtain statistically meaningful optimized parameter 
intervals [x∗

LB,j
, x∗

UB,j
] , j = 1,…, p, enclosing the point x*, 

i.e.,x∗
j
∈[x∗

LB,j
, x∗

UB,j
],∀j . It is desirable that parameter points 

belonging to the input domain restricted by these p intervals 
can achieve similar quality responses with those of x*.

In the p-dimensional input space, an hyper-rectangle (i.e., 
orthotope) that is centered at x* and has  2p vertices vm ∈ ℜp , 
m = 1,…,  2p, can be imagined. Figure 3 shows the example of 
the hyper-rectangle with 8 (=  23) vertices defined in a three-
dimensional input space. For each l, while redefining the 
hyper-rectangle by increasing the length of its edges gradu-
ally, one can discover the one defined immediately before any 
of output values ŷl(�m) of all the  2p vertices start to depart 
from the PIs of x*[PIl

LB
(�∗),PIl

UB
(�∗)] . The parameter intervals 

can be easily obtained from the L discovered hyper-rectangles. 
Weight values Wlj(j = 1,…, p, l = 1,…, L) calculated from the 
importance matrix Iimp. can be used to differentially increase 
the length of edges according to the importance values; the 
larger the importance value of xj, the shorter the length of the 
edges in parallel with the jth input direction.

In the proposed PI-based interval optimization method, 
for each l, the hyper-rectangle in which the length of the 
edges in parallel with the jth input direction is 2 × �lWlj are 
firstly defined, where δl > 0 is a small positive increment; 
this can be represented as a Cartesian product of p inter-
vals as follows [54]:×p

j=1
[x∗

j
− �lWlj, x

∗
j
+ �lWlj] , where × is 

the Cartesian product operator. Second, the  2p vertices are 
organized into the vertex set V = {vm ∈ ℜp|m = 1,…,  2p}. 
While increasing the length of the edges, the elements of 
vm that become larger than + 1 (or smaller than − 1) are 
replaced by + 1 (or − 1). The reason for this is that each 
element of input vector x in the regression functions ŷl(�) 
must be located in the range [− 1, 1]. Third, the maximum 
value of δl that makes the outputs ŷl(�m) of all vm to be 
included in the lth PI [PIl

LB
(�∗), PIl

UB
(�∗)] is found by 

slightly increasing the value of δl. Fourth, after finding the 
maximum values of δl,�max

l
 , for all l, the following upper 

and lower bound vectors �l
UB

 and �l
LB

 , are defined:

In Eq. (6), all the components of �l
UB

 and �l
LB

 larger 
than + 1 (or smaller than − 1) must be replaced by + 1 
(or − 1). Based on �l

UB
 and �l

LB
 , l = 1,…, L, the L different 

hyper-rectangles can be defined as:×p

j=1
[xl

LB,j
, xl

UB,j
] , 

l = 1,…, L. It is important to note that the L regions occu-
pied by these L hyper-rectangles can be different from 
each other. Finally, the upper and lower bound vectors 
that can define the overlap between all the L hyper-rec-
tangles are obtained as follows:

(6)
�l
UB

= [x∗
1
+ �max

l
Wl1, ..., x

∗
p
+ �max

l
Wlp]

Tand �l
LB

= [x∗
1
− �max

l
Wl1, ..., x

∗
p
− �max

l
Wlp]

T

Fig. 3  Example of the hyper-
rectangle defined in a three-
dimensional input space
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The vectors �∗
UB

 and �∗
LB

 consist of the upper and lower 
bounds of the optimized parameter intervals [x∗

LB,j
,x∗
UB,j

] , 
j = 1,…, p, for x*, respectively. The statistically meaningful 
optimized parameter intervals [x∗

LB,j
, x∗

UB,j
] can define the 

region of input space that contains the input points satis-
fied with the following property: the output values ŷl(�) of 
all points in the region are included in the PI 
[PIl

LB
(�∗),PIl

UB
(�∗)] of the optimized parameter point x*. In 

other words, the points included in the region defined by 
the optimized intervals can obtain statistically similar 
quality responses with those of the point x*. Owing to this 
property of the optimized intervals, fine-tuning the point 
x* within the region can be permissible. The proposed PI-
based interval optimization method explained so far is 
summarized in Fig. 4.

(7)
�∗
UB

= [minl x
l
UB,1

, ..., minl x
l
UB,p

]Tand �∗
LB

= [maxl x
l
LB,1

, ..., maxl x
l
LB,p

]T

5  Results and discussion

5.1  Results of regression analysis

To derive regression functions between p = 5 inputs and L = 3 
outputs, three full models in Eq. (1) with p' = 21 regression 
coefficients are fitted to the 180 data pairs via the method of 
least squares; all the input values should be standardized to 
belong in the range [− 1, 1] in advance. Since the number 
of data samples are limited, instead of splitting them into 
training and validation sets, entire samples are employed 
to build regression models. To validate their generalization 
abilities, the performance indices in Table 2 will be closely 
examined. In the full models, the order of polynomial (i.e., 
hyperparameter) is set to 2; as described in Section 3, the 
collected dataset by CCD can be thoroughly explained by 
these models. Although not presented in this paper due to 
space constraints, the results of explanatory data analysis 
via scatter plots and main effect plots also indicated that it 

Fig. 4  Flowchart of the proposed PI-based method for optimizing parameter intervals

Table 2  Performance indices 
of full and reduced models for 
three responses

Performance index ŷ
1
(�) ŷ

2
(�) ŷ

3
(�)

Full Reduced Full Reduced Full Reduced

RMSE 0.0131 0.0131 0.135 0.134 0.0205 0.0202
R2 0.753 0.742 0.759 0.747 0.867 0.864
Adjusted R2 0.722 0.722 0.729 0.733 0.851 0.855
F-statistic 24.3 36.7 25 55.7 51.9 97.1
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is proper to set the order of polynomial to be equal to 2. To 
train the models, the “fitlm” MATLAB function in Statistics 
and Machine Learning Toolbox can be used.

After training the three full models, statistically signifi-
cant terms can be identified by testing whether the p val-
ues are smaller than 0.1 or not. The reduced models can be 
obtained by eliminating all the remaining terms except for 
the statistically significant terms from the full models. The 
following regression functions can be derived by refitting 
the reduced models to the 180 data pairs:

where the SEs of the estimated coefficients are presented in 
parentheses at the bottom of them. The regression models in 
Eqs. (8)–(10) will be extensively exploited as follows. First, 

(8)

ŷ1(�) = .6023
(.0031)

+ .0046
(.0013)

x1 + .0078
(.0012)

x2 − .0052
(.0012)

x3 − .0216
(.0014)

x4 + .0083
(.0012)

x5

+ .0047
(.0016)

x1x4 + .0040
(.0014)

x1x5 + .0034
(.0016)

x2x4 + .0048
(.0016)

x4x5

− .0056
(.0023)

x2
1
+ .0043

(.0023)
x2
2
+ .0051

(.0024)
x2
4
+ .0164

(.0026)
x2
5

(9)

ŷ2(�) = 1.725
(.027)

+ .076
(.012)

x1 + .040
(.012)

x2 + .031
(.012)

x3 − .188
(.014)

x4 + .174
(.012)

x5

− .024
(.014)

x2x3 + .060
(.015)

x3x5 + .076
(.025)

x2
4
− .245

(.027)
x2
5

(10)

ŷ3(�) = .3245
(.0048)

+ .0149
(.0019)

x1 + .0097
(.0019)

x2 − .0420
(.0021)

x4 + .0419
(.0018)

x5

+ .0110
(.0022)

x1x5 + .0056
(.0022)

x2x5 + .0038
(.0022)

x3x5

+ .0086
(.0035)

x2
2
− .0066

(.0035)
x2
3
+ .0153

(.0037)
x2
4
− .0069

(.0040)
x2
5

for any setting values of processing parameters, the models 
can calculate the predicted values of quality responses and 
their prediction intervals. Second, based on the regression 
models, response surface and contour plots can be plotted 
to visually understand how the processing parameters affect 
quality responses. Third, the importance values of inputs 
for each output can be quantified by applying the MC-based 
method to the regression functions.

Table 2 lists performance indices such as root mean 
squared error (RMSE), R2, adjusted R2, and F-statistic of 
the full and reduced models. Since the number of coef-
ficients to be estimated is decreased when reducing the 
complexity of the models, the degree of freedom for the 
error term εl (l = 1,…, 3) is increased, and thus the RMSE 
values can be decreased. In the reduced models, the values 
of R2 are smaller than those in the full models, but the 
values of adjusted R2 are larger than or equal to those in 
the full models. This indicates that for the given dataset 
the generalization capabilities of the reduced models are 
better than the full models. In the case of F-statistic, its 
values have become larger after reducing the number of 
the coefficients, and thus it is valid to say that the reduced 
models are more statistically significant.

Figure 5 shows response surfaces and contour plots visu-
alizing the input–output relationships of the reduced model 
ŷ1(�) in Eq. (8); as space is limited, those of ŷ2(�) and ŷ3(�) 
are not presented here. In Fig. 5, two variables at X and Y 
axes are relevant to the interaction terms in Eq. (8);. By 
examining these figures carefully, it is possible to qualita-
tively understand how the two variables interact with each 

Fig. 5  Response surface plots (a–d) and contour plots (e–h) for the reduced model in Eq. (8). For convenience of interpretations, the ranges of X 
and Y axes have been recovered from the range [− 1, 1] to their original ranges
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other for the response. In Fig. 5e–h, as the width of con-
tours become narrower, the change rates of quality responses 
become larger when we move in the orthogonal direction to 
contour lines. As shown in Fig. 5a and e, and Fig. 5c and 
g, in the early stages of milling (i.e., when x4 ≤ 8 h), the 
changes of x1 and x2 have little effect on y1; when the value 
of x4 is equal to 24 h, the value of y1 tends to be proportional 
to the values of x1 and x2. It is also observed that reduction 
rate in y1 deteriorates with increasing the values of x1 and 
x2. In Fig. 5b and f, it can be seen that as the value of x5 
becomes larger, the change of x1 has more effect on the value 
of y1. Figures 5d and h show that the longer the milling time, 
the larger the performance differences with respect to the d50 
between 3 and 10 mm balls.

To estimate the importance values of the five inputs, 
N = 50,000 uniform random vectors x(i) ~ U[− 1,  1]5 are gen-
erated and substituted into Eqs. (8)–(10). Figure 6a–e show 
the histograms of x1,…, x5 associated with the two sets X1

larger
 

and X1
smaller

 , and Fig. 6f–j describe the estimated ECDFs 
F1
larger

(xj) and F1
smaller

(xj) , j = 1,…, 5; the histograms and the 
estimated ECDFs relevant to l = 2 and 3 are omitted due to 
space constraints. Figure 7 depicts bar graphs illustrating the 
importance values of x1,…, x5 for y1,…, y3 estimated based 
on the ECDFs in Fig. 6f–j. As can be seen in Fig. 7a, x4 is 
the most important parameter for changing the value of y1, 
and followed in order by x5, x2, x3, and x1. Figure 7b and c 
indicate that x4, x5, and x1 make the first, second, and third 
largest contributions in determining the values of y2 and y3; 
the importance values of x2 and x3 for y2 are similar to each 
other, but x2 is more important parameter for y3 than x3.

5.2  Results of optimization

After appointing proper desirability function dl(∙), l = 1,…, 
3, to each of the functions in Eqs. (8)–(10)., an overall desir-
ability function D(x) used as an objective function can be 
defined by Eq. (5). Since some desired target values are set 
for the value of the d50 (y1), Eq. (3) is employed for d1(∙); 
in general, width (y2) and skewness (y3) are required to be 
minimized, Eq. (4) is used for d2(∙) and d3(∙).

Table 3 lists the optimization results of applying the 
method in Fig. 2 for maximizing D(x) when the following 
target values were set up for the three responses and the 
parameter value of x5 was constrained to 3  mm: 
y1,target = 0.58 μm, y2,target = “min,” and y3,target = “min.” Here, 
the goal is to find the parameter points that can produce the 
following milled powder: its PSD is centered at the desired 
value of d50, and at the same time, its width and both sides 
are as narrow and symmetrical as possible, respectively. The 
reason why the ball size (x5) was restricted to be 3 mm is that 
it is a discrete input parameter, and thus its optimized values 
without the constrained condition cannot be used in practice. 
In Fig. 2, the values of α, K, and K' are set to 0.01, 100, and 
10, respectively. In Table 3, the optimized parameter points 
and their model outputs are summarized in the second to 
sixth columns and the seventh to ninth columns, respec-
tively; the 99% PIs enclosing the outputs are also presented 
at the bottom of the model outputs. As listed in the table, the 
outputs of �∗

(1)
, ..., �∗

(10)
 are the same or very similar to each 

other, but the optimized parameter values of x∗
2
 and x∗

3
 in �∗

(1)
 

and �∗
(2)

 are quite different from those of others; this is due 
to the fact that since there are infinitely many input points 

Fig. 6  Histograms of x1,…, x5 associated with X1
larger

 and X1
smaller

(a–e) and estimated ECDFs F1
larger

(x
j
) and F1

smaller
(x

j
) , j = 1,…, 5 (f-j). In a–e, for 

convenience of interpretations, the ranges of X axes have been recovered from the range [− 1, 1] to their original ranges
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that can achieve the target value y1,target = 0.58 μm (see 
Fig. 5e), optimization algorithms cannot find a unique solu-
tion. The optimized parameter intervals by the method in 
Fig. 4 with α = 0.01 are presented at the bottom of the 
parameter values in �∗

(1)
 and �∗

(3)
 marked with boldface; the 

upper and lower bound vectors �∗
UB

 and �∗
LB

 for �∗
(1)

 are 
[23.55, 70.00, 70.00, 24.00, 4.70]T and [20.00, 55.09, 61.77, 
19.12, 3.00]T, respectively. Figure 8 shows the contour plots 
of the regression function ŷ1(�) at which the first solution 

�∗
(1)

 and the input region defined by its optimized parameter 
intervals are indicated by red asterisks and dashed black 
lines, respectively. In these plots, it should be noted that the 
model outputs of the input vectors included in the input 
region are very close to y1,target = 0.58 μm. This suggests that 
the optimized intervals allow to know the tolerable setting 
errors of each parameter, and depending on field situations, 
it is also possible to flexibly adjust its values within the 
region. Table 4 summarizes the results of applying the 

Fig. 7  Estimated importance values of x1,…, x5 for a y1: d50, b y2: width, and c y3: skewness

Table 3  (y1,target = 0.58 μm, y2,target = “min,” y3,target = “min”) Optimized parameter points by the method in Fig. 2 and their model outputs. The 
optimized parameter intervals by the method in Fig. 4 are presented at the bottom of the parameter values in �∗

(1)
 and �∗

(3)

Order Optimized parameter point �∗ Model output

x
∗
1

x
∗
2

x
∗
3

x
∗
4

x
∗
5

ŷ
1
(�∗) ŷ

2
(�∗) ŷ

3
(�∗)

1 20.03 63.34 70.00 22.74 3.00 0.580 1.102 0.239
[20.00, 23.55] [55.09, 70.00] [61.77, 70.00] [19.12, 24.00] [3.00, 4.70] [0.544, 0.616] [0.744, 1.460] [0.184, 0.293]

2 20.11 63.48 70.00 22.94 3.00 0.580 1.102 0.239
[0.544, 0.616] [0.744, 1.460] [0.184, 0.293]

3 20.01 52.83 50.00 23.04 3.00 0.580 1.106 0.245
[20.00, 23.42] [50.00, 60.83] [50.00, 57.98] [19.53, 24.00] [3.00, 4.65] [0.544, 0.616] [0.746, 1.465] [0.191, 0.300]

4 20.00 52.81 50.00 23.01 3.00 0.580 1.106 0.245
[0.544, 0.616] [0.746, 1.465] [0.191, 0.300]

5 20.00 52.75 50.00 23.00 3.00 0.580 1.105 0.245
[0.544, 0.616] [0.746, 1.465] [0.191, 0.300]

6 20.00 52.58 50.00 22.97 3.00 0.580 1.104 0.245
[0.544, 0.616] [0.745, 1.464] [0.191, 0.300]

7 20.00 52.58 50.00 22.97 3.00 0.580 1.104 0.245
[0.544, 0.616] [0.745, 1.464] [0.191, 0.300]

8 20.00 52.55 50.00 22.97 3.00 0.580 1.104 0.245
[0.544, 0.616] [0.745, 1.464] [0.191, 0.300]

9 20.00 52.54 50.00 22.96 3.00 0.580 1.104 0.245
[0.544, 0.616] [0.745, 1.464] [0.191, 0.300]

10 20.00 52.43 50.00 22.95 3.00 0.580 1.103 0.246
[0.544, 0.616] [0.744, 1.463] [0.191, 0.300]
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method in Fig. 2 to the optimization problem with the target 
values y1,target = 0.60 μm, y2,target = “min,” and y3,target = “min,” 
and with the equality constraint x5 = 3 mm. As presented in 
the table, although the values of x∗

2
 and x∗

4
 in �∗

(9)
 are mark-

edly different from those in others, all the outputs are the 
same or quite similar. The parameter intervals optimized by 

the method in Fig. 4 are indicated at the bottom of the 
parameter values in �∗

(1)
 and �∗

(9)
.

The productivity of the target mill is directly related 
with such input parameters as solid content (x2), milling 
speed (x3), and milling time (x4) [55]. The solid content 
determines the amount of produced final powders, and 

Fig. 8  Contour plots of ŷ1(�) with �∗
(1)

 in Table 3 and the input region defined by its optimized parameter intervals. For convenience of interpre-
tations, the ranges of X and Y axes have been recovered from the range [− 1, 1] to their original ranges

Table 4  (y1,target = 0.60 μm, y2,target = “min,” y3,target = “min”) Optimized parameter points by the method in Fig. 2 and their model outputs. The 
optimized parameter intervals by the method in Fig. 4 are presented at the bottom of the parameter values in �∗

(1)
 and �∗

(9)

Order Optimized parameter point x* Model output

x
∗
1

x
∗
2

x
∗
3

x
∗
4

x
∗
5

ŷ
1
(�∗) ŷ

2
(�∗) ŷ

3
(�∗)

1 22.00 63.40 50.00 20.67 3.00 0.600 1.219 0.252
[20.00, 26.39] [53.04, 70.00] [50.00, 60.26] [16.00, 24.00] [3.00, 5.00] [0.565, 0.635] [0.863, 1.576] [0.198, 0.306]

2 21.83 64.15 50.00 20.98 3.00 0.600 1.219 0.252
[0.565, 0.635] [0.862, 1.576] [0.198, 0.306]

3 21.73 63.75 50.00 20.62 3.00 0.600 1.218 0.252
[0.565, 0.635] [0.861, 1.575] [0.198, 0.306]

4 21.70 63.83 50.00 20.63 3.00 0.600 1.218 0.252
[0.565, 0.635] [0.861, 1.575] [0.198, 0.306]

5 21.79 64.35 50.01 21.06 3.00 0.600 1.219 0.252
[0.565, 0.635] [0.862, 1.576] [0.198, 0.306]

6 21.79 64.47 50.00 21.15 3.00 0.600 1.219 0.252
[0.565, 0.635] [0.862, 1.576] [0.198, 0.306]

7 21.63 62.90 50.00 20.02 3.00 0.600 1.217 0.252
[0.565, 0.635] [0.860, 1.574] [0.198, 0.307]

8 21.58 63.59 50.00 20.36 3.00 0.600 1.217 0.252
[0.565, 0.635] [0.860, 1.574] [0.198, 0.307]

9 21.62 54.07 50.00 17.20 3.00 0.600 1.193 0.259
[20.00, 24.70] [50.00, 61.32] [50.00, 57.18] [13.93, 20.46] [3.00, 4.45] [0.565, 0.635] [0.835, 1.552] [0.205, 0.313]

10 21.53 63.82 50.00 20.45 3.00 0.600 1.217 0.252
[0.565, 0.635] [0.860, 1.574] [0.198, 0.307]
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milling speed and time are relevant to the amount of elec-
trical energy consumption (i.e., production costs). 
Among the K' = 10 solutions listed in Tables 3 and 4, 
process operators and engineers can select and use appro-
priate solutions in consideration of the productivity. In 
Table 3, to satisfy the target values, and at the same time 
to produce the larger amount of milled powders,�∗

(1)
 or �∗

(2)
 

with higher value of x2 can be used. The values of x2 in 
�∗
(1)

 and �∗
(2)

 are about 10 wt% higher than those of others, 
but all the values of x1 and x4 in Table 3 are extremely 
similar to each other. However, if �∗

(1)
 or �∗

(2)
 is used, the 

container should be rotated with higher milling speed 
(i.e.,x∗

3
 = 70%), and thus the amount of the energy con-

sumption increases. In Table 4, to attain the target values 
and to reduce production time simultaneously,�∗

(9)
 can be 

used; it can save the time by 3.47 h compared to �∗
(1)

 . 
However, the value of x2 in �∗

(9)
 is 9.33 wt% lower than 

that in �∗
(1)

 , and thus the amount of produced powders by 
�∗
(9)

 will be smaller than �∗
(1)

.

5.3  Results of confirmation experiments

To verify the effectiveness of the optimized parameter 
points, confirmation experiments were performed based on 
�∗
(1)

 and �∗
(3)

 in Table 3, and �∗
(1)

 and �∗
(9)

 in Table 4. In these 
experiments, the milling parameters were set up in accord-
ance with the optimized points, the final powders were pro-
duced, and then their three quality responses were measured. 
Considering the process uncertainties, the same experiments 
were repeated four times for each of the above four opti-
mized parameter points.

Tables 5 and 6 list the measured quality responses from 
the four milled powders produced by the optimized points �∗

(1)
 

and �∗
(3)

 in Table 3, respectively; the averaged values of the 
measured responses are also summarized at the last row in 
each table. In these tables, the indices 1, 2, 3, and 4 corre-
spond to the four repeated experiments, respectively. Fig-
ure 9a and b show the PSDs of the four milled powders in 
Tables 5 and 6, respectively. In Table 5, the measured values 
of d50 from the 1st and 2nd powders are 0.603 μm and 

0.604 μm, approximately 0.02 μm higher than its target value 
(i.e., 0.58 μm); their measured values of y2 and y3 are smaller 
than the model outputs ŷ2(�∗(1)) = 1.102 and ŷ3(�∗(1)) = 0.239, 
respectively. The measured values of d50 from 3rd and 4th 
powders are similar with its target value and their values of 
y2 and y3 are also smaller than the model outputs. In Table 6, 
the differences between all the measured values of y1 and its 
target value are less than or equal to 0.013 μm, and the 
smaller values of y2 and y3 than the outputs ŷ2(�∗(3)) = 1.106 
and ŷ3(�∗(3)) = 0.245 have been obtained. Since all the meas-
ured responses in Tables 5 and 6 belong to the PIs in Table 3, 
it can be understood that the procedure in Fig. 1 can achieve 
the statistically reliable optimization results. The average 
values of the responses in Tables 5 and 6 differ in the d50, 
width, and skewness by 0.01 μm, 0.035, and 0.009, respec-
tively; since �∗

(1)
 and �∗

(3)
 get the similar measured responses 

to each other, it seems reasonable to suppose that either one 
can be used to produce the final powder satisfied with the 
target values.

Tables 7 and 8 summarize the measured responses of 
the four powders obtained by �∗

(1)
 and �∗

(9)
 in Table  4, 

respectively. It can be confirmed that all the responses are 
included in the PIs in Table 4. The differences in the aver-
aged values of d50, width, and skewness between Tables 7 
and 8 are 0.008, 0.007, and 0.003, respectively; these are 
negligible taking the process uncertainties into account. 
Figure 10a and b present the PSDs relevant to the four 
powders in Tables 7 and 8, respectively. As can be viewed 
from these figures, the four PSDs measured by the four 
repeated experiments are extremely similar in shape; the 

Table 5  Measured quality responses from four milled powders by �∗
(1)

 
in Table 3

Index y1: d50 y2: width y3: skewness

1 0.603 0.937 0.207
2 0.604 1.031 0.226
3 0.587 1.044 0.237
4 0.581 0.957 0.219
Average 0.594 0.992 0.222

Table 6  Measured quality responses from four milled powders by �∗
(3)

 
in Table 3

Index y1: d50 y2: width y3: skewness

1 0.567 0.951 0.217
2 0.589 1.054 0.237
3 0.593 1.042 0.230
4 0.588 1.060 0.239
Average 0.584 1.027 0.231

Table 7  Measured quality responses from four milled powders by �∗
(1)

 
in Table 4

Index y1: d50 y2: width y3: skewness

1 0.623 1.077 0.243
2 0.632 1.066 0.240
3 0.611 1.098 0.249
4 0.615 1.085 0.244
Average 0.620 1.082 0.244

4304 The International Journal of Advanced Manufacturing Technology (2022) 123:4293–4308



1 3

shape of PSDs shown in each of Fig. 10a and b are also 
quite similar to each other.

6  Conclusions

In this study, ML approach based on polynomial regression 
models was introduced to quantitatively analyze the opti-
mal processing parameters and predict the target particle 
sizes for ball milling of alumina ceramics. Median parti-
cle size, width, and skewness of PSDs for milled powders 
were regarded as quality responses. The volume percent of 

slurry, solid content, milling speed, milling time, and ball 
size were considered as key input parameters to be opti-
mized. PI-based point and interval optimization methods 
using polynomial regression analysis were proposed here. 
After deriving the functional relations between the inputs 
and the responses, and defining objective functions for solv-
ing MRO problems by desirability approach, the proposed 
methods were used to optimize both parameter points and 
intervals for accomplishing user-specified target responses.

The main advantages of the proposed PI-based parame-
ter point and interval optimization methods in Figs. 2 and 
4 can be emphasized as follows. First, most of previous 
studies for solving MRO problems did not provide a way 
to address the situation in which desired target values are 
established on some quality responses so that there is no 
unique solution. This paper proposes the PI-based point 
optimization method in Fig. 2 that can quantify the qual-
ity of different candidate solutions for the MRO problems 
according to their lengths of PIs and then can recommend 
statistically reliable solutions. Second, the previous stud-
ies focused mainly on optimizing parameter points and 
showed little concern for their interval optimization. This 
paper proposes the PI-based interval optimization method 

Fig. 9  PSDs of four milled 
powders in Tables 5 (a) and 6 
(b) (#1, #2, #3, and #4 indicate 
the four different experiments)

(a) (b)

Table 8  Measured quality responses from four milled powders by �∗
(9)

 
in Table 4

Index y1: d50 y2: width y3: skewness

1 0.611 1.079 0.241
2 0.610 1.080 0.244
3 0.611 1.097 0.251
4 0.616 1.099 0.253
Average 0.612 1.089 0.247

Fig. 10  PSDs of four milled 
powders in Tables 7 (a) and 8 
(b) (#1, #2, #3, and #4 indicate 
the four different experiments)

(a) (b)
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in Fig. 4 that can optimize parameter intervals enclosing 
the optimized parameter points in the light of process 
uncertainties. The optimized intervals can help to assess 
tolerable setting errors of processing parameters and to 
fine-tune the optimized points within the input domain 
restricted by the intervals.

The optimization results showed that the proposed point 
optimization method can select and recommend statistically 
reliable optimized parameter points even though unique 
solutions for the objective functions do not exist. These 
results are established by additional confirmation experi-
ments. Compared with the PSDs of starting powders with 
the tails skewed to the right side, those of final powders 
showed more symmetrical shapes; in addition, the final pow-
ders have the similar values of d50 to target values. Finally, 
although this study emphasized on the ball milling of alu-
mina ceramics, the new approach reported herein could be 
applicable for other ceramic materials.

Nomenclature

L: Number of quality responses (inputs); p: Number of 
processing parameters (outputs); yl, xj: lTh output, and jth 
input; ŷl(�): Regression function for lth output yl; ŷl(�new)
: Output of lth regression function for new input vector 
xnew; [PIl

LB
(�new),PI

l
UB
(�new)]:  Prediction interval for 

ŷl(�new);  PIl
k
:   L e n g t h  o f  p r e d i c t i o n  i n t e r va l 

[PIl
LB
(�∗

k
),PIl

UB
(�∗

k
)]; PIk: Total length of L prediction inter-

vals obtained by summing all the standardized values of 
PI1

k
, ...,PIL

k
; �imp. ∈ ℜL×p : Importance matrix that consists 

of importance values of p inputs for L outputs; dl(∙): Desir-
ability function for lth output yl; yl,target: Target value for 
lth output yl; yl,min, yl,max: Lower and upper limits of lth 
output yl; D(x): Overall desirability function (objective 
function for multiple response optimization problem); 
�∗ = [x∗

1
, ..., x∗

p
]T :  Optimized parameter point; �∗

LB
, �∗

UB

: Lower and upper bounds for defining optimized param-
eter intervals; [x∗

LB,j
, x∗

UB,j
]: Optimized parameter interval 

for jth input; JL×p: L By p matrix of ones; δl: Small posi-
tive increment; Wlj, Wlj: (l, j)Th element of W = JL×p − Iimp., 
and standardized values of Wlj; ×

p

j=1
[x∗

j
− �lWlj, x

∗
j
+ �lWlj]

:  p-Dimensional hyper-rectangle centered at x*; vm, 
V: Vertices of hyper-rectangle, and vertex set composed 
of all vm

Abbreviations

ML: Machine learning; PI: Prediction interval; ANN: Arti-
ficial neural networks; PSD:  Particle size distribu-
tion; RSM:  Response surface method; GA:  Genetic 
algorithm; AVOVA:  Analysis of variance; CCD:  Cen-
tral composite design; MRO:  Multiple response opti-
mization; MC:  Monte Carlo; PSO:  Particle swarm 

optimization; RMSE:  Root mean squared error; 
ECDF:  Empirical cumulative distribution function
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