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Abstract
Abrasive waterjet (AWJ) is a promising method for machining titanium alloy, which is widely used in the aerospace field, 
but the various process parameters of AWJ make it difficult to achieve a high machining quality. In this research, the main 
process parameters of AWJ, including the jet pressure, the abrasive flow rate, the stand-off distance, the jet angle, the trav-
erse speed, and the feed rate, were all analyzed by considering their effects on the milling characteristics of Ti6Al4V alloy. 
Both single and interactive effects of the process parameters were studied, and regression models for predicting the milling 
depth h, the material erosion rate V̇  , and the X-directional roughness Rax were established. Furthermore, an ADM-MO-Jaya 
(adaptive decreasing method multi-objective Jaya) algorithm based on MO-Jaya was proposed to obtain the optimal process 
parameters, aiming for reaching the minimum Rax and the maximum h and V̇  at the same time. The results show that the 
correlation coefficients R2 of the models are all greater than 0.9, and model terms are relatively significant. The regression 
models of h, V̇  , and Rax are generally consistent with the overall trend of the experimental results, and the mean errors are 
8.57%, 1.89%, and 10.58%, respectively. The operation efficiency of the ADM-MO-Jaya algorithm is 32% higher than that 
of the MO-Jaya, and the Pareto front is the most uniform and converges to a curve in the solution space without isolated 
points. The optimized set of 180 Pareto solutions can be directly selected by the operator for machining without complex 
process comparisons, which can guide the practical milling of titanium alloy by AWJ.

Keywords  Titanium alloy · Abrasive waterjet milling · Process parameters · Regression analysis · Multi-objective 
optimization

1  Introduction

Due to its high specific strength, high-temperature resist-
ance, corrosion resistance, and high biocompatibility, tita-
nium alloy is being widely used in aerospace, petrochemical, 
and biomedical fields. However, its poor thermal conductiv-
ity and strong chemical activity in high-temperature envi-
ronments make it very difficult to process [1]. Currently, 
some scholars study the machining and laser processing of 
titanium alloys [2]. It was found that the tool is easy to wear 
due to its high material removal rate [3]. The huge heat gen-
erated by machining and laser processing can easily burn the 

parts, which has a great impact on the service life of titanium 
alloy parts [4].

AWJ machining technology has received a lot of attention 
by virtue of its environmental friendliness, high material 
removal rate, and no cutting heat to burn parts. In recent 
decades, more and more research has focused on the cut-
ting of titanium alloys by AWJ. A numerical model based 
on smooth particle dynamics was developed to simulate the 
cutting of titanium alloys by AWJ, showing that the shape 
of the abrasive grain played an important role in the cutting 
efficiency and the cutting trajectory. Similarly, the sharpness 
of the abrasive also strongly affected the material removal 
rate [5]. To shed light on the influence of pressure, traverse 
speed, stand-off distance, and other parameters on cutting 
efficiency and surface quality, a large number of AWJ cut-
ting experiments were carried out [6–8]. According to the 
results, the roughness of the cutting surface can be reduced 
by higher pressure, a larger abrasive flow rate, a lower trans-
verse speed, and a smaller abrasive grain. The cutting taper 
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will decrease under the condition of higher pressure and a 
larger abrasive grain, while it will increase with a higher 
transverse speed. The material erosion rate will increase 
with a higher abrasive flow rate. Considering the effects of 
abrasive grain, abrasive flow rate, and the number of cuts on 
the cutting depth, an orthogonal experiment of AWJ cutting 
titanium alloy was designed [9, 10]. The results showed that 
a larger abrasive grain and abrasive flow rate could improve 
the cutting depth and reduce the cutting cone angle. Com-
pared with a single cutting, the multiple-cutting performance 
was significantly improved. Fuse et al. [11] designed cut-
ting experiments on titanium alloy by AWJ based on the 
response surface method and analyzed the effects of traverse 
speed, abrasive flow rate, and stand-off distance on material 
removal rate, surface roughness, and taper. Furthermore, 
ANOVA was performed to further verify the robustness of 
the system.

The milling of titanium alloys by AWJ has also been stud-
ied by some scholars. It is considered that the process of 
material milling can be viewed as the superposition of mul-
tiple single milling section profiles along the feed direction. 
Therefore, the maximum depth and width of the footprints of 
single milling and the amount of overlap in the feed direction 
can have a significant effect on the material removal rate and 
the surface roughness [12–14]. The effects of different types 
of abrasives on milling titanium alloys were investigated, 
and the results showed that the hardness of the workpiece 
and the hardness of the abrasive had a greater impact than 
the shape of the abrasive. When the hardness of the abrasive 
increased, both the material removal rate and the surface 
roughness increased [15]. The footprints of single milling 
and multiple overlapping milling of AWJ were simulated by 
the finite element method and the Johnson–Cook failure cri-
terion, respectively. Compared with the experimental data, 
the maximum depth error of simulation models for single 
milling and multiple overlapping milling were within 10 
and 15%, respectively [13, 16]. A milling method based on 
iterative learning control was proposed. The results showed 
that the milling depth error was reduced by more than 50% 
after 4 iterations [17]. An empirical formula for the depth of 
titanium alloy milling by AWJ was established based on the 
conservation of energy and momentum, and the validation 
data showed that the average error of the model was within 
15% [18].

At present, nontraditional optimization algorithms have 
been introduced to optimize the abrasive machining process. 
For example, an artificial bee colony algorithm was used to 
optimize the process of cutting aluminum alloy by AWJ, 
resulting in a lower surface roughness value compared to the 
neural network algorithm, genetic algorithm, and simulated 
annealing method [19]. The cuckoo algorithm was applied 
to optimize the surface roughness of aluminum alloy cut-
ting by AWJ, which could effectively improve the surface 

roughness to that of artificial neural networks and support 
vector machines [20]. Although the researchers have made 
great achievements in terms of depth, roughness, and mate-
rial erosion rate after processing by AWJ with a single objec-
tive optimization algorithm. AWJ machining is a typical 
multiple-input, multiple-output process, and a simple single-
objective optimization cannot simultaneously be taken into 
account the roughness and machining efficiency. In the past, 
the selection of the best parameters relied mainly on the rich 
machining experience of the workers, which not only relied 
too much on the operator but also made it very difficult for 
process planning. Therefore, it is particularly important to 
obtain as high machining efficiency as possible to reduce 
production costs while maintaining surface roughness.

On the other hand, multi-objective optimization of mate-
rial removal rate and surface roughness for cutting by AWJ 
was carried out by the Gray Wolf algorithm. The results 
showed that the algorithm converged faster and achieved 
better results [21]. Optimization algorithms such as particle 
swarm, firefly, and simulated annealing were used to study 
the effects of traverse velocity, stand-off distance, and abra-
sive flow rate on the top width and taper angle after cutting 
by AWJ. A set of non-dominated solutions were success-
fully found and verified by experiments [22]. Based on the 
response surface analysis and heat transfer search algorithm, 
the taper angle, material removal rate, and surface rough-
ness of titanium alloy after cutting by AWJ were optimized. 
As a result, the difficulty and complexity of machining be 
greatly reduced according to a set of Pareto optimal solu-
tions obtained [11]. Recently, Rao et al. proposed a new 
minimalist optimization algorithm Jaya, different from the 
existing evolutionary algorithms, it has a simple structure 
and is easy to implement programmatically without too 
many tuning parameters to deal with, avoiding the risk of 
falling into a local optimum due to improper adjustment of 
specific parameters of the algorithm by the user. Good opti-
mization results were obtained when it was used for multi-
objective optimization of taper angle and surface roughness 
after cutting by AWJ [23–25].

Therefore, it can be found that the studies on the param-
eters of AWJ milling titanium alloys are much fewer com-
pared to that of cutting titanium alloys. In addition, the 
milling parameters that have been considered in the earlier 
research studies are not complete enough. In our study, the 
process parameters such as jet pressure, abrasive flow rate, 
stand-off distance, jet angle, traverse speed, and feed rate 
are fully considered, which will not only lead to the higher 
prediction accuracy of the milling model but also increase 
the flexibility of AWJ machining to some extent. Thus, we 
designed an experiment for milling titanium alloy by AWJ. 
The relationship between the effect of AWJ machining 
parameters on milling depth, material erosion rate, and sur-
face roughness was analyzed based on the response surface 
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method. We established regression models for milling depth, 
material erosion rate, and surface roughness and further 
assessed the robustness of the models by ANOVA. For any 
processing method, processing efficiency is an extremely 
important economic indicator. High processing efficiency 
not only saves time for the factory but also reduces the con-
sumption of energy. Material erosion rates are widely used in 
abrasive jet machining to measuring process efficiency. Con-
sidering that the existing studies on the milling of titanium 
alloys by AWJ are often limited to single-objective optimi-
zation and bi-objective optimization for milling depth and 
surface roughness, no one has yet performed multi-objective 
optimization for milling depth, material removal rate, and 
surface roughness. Therefore, the tri-objective optimiza-
tion algorithm ADM-MO-Jaya optimization algorithm for 
surface roughness, milling depth, and material erosion rate 
of titanium alloy milled by abrasive jet is applied for the 
first time to obtain the maximum milling depth and mate-
rial erosion rate while ensuring surface roughness. At the 
same time, the algorithm is improved to obtain not only a 
uniformly distributed Pareto front but also to reduce the time 
consumed for convergence, which is of great significance for 
AWJ milling of titanium alloys.

The remainder of this paper is organized as follows: Sec-
tion 2 describes the experiment of milling titanium alloy 
by AWJ. Section 3 presents the principle of the proposed 
method and introduces the improvement of the multi-objec-
tive optimization algorithm. Section 4 is mainly for the 
analysis and discussion of the experimental results. Finally, 
conclusions are presented in Section 5.

2 � The experiment of milling titanium alloy 
by AWJ

2.1 � Experimental equipment and materials

Experiments were carried out on the ultra-high-pressure 
AWJ five-axis machining platform (APW-P410-L6-N200) 
at Hubei Key Laboratory of Waterjet Theory and New 
Technology (Fig. 1) with a maximum working pressure of 
420 MPa and a jet angle adjustment around X-axis range 
of − 90° to 90°. The equipment adopts a post-mixing priming 
method for sand supply, and the abrasive flow rate can be 
regulated from 100 to 760 g/min. The nozzle material is ruby 
with an inner diameter of 0.33 mm. The inner diameter of 
the focusing tube was 1.02 mm, and the length was 76.2 mm. 
The abrasive used in the experiments was 80-mesh garnet. 
The specimen was a Ti6Al4V alloy plate with excellent 
comprehensive mechanical properties, and its main physi-
cal and chemical compositions are shown in Table 1.

2.2 � Milling path and evaluation factor

Due to the influence of the jet stagnation effect, concentric 
surround and helical milling are prone to overcutting, result-
ing in poor quality. The zig-zag milling path was selected, as 
shown in Fig. 2. It can be seen that there are obvious peaks 
and valleys between two adjacent milling paths along the 
feed direction (X-direction) from Fig. 3, so the roughness 
in this direction will be larger compared to the Y-direction. 
Usually, a larger roughness is chosen to measure the quality 

Fig. 1   Ultra-high pressure AWJ 
5-axis CNC machining system

Table 1   Main physical and chemical parameters of TC4 titanium alloy

Material σs/(MPa) σb/(MPa) ρ/(g·cm3) Chemical composition (wt%)

Ti6Al4V  ≥ 860  ≥ 895 4.51 Al (5.5–6.8), V (3.5–4.5), Fe (≤ 0.3), C (≤ 0.1), O (≤ 0.2), N (≤ 0.05), H (≤ 0.015), Ti (residuals)
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of the machining. Therefore, the milling depth h, mate-
rial erosion rate V̇  , and X-directional roughness Rax were 
selected as metrics to measure AWJ milling performance. 
h and Rax were measured with a ZYGO 3D optical pro-
filer manufactured by AMETEK. The profiler has a scan-
ning range of 0 to 20 mm, a scanning speed of more than 
114 μm/s, a surface roughness measurement accuracy of 
higher than 0.1 nm, a surface topography repetition accuracy 
of 0.01 nm, and a CCD camera resolution is 1024 × 1024. 
V̇  was obtained by dividing the mass difference before and 
after processing by density and time. Of course, it is neces-
sary to dry the workpiece when measuring the mass.

The scanning results of the optical profilometer are shown 
in Fig. 3. The milling plane by AWJ was formed by the 
superposition of multiple single passes along the transverse 
direction. Influences such as secondary erosion of the reflec-
tive jet, residual stresses from the previous process, and the 
slope of the eroded surface need to be taken into account. 
Under the condition that the jet pressure P, abrasive flow 
rate ṁa , stand-off distance D, jet angle α, and traverse speed 
u are determined, the feed rate S is an important process 
parameter affecting the milling profile. Too large an S will 

produce a waveform plane, and too small an S will lead to 
the degradation of the bottom surface features. According to 
the experiments, Bui et al. [26] concluded that the preferred 
range of S is 0.7bmax ≤ S ≤ bmax. The level of S was designed 
concerning the above-preferred range and pre-experiment 
in this research.

3 � Analysis method and multi‑objective 
optimization algorithm

3.1 � Response surface method and nonlinear 
regression

The response surface method based on Box–Behnken does 
not require the study of all process parameter combinations, 
significantly reducing the operation cost of the experiment 
and accurately estimating coefficients below the fifth order. 
According to the research of Hlavac et al. [27], the reliability 
of the statistical-regression model is high within the tested 
scope of factors. However, its precision can be significantly 
reduced beyond the selected range of factors. Considering 
that the main purpose of this paper is to investigate the effect 
of abrasive jet milling on titanium alloys and to obtain the 
optimal machining parameters. Therefore, the actual work-
ing conditions of abrasive jet milling of titanium alloys were 
considered. Based on extensive pre-experiments, the levels 
of each factor were reasonably designed to ensure that the 
range of common machining parameters was included in 
the setting of the levels. Table 2 shows the arrangement of 
each factor and level. The experimental protocol was carried 
out in Design-Expert software. Table 3 shows the specific 
arrangement and the results of the statistics.

The empirical models for h,, and Rax can be obtained by 
nonlinear regression analysis of the experimental results in 
Table 3. Preliminary analysis shows that better models can 
be obtained by fitting the experimental data with a third-
order model. Thus, taking the third order as an example, 

Fig. 2   Abrasive waterjet milling path

Fig. 3   Effect of lateral feed on milling results; a too large S, b appropriate S, and c too small S 
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the general format of higher-order nonlinear regression is 
as follows:

where Y is the response variable, X is each process param-
eter, β0 is the constant term, and βi, βii, βij, and βijk are the 
coefficients of different order terms, respectively. ANOVA 
and residual diagnostics were used to test the reliability, sig-
nificance, and accuracy of the models. It is worth noting that 
the parameter values of the model need to be converted into 
the level between − 1 and 1 according to Table 2.

3.2 � Multi‑objective optimization algorithm

The MO-Jaya algorithm is a multi-objective optimization 
algorithm that expands on the Jaya algorithm. To deal with 
the problem of the coexistence of multiple objectives, the 
MO-Jaya algorithm is embedded with a fast non-dominated 
sorting approach and crowding distance evaluation approach 
[25, 28]. The solution is chosen based on the non-dominated 
rank and the crowding distance ξ. For instance, the solu-
tion with the highest non-dominated rank (rank = 1) and 
the largest crowding distance ξ is selected as the best solu-
tion. Those solutions that are the opposite are chosen as the 
worst solutions. The best and worst solutions are selected 
and brought into Eq. (2) to calculate the next-generation 
population.

where p, q, and r are the index of iteration, variable, and 
candidate solution. Op,q,r denotes the qth variable of the rth 
candidate solution of the pth iteration. αp,q,1 and αp,q,2 are 
random numbers between 0 and 1 that act as scaling factors, 
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(2)
Op+1,q,r = Op,q,r + �p,q,1(Op,q,best − abs(Op,q,r))

− �p,q,2(Op,q,worst − abs(Op,q,r))

together with the absolute values of the variables to ensure 
that the exploration of the algorithm can proceed properly. 
Op,q,best and Op,q,worst denote the qth variable of the best and 
worst solution in the pth iteration, respectively.

All the solutions are combined with the initial popula-
tion to form a set of solutions of size 2P (P is the size of 
the initial population) after being updated. Recalculate the 
non-dominated rank and crowding distance ξ of 2P solu-
tions and select P outstanding solution sets from them to 
be computed in the next iteration. This feature selection 
ensures that only the superior solution is retained for each 
iteration of the MO-Jaya algorithm. As the set of non-
dominated solutions increases, the algorithm ensures that 
it always moves towards the Pareto optimum and eventu-
ally converges to the Pareto front.

3.2.1 � Non‑dominated sorting

The ranking is based on the non-dominated relationship 
between the solutions. For an M-objective optimization 
problem, P is the set of solutions to be ordered. A solu-
tion x1 is said to dominate another solution x2 if and only 
if fi(x1) ≤ fi(x2) for all 1 ≤ i ≤ M and fi(x1) < fi(x2) for at 
least one i, where i ∈ {1,…,M}. A solution x* in P is non-
dominated if there does not exist any solution xj in P_ 
that dominates x*. Assign x* a non-dominant rank of 1 
(rank = 1). Next, eliminate x* (rank = 1) from the set of all 
solutions, re-determine the dominance relationship for the 
remaining individuals, and so on, until all non-dominance 
ranks are found. A set of solutions with the same rank is 
known as the front (F).

3.2.2 � Computing the crowding distance

To compare the superiority of solutions of the same non-
dominated rank, the crowding distance ξj is brought up. It 
is a measure of the density estimate of solutions near a par-
ticular solution j. For a particular front F, let l =|F|, and for 
each solution in F, the crowding distance ξ is computed as 
follows:

Step 1: 	 Initialize ξj = 0.
Step 2: 	 Sort the solutions in F by the mth optimization 

objective value fm.
Step 3: 	 In the sorted list of mth objective, assign infinite 

crowding distance to solutions at the extremes of the 
sorted list (i.e., ξ1 = ξl = ∞), for j = 2 to (l − 1), calcu-
late ξj as follows. It is worth noting that the calculated 
crowding distance needs to be normalized.

Table 2   Factors and levels of experimentation

Process factors Level 1 Level 2 Level 3
 − 1 0 1

Jet pressure P(MPa) 220 260 300
Mass flow rate a(g/min) 200 480 760
Stand-off distance D(mm) 6 14 22
Jet angle α(°) 30 60 90
Traverse speed u(mm/s) 30 50 70
Feed rate S(mm) 0.4 0.6 0.8
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Table 3   Box-Behnken response 
surface design matrix and 
experimental results

Std Run P a D α u S h (μm) (mm3/s) Rax (μm)

47 1  − 1 0 1 0 0 1 540.281 207.141 26.067
16 2 0 1 1 0 1 0 774.825 316.198 34.319
20 3 0 0 1 1 0  − 1 1392.488 262.638 73.758
29 4  − 1 0 0  − 1 1 0 420.452 208.667 17.865
3 5  − 1 1 0  − 1 0 0 747.080 256.080 44.508
22 6 0 0 1  − 1 0 1 596.839 266.823 42.205
46 7 1 0  − 1 0 0 1 862.869 282.569 114.263
14 8 0 1  − 1 0 1 0 761.956 341.665 61.532
23 9 0 0  − 1 1 0 1 571.919 219.933 46.163
6 10 1  − 1 0 1 0 0 565.010 163.899 36.805
38 11 0 1 0 0  − 1 1 1322.237 321.791 132.794
32 12 1 0 0 1 1 0 735.853 318.472 57.498
53 13 0 0 0 0 0 0 1095.268 271.243 62.236
8 14 1 1 0 1 0 0 1342.649 384.151 97.960
25 15  − 1 0 0  − 1  − 1 0 1082.765 228.388 71.319
30 16 1 0 0  − 1 1 0 660.382 345.959 62.579
40 17 0 1 0 0 1 1 535.919 289.315 45.862
35 18 0  − 1 0 0 1  − 1 517.204 145.758 23.454
44 19 1 0 1 0 0  − 1 1796.323 349.625 74.657
52 20 0 0 0 0 0 0 990.064 271.373 61.469
17 21 0 0  − 1  − 1 0  − 1 1190.179 308.694 60.423
49 22 0 0 0 0 0 0 959.221 274.134 65.572
51 23 0 0 0 0 0 0 944.950 273.361 60.417
33 24 0  − 1 0 0  − 1  − 1 1278.576 161.072 54.977
4 25 1 1 0  − 1 0 0 1260.135 413.683 84.302
13 26 0  − 1  − 1 0 1 0 334.266 133.591 32.493
48 27 1 0 1 0 0 1 764.475 314.384 51.111
12 28 0 1 1 0  − 1 0 1905.496 334.882 80.605
31 29  − 1 0 0 1 1 0 465.394 168.638 22.288
43 30  − 1 0 1 0 0  − 1 1066.014 226.284 47.324
41 31  − 1 0  − 1 0 0  − 1 1108.616 225.081 68.032
27 32  − 1 0 0 1  − 1 0 1240.142 212.773 68.759
19 33 0 0  − 1 1 0  − 1 1598.606 268.353 88.437
36 34 0 1 0 0 1  − 1 1259.822 335.288 65.685
2 35 1  − 1 0  − 1 0 0 543.900 171.190 46.897
26 36 1 0 0  − 1  − 1 0 1830.259 354.477 62.353
7 37  − 1 1 0 1 0 0 789.345 217.700 37.551
50 38 0 0 0 0 0 0 1015.509 272.742 52.069
39 39 0  − 1 0 0 1 1 256.990 133.473 23.997
5 40  − 1  − 1 0 1 0 0 352.542 97.439 28.649
28 41 1 0 0 1  − 1 0 1981.079 331.921 108.182
42 42 1 0  − 1 0 0  − 1 1927.778 336.197 113.702
24 43 0 0 1 1 0 1 586.852 223.975 24.594
1 44  − 1  − 1 0  − 1 0 0 313.599 104.494 17.712
45 45  − 1 0  − 1 0 0 1 476.025 165.088 62.531
18 46 0 0 1  − 1 0  − 1 1362.920 328.218 31.372
9 47 0  − 1  − 1 0  − 1 0 1031.880 171.168 69.450
11 48 0  − 1 1 0  − 1 0 1107.110 186.602 49.368
54 49 0 0 0 0 0 0 1194.844 310.151 55.812
37 50 0  − 1 0 0  − 1 1 798.695 166.637 66.535
10 51 0 1  − 1 0  − 1 0 2307.513 393.147 121.713
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Table 3   (continued) Std Run P a D α u S h (μm) (mm3/s) Rax (μm)

34 52 0 1 0 0  − 1  − 1 3571.845 399.146 56.152
21 53 0 0  − 1  − 1 0 1 612.805 268.203 41.708
15 54 0  − 1 1 0 1 0 422.032 165.891 26.988

Fig. 4   Flowchart for ADM-MO-Jaya algorithm
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(3)�j = �j +
f
j+1
m − f

j−1
m

f max
m

− f min
m

Step 4: 	 Iterate through all objectives and calculate the solu-
tion set crowding distance for each optimization objec-
tive according to steps 1–3, respectively. The crowding 

Fig. 5   Perturbation diagram of process parameters on a h, b V̇  , and c Rax

Fig. 6   Effect of interaction of process parameters on h; a ṁa and P; b u and P; c S and P; d D and ṁa ; e u and ṁa ; f S and ṁa ; g S and u 
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distances under different objectives are then summed to 
be the crowding of the solution set under the front F.

3.3 � ADM‑MO‑Jaya algorithm

The MO-Jaya algorithm iterates according to Eq. (2) after 
one initialization. Unlike the genetic algorithm, there is no 
complex mutation operation, and easy to fall into the local 
optimum. Therefore, in this paper, the total number of iter-
ations is divided into two parts, and when the number of 
iterations is less than half of the total number of iterations, 
some populations are re-initialized every certain number of 
iterations to increase the population diversity and improve 
the searchability of the algorithm. The flowchart of the 
ADM-MO-Jaya optimization algorithm is shown in Fig. 4. 
To avoid that re-initializing some populations would reduce 

the convergence speed, an adaptive decreasing method was 
adopted to initialize the number of populations.

where P is the initial population capacity, and Pnew is the re-
initialized population capacity. The original MO-Jaya algo-
rithm retains P individuals each time to the next iteration. 
Now, for every certain number of iterations, P − Pnew optimal 
individuals are retained, while Pnew individuals are initial-
ized to form a population of P individuals into the computa-
tion. it is the current number of iterations, and Maxit is the 
total number of iterations. As it increases, the number of 
Pnew decreases gradually from P/2.

When the ADM-MO-Jaya algorithm is run for the latter 
stage, the next generation population generated according 

(4)Pnew = f loor((1 − it∕Maxit)
P

2
)

Fig. 7   Effect of interaction of 
process parameters on V̇  ; a the 
interaction of ṁa and P; b the 
interaction of D and ṁa ; c the 
interaction of α and ṁa ; f the 
interaction of S and ṁa

Fig. 8   Effect of interaction of process parameters on Rax; a ṁa and P; b S and α; c S and u 
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to Eq.  (2) may cause repeated changes in the offspring 
population due to excessive step size. As a result, it cannot 
converge to the uniform Pareto front. Therefore, when it is 
greater than Maxit/2, the algorithm introduces an adaptive 
reduction of the step to improve the convergence of the algo-
rithm. As shown in Eq. (5), with the increase of it, the step 
length increased by Op,q,r will gradually decrease, and the 
convergence accuracy of the algorithm will be higher.

4 � Results and discussion

4.1 � Influence of process parameters on the milling 
characteristics

4.1.1 � Influence of single process parameters

Figure 5 shows the perturbation diagram of process param-
eters on h, V̇  , and Rax. As illustrated in Fig. 5a, h is strongly 
affected by u and negatively correlated with u. When u 

(5)
Op+1,q,r = Op,q,r + (1 −

it

Maxit
)(�p,q,1(Op,q,best − abs(Op,q,r))

− �p,q,2(Op,q,worst − abs(Op,q,r)))

increases, there is a drop in the erosion time, resulting in 
the decrease of h. The effect of the S on h is consistent with 
that of u, which is because the increased S shrinks the jet 
overlap area. However, the relationship between h and ṁa 
is positive. A deeper h can be obtained when ṁa is larger; 
this can be attributed to the fact that more abrasive grains 
can erode the target material per unit of time. Typically, the 
increase of ṁa also leads to enhanced abrasive interference, 
so the increasing trend gradually decreases. Notably, the h 
is almost independent of the D but has a linear positive cor-
relation with the P, indicating that the change of jet energy 
caused by P is larger than that of D within a given param-
eter range. As the α increases, the h first increases and then 
decreases, this is due to the combined effect of shear energy, 
impact energy, and jet hysteresis.

It can be found from Fig. 5b that ṁa has the most signifi-
cant effect on the V̇  , followed by P, α, S, and u; the influ-
ence of D on V̇  is slightest. It is that ṁa getting larger with 
V̇  keeps increasing but the trend gradually slows down. 
This is because more abrasive particles will erode the tar-
get material per unit time in turn cause a higher V̇  . Similar 
phenomenon also occurs in the effect of P on V̇  . A larger P 
contributes to higher kinetic energy of the abrasive particles 
impacting the target material, resulting in an increase in V̇ .

Table 4   ANOVA results of h 

Source Sum of 
squares

df Mean square F-value P-value

Model 1.857E + 007 18 1.032E + 006 116.68  < 0.0001
P 1.339E + 006 1 1.339E + 006 151.42  < 0.0001
ṁa 1.702E + 006 1 1.702E + 006 192.52  < 0.0001
a 41,713.68 1 41,713.68 4.72 0.0367
u 6.317E + 006 1 6.317E + 006 714.41  < 0.0001
S 4.288E + 006 1 4.288E + 006 484.97  < 0.0001
P ṁa 48,608.06 1 48,608.06 5.50 0.0248
Pu 1.196E + 005 1 1.196E + 005 13.52 0.0008
PS 1.101E + 005 1 1.101E + 005 12.45 0.0012
ṁa D 38,107.87 1 38,107.87 4.31 0.0453
ṁa u 5.963E + 005 1 5.963E + 005 67.44  < 0.0001
ṁa S 6.235E + 005 1 6.235E + 005 70.52  < 0.0001
uS 3.808E + 005 1 3.808E + 005 43.07  < 0.0001
ṁ2

a
1.460E + 005 1 1.460E + 005 16.51 0.0003

a2 2.127E + 005 1 2.127E + 005 24.05  < 0.0001
u2 4.088E + 005 1 4.088E + 005 46.24  < 0.0001
S2 1.149E + 005 1 1.149E + 005 13.00 0.0010
ṁa uS 2.132E + 005 1 2.132E + 005 24.12  < 0.0001
ṁa S2 1.259E + 005 1 1.259E + 005 14.24 0.0006
Residual 3.095E + 005 35 8841.63
Lack of fit 2.640E + 005 30 8801.37 0.97 0.5831
Pure error 45,415.79 5 9083.16
Cor total 1.888E + 007 53
R2 = 0.9836

Table 5   ANOVA results of V̇

Source Sum of 
squares

df Mean square F-value P-value

Model 3.367E + 005 17 19804.77 174.64  < 0.0001
P 52,485.78 1 52,485.78 462.82  < 0.0001
ṁa 2.020E + 005 1 2.020E + 005 1781.27  < 0.0001
a 4853.05 1 4853.05 42.79  < 0.0001
u 5372.70 1 5372.70 47.38  < 0.0001
S 9882.93 1 9882.93 87.15  < 0.0001
P ṁa 4555.26 1 4555.26 40.17  < 0.0001
ṁa D 2160.41 1 2160.41 19.05 0.0001
ṁa a 358.66 1 358.66 3.16 0.0838
ṁa S 1699.68 1 1699.68 14.99 0.0004
P2 1368.21 1 1368.21 12.06 0.0014
ṁ2

a
13,931.02 1 13,931.02 122.84  < 0.0001

a2 424.27 1 424.27 3.74 0.0610
u2 787.02 1 787.02 6.94 0.0123
S2 549.87 1 549.87 4.85 0.0342
P2D 979.01 1 979.01 8.63 0.0057
P2a 885.23 1 885.23 7.81 0.0083
Pu2 458.40 1 458.40 4.04 0.0519
Residual 4082.54 36 113.40
Lack of fit 2899.34 31 93.53 0.40 0.9505
Pure error 1183.20 5 236.64
Cor total 3.408E + 005 53
R2 = 0.9880
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As shown in Fig. 5c, Rax is most sensitive to the change 
of u compared with other parameters, and it decreases line-
arly with the increase of u. Similarly, D has a negative effect 
on Rax. Inversely, P and ṁa have positive impacts on Rax. 
The Rax increases gradually with the increase of S, which 
is because the overlap region of the jet trajectory plays an 
important role in material erosion. When the overlap area 
increases, there will be unmachined positions between two 
adjacent milling paths, and therefore the Rax will be rela-
tively larger.

4.1.2 � The interactive effects of process parameters

The response surface method was used to obtain the effect 
of the process parameters’ interactions on the milling char-
acteristics. Figures 6, 7, and 8 show the response surface 
contour of the interactive effect between two parameters.

From Fig. 6a, b, and c, it can be claimed that a greater h 
can be obtained only when the P is larger, the u and S are 
smaller or the ṁa is larger. Figure 6d, e, and f shows that 
larger h can be acquired at the conditions of lager ṁa and 
smaller D, u, or S. As exhibited in Fig. 6g, a larger h can be 
gained at smaller S and u. All the results are consistent with 
the previous single factor’s effects on h.

As illustrated in Fig. 7, the effects of the interaction between 
process parameters on the V̇ are explored. From Fig. 7a, it can 
be seen that a larger V̇  is obtained after a larger ṁa is taken 
when the P is higher. Figure 7b, c, and d shows that it is neces-
sary for a higher ṁa combined with lower D, α, or S in order to 
get larger V̇ . The effect of interaction between P and ṁa on the 
V̇ is obvious, which is mainly due to the fact that the increase 
in P and ṁa leads to an increase in the kinetic energy of the 
abrasive, resulting in a stronger erosive effect on the material 
and therefore a greater V̇ can be obtained.

The effect of the interaction between the process param-
eters on Rax is depicted in Fig. 8. In Fig. 8a, a smaller ṁa 
yields a lower Rax when the P is smaller. Figure 8b, c shows 
that a smaller α or a larger u is required to obtain a lower Rax 
when the S is smaller. This is mainly because the reduction 
of P and ṁa will reduce the abrasive erosion on the mate-
rial, the larger u will reduce the jet dwell time, the smaller 
S will eliminate the abrupt peaks between the multiple mill-
ing paths, and the reduction of α allows the abrasive to shift 
from vertical erosion to slip rubbing along the path so that 
a smaller roughness can be obtained.

4.2 � Regression analysis

Regression analysis was performed on the results of response 
surface analysis, and the cubic regression model of h, V̇ , and 
Rax were obtained (Eqs. 6, 7, and 8). All six input process 
parameters in the regression model range from − 1 to 1, 
resulting from the Box–Behnken design method.

Tables 4, 5, and 6 show the coefficient statistics and 
ANOVA results of the three models of h, V̇  , and Rax, where 
a larger F-value means that the factor has a greater influ-
ence on the results of the test. The effect of all models and 
each model item were relatively significant, and the effect of 
the misfit term was not significant according to the statisti-
cal evaluation criteria (P ≤ α = 0.05). The correlation coef-
ficients R2 of the models are 0.9836, 0.9830, and 0.9049, 
respectively. Since the correlation coefficients are all greater 

(6)

h = 1002.59448 + 236.18571P + 326.16625ṁa + 41.69017a − 513.02092u

− 422.68604S + 77.94875Pṁa − 122.25525Pu − 117.30413PS − 69.01800ṁaD

− 193.05000ṁau − 279.17700ṁaS + 218.17150uS − 116.98358ṁ2

a
− 135.18574a2

+ 195.77467u2 + 99.38195S2 + 163.25475ṁauS + 153.62850ṁaS
2

(7)

V̇ = 280.75674 + 57.27444P + 91.74300ma − 24.62987a − 14.96204u − 20.29258S

+ 23.86225Pṁa − 16.43325ṁaD − 6.69575ṁaa − 14.57600ṁaS − 11.41514P2

− 36.42477m2

a
− 6.35664a2 + 8.65761u2 − 7.00684S2

+ 11.06237P2D + 12.88331P2a + 9.27094Pu
2

(8)

Rax = 60.19811 + 16.57100P + 16.06908ṁa − 9.91937D

+ 4.47504a − 19.48529u − 9.31644S + 7.85775Pṁa

− 10.44450aS − 13.43500uS + 6.90533P2 − 11.72304a2

− 7.23663Pau − 10.68125ṁauS − 10.00175P2D + 17.93144ṁ2

a
S

Table 6   ANOVA results of Rax

Source Sum of 
squares

df Mean square F-value P-value

Model 34,858.99 15 2323.93 24.11  < 0.0001
P 6590.35 1 6590.35 68.36  < 0.0001
ṁa 6197.17 1 6197.17 64.28  < 0.0001
D 1574.30 1 1574.30 16.33 0.0002
a 480.62 1 480.62 4.99 0.0315
u 9112.24 1 9112.24 94.52  < 0.0001
S 1388.74 1 1388.74 14.41 0.0005
P ṁa 493.95 1 493.95 5.12 0.0294
aS 872.70 1 872.70 9.05 0.0046
uS 1443.99 1 1443.99 14.98 0.0004
P2 534.06 1 534.06 5.54 0.0239
a2 1539.21 1 1539.21 15.97 0.0003
Pau 418.95 1 418.95 4.35 0.0439
ṁa uS 912.71 1 912.71 9.47 0.0039
P2D 533.52 1 533.52 5.53 0.0239
ṁ2

a
 S 1714.86 1 1714.86 17.79 0.0001

Residual 3663.35 38 96.40
Lack of fit 3545.51 33 107.44 4.56 0.1646
Pure error 117.84 5 23.57
Cor total 38,522.34 53
R2 = 0.9049
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than 0.9, the reliability of the regression models is good, and 
the modeling is valid.

The residual normal probability distributions of h, V̇  , and 
Rax are shown in Fig. 9a, c, and e, respectively. Figure 9b, 
d, and f shows the relationships between model residual 

of h, V̇  , Rax and the predicted response. The points on the 
residual normal probability plot of all models are essentially 
on a straight line, indicating that the residuals obey a normal 
distribution. It can be seen that the residuals of all models 

Fig. 9   Regression model residu-
als normal distribution and 
predicted response; a normal 
residual of h, b residual vs. 
predicted of h, c normal residual 
of V̇  , d Residual vs. predicted of 
V̇  , e normal residual of Rax, and 
f residual vs. predicted of Rax
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meet the random distribution without anomalous structures 
or obvious patterns. It indicates that there is no regular-
ity between the residuals and the predicted values, and the 
nonrandom error of the experimental data is not significant. 
Thus, it can be demonstrated the above regression models 
are all correct and credible.

A total of 30 sets of milling experiments were used to 
assess the generalization ability of the model. Figure 10 
shows the predicted and experimental values of h, V̇  , and 
Rax. As can be seen from the figure, the predicted values of 
the h, V̇  , and Rax regression models are highly consistent 
with the overall trend of the experimental values, although 
there are several errors in some data points. The coincidence 
between predicted and experimental values V̇  is surprisingly 
high compared with h and Rax.

The mean errors between the experimental and predicted 
values of h, V̇  , and Rax were 8.57%, 1.89%, and 10.58%, 
respectively. The average error of all three models is smaller 
than that of the existing literature [29–31]. Considering the 
pressure fluctuation, abrasive distribution, vibration, etc., 
the above models can be considered to have a fairly good 
generalization capability.

4.3 � Multi‑objective optimization

The regression model developed in this paper can accurately 
map the relationship between process parameters and h, V̇  , 
and Rax. However, it is equally important to determine the 
combination of input process parameters to obtain the best 
surface roughness and machining efficiency. Therefore, three 
optimization algorithms, NSGA-II, MO-Jaya, and ADM-
MO-Jaya, were introduced for multi-objective optimiza-
tion of h, V̇  , and Rax to obtain the maximum h, V̇  , and the 
minimum Rax based on the above regression models. Given 
that the optimization algorithm generally aims to obtain the 
minimum value, adding negative signs to the h and V̇  . All 
algorithms were implemented on MATLAB R2021a; the 
computer CPU is Intel i5 12400F. The population size of 
all three algorithms was set to 180, and the maximum num-
ber of iterations is 2000. Each algorithm is run 10 times to 
evaluate its efficiency.

As can be seen in Fig. 11, all three algorithms converge to 
the Pareto front, exhibiting good convergence ability. Among 
them, the Pareto front optimized by the classical NSGA-II 
algorithm is uniform and converges to a curve in the solution 
space. However, there are several isolated points, and the 
part of Rax greater than 80 um is not fully converged. As for 
the MO-Jaya algorithm, it has the worst convergence and it 
is difficult to converge when the Rax is greater than 80 um. 
Moreover, there are several isolated points at other locations. 
It is of great interest to find that the Pareto front optimized 
by the ADM-MO-Jaya algorithm is the most uniform and 

converges to a curve in the solution space without isolated 
points. This may be because the ADM-MO-Jaya algorithm 
increased the population diversity by randomly adding some 
populations in the first stage, which in turn improved the 
convergence of the algorithm. Furthermore, it reduced the 
iteration step in the later stage, avoiding repeated changes in 
some positions due to excessive iteration steps. As shown in 

Fig. 10   Predicted and experimental values; a h, b V̇  , and c Rax
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Fig. 11   The Pareto front of three optimization algorithms; a–d NSGA-II, e–h MO-Jaya, and i–l ADM-MO-Jaya algorithm (a), (e), and (i) h, V̇  , 
and Rax Pareto front, the others are two-dimensional diagrams of the three-objective Pareto front
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Fig. 11   (continued)
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Table 7, the running time of the three algorithms is approxi-
mately 1:2:3. The classical NSGA-II algorithm has the high-
est operating efficiency, while the MO-Jaya algorithm has 
the lowest. The operating efficiency of the ADM-MO-Jaya 
algorithm is 32% higher than that of the MO-Jaya algorithm.

Table 8 shows the 18 solutions extracted from the 180 
Pareto fronts optimized by the ADM-MO-Jaya algorithm. 
In the practical application of AWJ milling of titanium 
alloys, there is no need to carry out complex process 
comparisons for operators. They can directly select 
optimal milling parameters by looking up the Pareto 
front graph and Table 8 according to the target h, V̇  , and 
Rax. For example, if Rax < 10 μm is the target value, the 
maximum h and V̇  could be 2660.999 μm and 303.124 
mm3/s, respectively, at P = 223.774 MPa, a = 760.000 g/
min, D = 21.629  mm, α = 30.065°, u = 30.454  mm/s, 
and S = 0.402 mm. The results could greatly reduce the 
dependence on the operator’s machining experience for 
achieving a high milling quality of AWJ.

5 � Conclusion

In this study, experiments of AWJ milling titanium alloys 
were designed by considering the process parameters of 
P, ṁa , D, α, u, and S. The effects of these parameters on 
h, V̇  , and Rax were analyzed by using the response surface 
method. Regression models of h, V̇ , and Rax were developed, 
and the robustness of the models was assessed by ANOVA. 
Furthermore, the ADM-MO-Jaya algorithm was proposed 
and verified for multi-objective optimization of AWJ pro-
cessing parameters, in order to balance the surface rough-
ness and processing efficiency. The concluding remarks of 
this research are presented below:

1.	 The u is the most significant factor on h, followed by ṁa , 
S, P, α, and D. For V̇  , the influence of these variables is 
similar. Rax is most influenced by u, followed by P, ṁa , 
S, α, and D, respectively. Based on the response surface 
analysis, the interactive effect between variables has a 
significant influence on h, V̇  , and Rax.

2.	 The correlation coefficients R2 of the model are all 
greater than 0.9, and the model term is relatively sig-
nificant. The model residuals obey normal and random 
distributions, without abnormal structures or obvious 
styles, and the non-random errors of the experimental 
data are insignificant.

Table 7   Running time of 
algorithm; unit: second

Algorithm Mean Std

NSGA-II 27.419 0.215
MO-Jaya 92.119 1.210
ADM-MO-Jaya 62.639 0.725

Table 8   Pareto front data of 
ADM-MO-Jaya algorithm

Std P (MPa) a (g/min) D (mm) α (°) u (mm/s) S (mm) h (μm) (mm3/s) Rax (μm)

1 278.975 760.000 21.857 30.037 30.000 0.401 3463.995 436.176 34.300
2 237.946 760.000 21.724 30.000 30.283 0.400 2881.228 342.363 16.495
3 223.774 760.000 21.629 30.065 30.454 0.402 2660.999 303.124 9.633
4 254.865 760.000 21.374 30.253 30.063 0.400 3136.331 385.289 25.316
5 295.726 760.000 21.573 30.292 30.250 0.400 3685.473 465.999 40.873
6 300.000 760.000 18.721 30.854 30.031 0.400 3791.182 475.205 50.057
7 238.909 760.000 21.553 30.606 30.255 0.400 2901.241 344.856 18.030
8 300.000 760.000 6.000 36.255 30.062 0.400 3949.966 482.377 89.428
9 291.864 760.000 21.697 30.000 30.006 0.400 3646.405 460.044 38.830
10 280.001 760.000 21.512 30.049 30.000 0.400 3485.611 438.797 35.109
11 300.000 760.000 8.954 30.013 30.000 0.400 3870.409 482.020 73.061
12 300.000 760.000 17.052 32.544 30.000 0.400 3825.898 476.054 56.658
13 300.000 760.000 11.764 30.893 30.000 0.400 3855.200 479.960 67.392
14 300.000 760.000 16.860 33.821 30.093 0.400 3832.208 475.647 59.023
15 246.089 760.000 21.781 30.018 30.140 0.400 3003.525 363.273 20.447
16 220.018 760.000 21.970 30.000 46.823 0.400 1647.913 280.526 4.068
17 300.000 596.611 19.333 88.674 69.956 0.799 557.543 321.210 13.636
18 220.011 760.000 21.943 30.000 67.564 0.400 792.064 264.525 1.426
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3.	 The predicted values of the h, V̇  , and Rax regression 
models are generally consistent with the overall trend of 
the experimental values. The mean errors of h, V̇  , and 
Rax are 8.57%, 1.89%, and 10.58%, respectively.

4.	 The Pareto front optimized by the ADM-MO-Jaya algo-
rithm is the most uniform and converges to a curve in 
the solution space without isolated points. The opera-
tion efficiency is 32% higher than the original MO-Jaya 
algorithm.

5.	 The optimized set of 180 Pareto solutions can be directly 
used for milling titanium alloys by AWJ at a relatively 
high quality without the complex process comparisons.
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