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Abstract
Tool wear state is the key factor affecting machining quality, machining efficiency, and cutting stability in the cutting process. 
Serious wear condition will even lead to machining process interruption and machine tool failure. Accurate monitoring of 
tool wear state has become increasingly important in the intelligent development of manufacturing industry. To monitor tool 
wear accurately and effectively, a new method based on whale optimization algorithm optimized support vector machine 
(WOA-SVM) with statistical feature fusion of multi-signal singularity was proposed to recognize the tool wear state. Based 
on estimating the maximum wavelet transformation module (MWTM), multi-signal denoising and singularity quantitative 
characterization were carried out. Meanwhile, the probability density transform was performed on the holder (HE) index, 
and the relevant statistical features were extracted. Random forest algorithm and KPCA algorithm were used for relatively 
important features screening and dimension reduction fusion of multi-signal singularity features. By establishing the cor-
relation mapping between the fusion features and the tool wear level, a WOA-SVM classification model based on the fusion 
features was constructed to recognize the tool wear state. The performance of the method proposed was verified based on the 
milling wear experiment. Results showed that this method can identify the tool wear state efficiently and accurately based 
on the limited experimental data. Compared with some other classification methods, this method had better classification 
performance, effectiveness, and feasibility. These findings can be of great significance for evaluating tool condition, replac-
ing tool timely and ensuring machining quality and efficiency.

Keywords Tool wear condition monitoring · Multi-signal singularity · HE index · Feature screening and fusion · WOA-
SVM model

1 Introduction

With the emergence of industry 4.0 and “Internet + manu-
facturing,” higher requirements are put forward for the cut-
ting system. As an important part of the machining and 
manufacturing process such as turning and milling, the tool 
will inevitably be worn in the actual machining [1]. Tool 
wear state has a great influence on the machining quality, 
machining efficiency, and cutting stability. If serious tool 
wear condition cannot be found in time, it may cause inter-
ruption of the cutting process and even cause machine tool 

failure, which seriously reduces the machining efficiency 
and increases the machining cost [2, 3]. Relevant statistics 
show that an accurate and reliable online monitoring system 
can increase the cutting speed by 10 to 50% and save the 
machining cost by 10 to 40% during the machining process 
[4]. Therefore, online accurate identification of tool wear 
state in cutting is an effective way and inevitable trend to 
improve machining quality, improve machining efficiency, 
and ensure the efficient and stable operation of manufactur-
ing system.

Tool wear status changes irregularly in the machining 
process, so an accurate, reliable, efficient, and stable tool 
wear monitoring system is needed to accurately identify 
the tool wear status. As an extremely important key tech-
nology in the machining field, tool wear monitoring tech-
nology is mainly divided into direct and indirect moni-
toring methods [5]. Since the direct monitoring method 
is limited by the machining conditions, resulting in low 
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efficiency, the indirect monitoring method of tool wear is 
widely used at present.

In recent years, in order to better realize the online 
monitoring of tool wear status, many scholars at home and 
abroad have used the time, frequency, and time–frequency 
domain features of monitoring signals such as cutting force, 
vibration, and sound to establish identification models 
such as neural network, hidden Markov and support vector 
machine (SVM), and conducted extensive research on tool 
wear status monitoring.

Xu et al. [6] established a BP neural network-based 
wear classification model using the frequency domain fea-
tures of acoustic emission and vibration signals, and the 
outcomes showed that the model can effectively monitor 
the tool wear status. Pandiyan et al. [7] developed a clas-
sification prediction model based on GA and SVM based 
on the time and frequency domain characteristics of force, 
vibration, and acoustic emission signals in grinding, and 
found that the model has high prediction accuracy. Liao 
et al. [8] proposed a tool wear state recognition method 
based on gray wolf algorithm optimized SVM based on the 
time, domain, and time–frequency domain characteristics 
of cutting force signal, and found that the classification 
accuracy is high. Li and Liu [9] presented a tool wear state 
prediction method using improved hidden Markov model 
based on the time and time–frequency domain features of 
cutting force signals. Kong et al. [10] established a wear 
state recognition model combining support vector machine 
(SVM) and whale optimization algorithm (WOA) by using 
the three domain features of the force signal.

SVM has the performance advantages of simple struc-
ture, strong generalization ability, and fast running speed, 
and it is widely used in linear and nonlinear classification 
and recognition [11]. The identification process of differ-
ent tool wear states is actually a nonlinear classification 
and recognition problem. Therefore, this study uses non-
linear classification SVM to carry out the research on the 
subsequent wear classification and identification. How-
ever, the SVM classification and recognition performance 
mainly depend on two hyperparameters (i.e., penalty 
parameter c and the kernel parameter σ) [12]. In tradi-
tional methods, these two parameters were mainly selected 
based on subjective experience, and it is difficult to obtain 
optimal model parameters. To overcome the deficiencies 
in the traditional methods, the use of swarm intelligence 
optimization algorithms (gray wolf optimization (GWO), 
artificial bee colony (ABC), genetic algorithm (GA), etc.) 
can achieve SVM parameter optimization to a certain 
extent. However, some commonly used algorithms may 
fall into local optimization, overfitting, and low efficiency 
in the optimization process [13]. Thus, the WOA [14, 15] 
with strong global and local search capabilities is used for 
optimizing the hyperparameters of the SVM classification 

model to obtain the optimal solution of parameters in this 
study.

In view of the fact that milling is an intermittent cut-
ting process, the multi-signals generated in machining are 
unstable and fluctuate greatly. Time and frequency domain 
features are sometimes affected by cutting conditions and 
unstable signals, resulting in the inability to provide more 
accurate and comprehensive information [16]. On the con-
trary, wavelet analysis in time–frequency domain analysis 
has obvious advantages in depicting nonstationary signals, 
and singularity analysis in wavelet analysis method has good 
application prospects for wear state identification [17, 18]. 
Singularity analysis method was first applied to boundary 
detection in images, and then due to its stability in character-
izing nonstationary signal changes, it was gradually applied 
to state monitoring by related scholars [19, 20].

Mohanraj et al. [21] came up with a wear condition mon-
itoring method based on end milling vibration signal HE 
index combined with machine learning, and found that the 
recognition accuracy was high. Zhou et al. [22–24] used 
singularity analysis of single force, vibration, and sound sig-
nals to monitor tool wear, respectively. Results showed that 
the method could be effective and improve manufacturing 
sustainability. Zhu et al. [25] estimated the tool state based 
on the singularity HE probability density function of micro-
milling cutting force signal, and found that the proposed 
method has strong robustness. Tien et al. [26] established 
an online wear monitoring model combined with wavelet 
signal single point analysis of vibration signal HE index, and 
experiments verified the accuracy of the model.

Relevant scholars have laid a certain foundation for the 
research on tool wear state monitoring based on signal sin-
gularity analysis, but the related research mainly focuses 
on using the singularity feature of a single sensor signal 
to monitor the wear state, which cannot guarantee to pro-
vide more accurate and comprehensive feature information. 
Meanwhile, the research on wear condition monitoring 
based on the fusion of different signal singularity features 
is relatively rare.

In the actual machining, the synthesis of various cutting 
signal information can comprehensively and better reflect 
the tool wear state. Therefore, this study proposed a method 
based on WOA-SVM with statistical feature fusion of multi-
signal singularity to monitor the tool wear state. Based on 
the statistical characteristics of HE index of multi-sensor 
signal singularity, the random forest algorithm was used to 
screen the multi-signal features that were relatively impor-
tant to the change of tool wear. Kernel principal component 
analysis (KPCA) feature fusion algorithm was used to reduce 
the dimension of the features, and the fusion statistical fea-
tures were used as the input of WOA-SVM wear classifica-
tion model to identify the tool wear status. The effectiveness 
and feasibility of the method proposed were verified by wear 
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experiments. The proposed framework for online recognition 
method of tool wear status is depicted in Fig. 1.

2  Method proposed

Tool wear status changes with the process in machining. 
Relevant studies have shown that the changes of differ-
ent tool wear states are closely related to the changes of 
the signal waveforms. Cutting force and vibration sig-
nals are considered to be the most sensitive detection 
signals to tool wear changes [27, 28]. It can character-
ize the different tool wear states effectively, being more 
suitable for the online recognition and monitoring of 

tool wear. The relationship between the cutting force and 
vibration signal waveform and wear status is shown in 
Fig. 2. It can be found that the signal waveform exhibits 
singularity or disorder in the machining, which can be 
quantitatively estimated by the Lipschitz index (i.e., HE 
index) [23, 25].

2.1  Estimation of HE index of multi‑signal singularity

The HE index is a useful index for evaluating signal singu-
larity, and the method of calculating HE using the wavelet 
transform modulus maxima is gradually used in machine fault 
diagnosis and condition monitoring [26, 29]. The theoretical 
calculation process is as follows:

Fig. 1  Framework for online recognition method of tool wear status

(a) Fx signal (b) Vx signal

Fig. 2  Relationship between the signal waveform and tool wear status
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Assuming that f(t) is HE α (α ≥ 0) at point v ∈ R, if there is 
a constant A > 0 and m = [α] degree polynomial pv, such that:

where the upper bound is determined by the index α. Param-
eter α provides the HE of the function f(t) at t = v. If the HE 
index α0 of f(t) satisfies n < α < n + 1, f(t) is nth differentiable. 
Its n derivative f(n)(t) is singular at point v, then it can be said 
that α0 describes the singularity.

According to relevant research, the HE index can be obtained 
by estimating the maximum wavelet transformation module 
(MWTM) and the decay on the time scale plane. By setting the 
partial derivative of wavelet transform of signal f(t) at u to zero, 
the local extreme value along the scale is obtained [22, 26].

Along the modulus maximum line, the wavelet coefficients 
have the following scaling behavior around t [26]:

where α represents HE. By taking the discrete scale s =  2j 
along the modulus maximum line, the wavelet coefficients 
can be expressed as Eq. 4.

A and α can be calculated by Eq. 4. The function con-
nects the wavelet scale j and HE, representing the relationship 
between the MWTM and the wavelet scale j.

2.2  WOA

The whale optimization algorithm (WOA) is an emerging 
swarm intelligence optimization algorithm proposed based 
on the hunting behavior of humpback whales, mainly includ-
ing three parts: surrounding prey, bubble attack, and random 
search for prey [15, 30]. In the stage of surrounding the prey, 
the prey position is the target position, and the individual 
whale will move to the target position. The mathematical 
expression is shown in Eqs. (5)–(8).

(1)||f (t) − pv(t)
|| ≤ A|t − v|�∀t ∈ R

(2)
�WTf (u, s)

�u
= 0

(3)A|WTf (u, s)| ≤ s
(�+

1

2
)

(4)log2
||WT2j f (u, s)

|| ≤ log2A + j(� +
1

2
)

(5)��⃗D =
|||��⃗C ⋅

���⃗X∗(t) − �⃗X(t)
|||

(6)�⃗X(t + 1) = ���⃗X∗(t) − �⃗A ⋅
��⃗D

(7)�⃗A = 2 �⃗a ⋅ r⃗ − �⃗a

(8)��⃗C = 2 ⋅ r⃗

where t is the number of current iterations, and �⃗A and ��⃗C are 
coefficient vectors. ���⃗X∗ represents the position vector of the 
prey so far, �⃗X is the position vector of other search agents, 
�⃗a is the coefficient vector in the iterative, and r⃗ is a random 
vector between [0, 1].

Bubble attack behavior establishes a spiral equation between 
the position of whale and prey to simulate the predator–prey 
mechanism of whale bubble net. The expression is shown in 
Eqs. (9) and (10).

where b is the logarithmic spiral shape constant, ���⃗D′  repre-
sents the distance between the current whale and prey, and 
l is a random number between [− 1, 1].

In order to determine which mechanism in the bubble 
attack the whale moves to the prey position, a probability 
p = 0.5 generated randomly between [0, 1] is used alternately 
to determine the way to update the position of the search 
particle. The mathematical expression is shown in Eq. (11).

In the stage of random search for prey, the WOA algorithm 
judges to enter the stage of random search for prey accord-
ing to the coefficient vector |A| value greater than 1. At this 
time, whales perform random global searches based on each 
other’s location, rather than prey location. The mathematical 
modeling of this behavior is shown in Eqs. (12) and (13).

where �������⃗Xrand  is the position vector of selected individual 
whale randomly, and ��⃗D represents the random distance 
between the prey and individual whale.

2.3  SVM classification algorithm

The basic idea of SVM classification is to nonlinearly map 
the low-dimensional data in the original space to the high-
dimensional feature space, and find an optimal hyperplane to 
realize the classification problem of data samples. Supposing 
that the classification sample data is T = {(x1, y1) (x2, y2),…, (xi, 
yi)}, i = 1, 2,…, N, where xi ∈ Ra is a real vector and yi ∈ {− 1,1} 
is a category label.

(9)�⃗X(t + 1) =
���⃗
D

�

⋅ ebl ⋅ cos(2𝜋l) + ���⃗X∗(t)

(10)���⃗
D

�

=
||| ���⃗X

∗(t) − �⃗X(t)
|||

(11)�⃗X(t + 1) =

{
���⃗X∗(t) − �⃗A ⋅

��⃗Dp p < 0.5

���⃗D
�

⋅ ebl ⋅ cos(2𝜋l) + ���⃗X∗(t) p p ≥ 0.5

(12)��⃗D =
|||��⃗C ⋅

������������⃗Xrand(t) −
������⃗X(t)

|||

(13)�⃗X(t + 1) = ������������⃗Xrand(t) −
�⃗A ⋅

��⃗D
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The original problem to be solved by support vector 
machine is shown in Eq. (14).

where c is the penalty parameter, � is slack variable, and 
�(xi) is nonlinear mapping.

The Lagrange function is introduced into Eq. (14), and con-
verted into dual form, as shown in Eq. (15) [10].

where K(xi, xj) represents the kernel function. �i is a 
Lagrange multiplier.

Assuming that �∗
i is the optimal solution of the dual prob-

lem, the optimal classification function of SVM under nonlin-
ear conditions can be obtained, as shown in Eq. (16).

2.4  WOA‑SVM classification model

In the process of WOA algorithm optimizing SVM, the 
model parameters (c, σ) together constituted search particles. 
The parameters of WOA-SVM classification and recognition 
model were trained and optimized based on the training data-
set, and the training dataset was K-fold cross validated. The 
average recognition accuracy of the K times of test results in 
the process of WOA optimization was taken as the fitness of 
the search particles. To reflect the advantages of WOA-SVM 
classification model in the process of parameter optimiza-
tion, the maximum iteration number was used as the algo-
rithm termination standard in this study. When the iteration is 
over, the optimal search particle (c*, σ*) corresponding to the 
maximum fitness value is obtained, and the WOA-SVM clas-
sification and recognition model are established together with 
the training data. Since the radial basis function had obvious 
advantages in program simplification and generalization, this 
research adopted the radial basis function as the SVM kernel 
function, and the representation is shown in Eq. (17) [12, 31].

In order to fully reflect the accuracy and effectiveness of 
the WOA-SVM classification and recognition model based 
on signal singularity feature fusion, the complete statistical 
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features and the fusion features obtained by different feature 
dimension reduction fusion techniques of HE index of multi-
signals were used as the input of WOA-SVM classification 
model to identify different tool wear states. Meanwhile, 
it was compared with some commonly used optimization 
algorithms (gray wolf optimization (GWO), artificial bee 
colony (ABC) and genetic algorithm (GA), etc.) to optimize 
SVM recognition methods. Due to the randomness of the 
parameter optimization of swarm intelligence optimization 
algorithm, in order to reliably and quantitatively evaluate the 
accuracy and effectiveness of the wear recognition method 
proposed, the classification and recognition programs of 
SVM optimized by different swarm intelligence optimization 
algorithms were run for 20 times. The average classification 
accuracy and the training time of the model were used as 
indicators for evaluation.

3  Milling experiment

3.1  Experimental condition

To verify the accuracy and effectiveness of the method 
proposed, the wear experimental data of ball end carbide 
milling cutters obtained on high-speed CNC machine tools 
under dry milling conditions were used [32, 33]. The experi-
mental acquisition platform is shown in Fig. 3. The cutting 
parameters in machining are shown in Table 1. A Kistler 
dynamometer was installed between the table and the work-
piece to measure the cutting force signal. Meanwhile, Kistler 
piezoelectric accelerometers were deployed on the work-
piece to gather vibration signal. Cutting force and vibration 
signals in different directions were collected by Ni DAQ 
data acquisition card at a continuous sampling frequency 
of 50 kHz.

During the experiment, the flank wear was measured by 
the LEICA MZ12 microscope. In each experiment, tool wear 
was measured offline after 315 cuts. Since the C1, C4, and 
C6 milling cutters had complete wear data in the entire cut-
ting process, the C1, C4, and C6 datasets were selected to 
validate the method proposed in this study.

4  Results and discussion

4.1  Tool wear clustering

The average flank wear corresponding to different cutting 
times of C1, C4, and C6 milling cutters was obtained in 
the experiment, as shown in Fig. 4a. It can be observed that 
the overall trend of the wear curve of each milling cutter is 
basically the same, which roughly goes through three stages: 
initial wear, normal wear, and severe wear. The traditional 
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method of calibrating different stages of tool wear based 
on experience has strong subjectivity. For overcoming the 
shortcomings of traditional methods, K-means clustering 
algorithm [34] was adopted in this study. With tool wear as 
the observation value and category as the hidden variable, 
unsupervised cluster analysis was carried out for different 
tool wear stages. The number of cluster categories was 3. 
Due to the randomness of the initial center point selection 
of the clustering algorithm, there may be slight differences 
in each clustering result. In order to reduce accidental errors, 
clustering repeated was performed on the worn samples, and 
the average of the multiple clustering results was used as the 
final clustering result. The wear clustering results of differ-
ent milling cutters are shown in Fig. 4b–d.

4.2  Multi‑signal denoising and HE index calculation

Due to the interference of machining environment and 
machine tool vibration, the original multi-signals collected 
will inevitably be polluted by noise in the experiment. When 
characterizing the signal singularity quantitatively, the HE 
index generated by noise will lead to inaccurate calculation 
results of signal HE index. Therefore, signal noise reduc-
tion preprocessing is an important foundation to obtain rela-
tively accurate quantitative characterization of multi-signal 
waveform. Some commonly used signal denoising methods 
(wavelet default threshold filtering, bandpass filtering, etc.) 
can remove noise effectively, but there may be the problem 
of removing some important information from the origi-
nal signal. Therefore, this paper adopted a noise reduction 
algorithm based on MWTM to denoise the signal. Since the 
MWTM value of a noise-dominated point decreases sig-
nificantly with increasing scale, the point is set to 0 and the 

effective signal is reconstructed using Mallat’s method [26, 
29].

The type of wavelet basis function has an important influ-
ence on the effective signal denoising, so the wavelet basis 
need be selected according to the characteristics of multi-
signals. Reasonable selection of wavelet bases is helpful 
to retain the useful information in the original signal. The 
selection of wavelet bases is closely related to the vanishing 
moment. At present, the function with continuous differen-
tiability, vanishing moment, symmetry, or antisymmetry is 
mainly selected as wavelet bases [24, 29].

Combined with the research results of relevant literatures 
and repeated experiments on signal wavelet basis selection, 
the Gaussian function was selected as the signal wavelet 
basis in this study. Since its N-order derivative function 
has the characteristics of N-order vanishing moment, it can 
evaluate the influence of different quantities of vanishing 
moments on the noise reduction of signal MWTM effec-
tively. Generally, the number of MWTM increases with the 
number of vanishing moments at a given scale. In considera-
tion of computational efficiency, it is particularly important 
to select wavelet bases with appropriate vanishing moments 
for signal denoising [35].

On the basis of experiments, the vibration and cutting 
force signals of the 220th cutting cycle of the milling cutter 
were denoised based on the MWTM noise reduction algo-
rithm. At the same time, to verify the effect of denoising, the 
frequency spectrum of the denoised samples was analyzed, 
as shown in Figs. 5 and 6, respectively.

By comparing Fig. 5a–d, it can be found that the sig-
nal waveform denoised by the wavelet default threshold has 
changed significantly compared with the original vibra-
tion signal. Compared with the denoising method based on 
MWTM, more useful information of the original signal is 
lost. The MWTM denoising algorithm based on the wavelet 
base with two vanishing moments of the second derivative 
has good noise reduction effect and smooth signal. Com-
pared with Fig. 5d, e, it can be observed that the smoothness 
of denoised signals using three vanishing moment wave-
let bases is basically the same as that of the two vanishing 
moments. Therefore, the Gaussian function with second 

Fig. 3  Experimental acquisition 
platform

Table 1  Cutting parameters in machining

Parameters Numerical value Unit

Spindle speed 10,400 r/min
Feed rate 1555 mm/min
Radial (y-direction) cutting depth 125 μm
Axial (z-direction) cutting depth 200 μm

2214 The International Journal of Advanced Manufacturing Technology (2022) 123:2209–2225
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derivative is suitable to be used as the wavelet base for 
denoising the MWTM of the vibration signal.

From Fig. 6c–e, it can be found that the cutting force 
signal is denoised based on the wavelet bases of 1, 2, and 3 
vanishing moments, and the effect of signal smoothness is 
almost the same. Therefore, the Gaussian function with the 
first derivative was used as the wavelet base for the MWTM 
denoising of the cutting force signal. According to the spec-
trum analysis results in Figs. 5 and 6, it can be found that the 
energy of vibration signal and cutting force signal is mainly 
concentrated near the tool tooth passing frequency of 520 
HZ and its integer multiples [26]. The formula is shown in 
Eq. (18).

(18)TPF =
Nn

60

where N represents the spindle speed, N = 10,400 r/min, and 
n is the tooth number of the tool, n = 3.

Since both HE index estimation and signal denoising 
need to calculate WTMM, the WTMM noise reduction algo-
rithm is integrated with the HE index calculation process 
[23, 26]. As the number of WTMM of noise decreases with 
the increase of scale, relatively large scale is usually used in 
noise reduction algorithm to highlight useful signals, and the 
scale value is usually 4–5 [22, 24]. By setting the T threshold 
of the MWTM at the largest scale, it is used to exclude the 
MWTM generated by noise, and the MWTM smaller than T 
will be eliminated. T threshold formula is shown in Eq. (19).

(19)T = Mlog2

�
1 + 2

√
PN

Z + j

�

(a) Average flank wear of C1, C4 and C6 milling cutters (b) C1 milling cutter

(c) C4 milling cutter (d) C6 milling cutter

Fig. 4  Clustering results of different wear stages of milling cutters
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(a) Raw Vx signal and spectrum analysis

(b) Wavelet default threshold de-noising signal and spectrum analysis

(c) MWTM denoising signal and spectrum analysis based on the first derivative of wavelet basis function

(d) MWTM denoising signal and spectrum analysis based on the second derivative of wavelet basis function

(e) MWTM denoising signal and spectrum analysis based on the third derivative of wavelet basis function

Fig. 5  Different noise reduction methods for Vx signal
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(a) Raw Fx signal and spectrum analysis

(b) Wavelet default threshold denoising signal and spectrum analysis

(c) MWTM denoising signal and spectrum analysis based on the first derivative of wavelet basis function

(d) MWTM denoising signal and spectrum analysis based on the second derivative of wavelet basis function

(e) MWTM denoising signal and spectrum analysis based on the third derivative of wavelet basis function

Fig. 6  Different noise reduction methods for Fx signal
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where PN is the size of the noise; M is the maximum value 
of the MWTM, Z is a constant and set to 2 [25], and j is the 
maximum value of the scale s =  2j, j = 0, 1, 2, …, j.

4.3  Statistical feature extraction

Based on the wear experiment and clustering results, the 
vibration signal Vx and cutting force Fx representing five 
rotation cycles of different wear stages (cutting 50th, 150th, 
and 300th) were selected to calculate the HE index value, 
and the probability density function was calculated for HE 
index. The results are depicted in Figs. 7 and 8, respectively.

From Figs. 7 and 8, it can be found that the probability 
density distribution of HE index of Vx and Fx at different 
wear stages of the tool basically conforms to the form of 
single or double front normal distribution. At the same 
time, the state of probability density distribution changes 
with the change of tool wear state gradually, and the cut-
ting force and vibration signals in other directions also 

have the same situation. Due to the large overlap of the 
probability density function distributions of different tool 
wear states, only using the basic parameters of the mean 
and standard deviation (Std) of the Gaussian distribution 
is not enough to characterize the probability distribution 
information of different tool states fully and effectively. 
Since the probability density distributions of different tool 
wear states are different in shape and range, we extracted 
the maximum (Max), minimum (Min), skewness (Ske), 
kurtosis (Kur), variance (Var), range (Rng), and standard 
error (SE) features of HE to represent the tool state com-
prehensively. When the sample number is the same, the 
number of signal singular points changes with different 
tool wear states. Thus, the HE number (HENo.) can also 
characterize the change of tool wear. In this article, 10 fea-
tures were extracted from each milling force and vibration 
sensor signal, a total of 60 statistical features.

Taking C1 dataset as an example, for avoiding the influ-
ence of magnitude differences between different feature fac-
tors and laying a foundation for feature fusion below, this 

Fig. 7  HE index estimation of vibration and cutting force signals

Fig. 8  HE exponential probabil-
ity density of vibration signal 
and cutting force signal

(a) Vx signal (b) Fx signal
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study adopted the Min–Max normalization method to nor-
malize the different features of multi-signals, as shown in 
Fig. 9. It can be found that with the progress of machining, 
the characteristics of cutting signals have obviously different 
trends with the different stages of tool wear state. Taking the 
Vx signal mean feature in Fig. 9a as an example, it can be 
observed that the mean feature in the signal characteristics 
can show an overall increasing trend with severe tool wear, 
while some other features show a different changing trend.

4.4  Feature screening and fusion

There are some features which are irrelevant to the tool 
wear state or redundant in the statistical features of sig-
nal singularity. If the wear identification model is directly 

established without feature screening and fusion, it is easy 
to cause problems such as overfitting and dimensional 
disaster, which will affect the recognition effect of wear 
classification. Through feature selection and dimension 
reduction fusion, the useless information of tool wear can 
be removed and more relevant information can be retained. 
It can reduce the complexity of building the model and 
characterize the tool wear state effectively [36]. Based on 
the above considerations, in order to screen out the features 
which are relatively important to the change of tool wear 
state, the random forest algorithm [37] was used to sort 
the importance of signal features. The number of trees was 
300, and the cross validation was fivefold. Taking Vx and 
Fx signal features as examples, the importance rank results 
of each feature are shown in Fig. 10.

(a) Vx signal (b) Vy signal

(c) Vz signal (d) Fx signal

(e) Fy signal (f) Fz signal

Fig. 9  Normalization results of different features of multi-signals in C1
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To improve the accuracy of tool wear status recognition, the 
first three statistical features of multi-signal HE importance 
rank were selected for dimension reduction fusion based on 
the consideration of calculation amount and efficiency. In this 
study, KPCA was used for feature dimension reduction fusion, 
and its fusion features are used as the input of classification 
model to identify tool wear status. Meanwhile, it was com-
pared with some commonly used dimension reduction fusion 
algorithms (LLE and ISOMAP). Singular value decomposition 
was performed on the screened features, and the number of 
principal component features was estimated through the cumu-
lative contribution rate of eigenvalues of the covariance matrix, 
as shown in Fig. 11. It can be found that the first 7 principal 
component features retain more than 85% of the contribution 
rate. Usually, when the cumulative contribution rate of the fea-
tures exceeds 80%, it has a certain effectiveness. Therefore, the 
first seven principal component features were selected to char-
acterize tool wear in this study. LLE and ISOMAP algorithms 
were used to reduce the dimension of the selected features, 
and the fused features were selected for tool wear recognition.

4.5  Recognition results and analysis

According to the tool wear clustering results in Sect. 4.2, the 
variables “1,” “2,” and “3” were used as output labels for the 
initial, normal, and severe wear stages of the tool. The wear 
datasets of any two milling cutters of C1, C4, and C6 were 
selected as the training sets, and tenfold cross validation 
was carried out. Then, 20 groups of initial wear, 60 groups 
of normal wear, and 60 groups of severe wear data samples 
were randomly selected from the different wear stages of 
the third milling cutter wear dataset as the testing set. The 
data combination of training set and testing set composed 
of samples of different milling cutter datasets is described, 
as shown in Table 2.

The initial ranges of the relevant parameters C and σ of 
the SVM model are set as follows: C ∈  [10−5,  105], σ ∈  [10−5, 
 105]. Relevant parameters of swarm intelligence optimiza-
tion algorithm are set, as shown in Table 3.

All programs in this section were calculated on AMD 
R9-5900HX 3.3-GHz CPU processor (16.0-GB RAM). Tak-
ing D1 data combination as an example, the WOA-SVM 
classification and recognition results of different states of 
tool wear based on multi-signal complete feature set (CFS) 
and fusion features of different datasets are shown in Fig. 12. 
After repeated operations, the classification accuracy and 
modeling run time of wear states of each data combina-
tion based on different methods were obtained, as shown 
in Fig. 13.

From Fig. 12, it can be found that among all the meth-
ods for classifying and identifying the wear state of the D1 
data combination, the KPCA + WOA-SVM method based 
on the signal singularity feature has the least number of 

(a) Vx signal (b) Fx signal

Fig. 10  Importance rank of signal features

Fig. 11  Dimension reduction by feature decomposition

Table 2  Data combination description of training set and testing set

Training set Testing set Data combination name

C4C6 C1 D1
C6C1 C4 D2
C1C4 C6 D3
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misclassified samples of the wear state and the best classi-
fication effect. However, the wear state of the CFS + WOA-
SVM method has the largest number of misclassified sam-
ples, and the classification effect is poor.

According to Fig. 13, It can be found that the classifica-
tion accuracy and modeling run time of WOA-SVM wear 

classification method using different fusion features are bet-
ter than those of CFS + WOA-SVM method in all data com-
binations (D1, D2, D3). The improved classification accu-
racy of WOA-SVM model and the shorter modeling run time 
fully reflect the advantages and importance of feature fusion 
in the process of wear status classification and recognition. 

Table 3  Relevant parameter information of swarm intelligence optimization algorithm

Algorithm name Parameter setting

GA [38] Population number is 20, maximum iteration is 100, and individual selection probability is 0.8
GSA [39] Particle size is 20, maximum iteration is 100, initial value of gravitational constant G0 is 100, and adjustment parameter α is 

20
ABC [40] Population number is 20, maximum iteration is 100, nectar source number is 10, and maximum cycle number of nectar 

sources is 100
GWO [41] Population number is 20, maximum iteration is 100, and coefficient vector decreases linearly from 2 to 0
WOA [42] Population number is 20, maximum iteration is 100, shape parameter of logarithmic spiral b is 1, and coefficient vector 

decreases linearly from 2 to 0

(a) KPCA+WOA-SVM (b) ISOMAP+WOA-SVM

(c) LLE+WOA-SVM (d) CFS+WOA-SVM

Fig. 12  Classification and identification results of wear state in D1 data combination
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The main reason is that there are some irrelevant and redun-
dant features in the complete feature set, which increases the 
difficulty and complexity of model modeling, resulting in a 
long modeling time. Meanwhile, the overfitting phenomenon 
may occur in the modeling process of WOA-SVM, which 
reduces the classification performance of the model. Fea-
ture screening and dimension reduction fusion can remove 
some useless features and reduce the feature dimension. To 
a certain extent, it can reduce the difficulty of modeling and 
avoid the occurrence of overfitting in the model training. 
The performance of model classification and recognition 
is improved, which shortens the modeling run time and 
improves the accuracy of classification and recognition.

Comparing the classification accuracy of each data 
combination of the three different fusion feature meth-
ods in Fig. 13a, it can be found that KPCA + WOA-SVM 
has the highest classification accuracy compared with 

ISOMAP + WOA-SVM and LLE + WOA-SVM methods. 
It can be shown that the performance of KPCA dimension 
reduction fusion feature used in this study is better than that 
of ISOMAP and LLE, which fully proves the effectiveness 
and feasibility of the KPCA + WOA-SVM method proposed. 
According to the wear classification accuracy using the same 
method in different data combinations, it can be found that 
the classification accuracy of D1, D2, and D3 based on the 
same method is different. The main reason may be that there 
are some differences in data quality between training set and 
testing set in different data combinations. And because dif-
ferent milling cutter datasets have different sample numbers 
in the same wear stage, the distribution of training set and 
testing set is different.

By classifying and identifying the wear states of D1, D2, 
and D3 data combinations, the performance of WOA-SVM 
classification model based on KPCA fusion features was 

(a) Classification accuracy (b) Modeling run time

Fig. 13  Classification accuracy and modeling run time of wear states of each data combination based on different methods

Table 4  Performance evaluation of SVM classification methods optimized by different swarm intelligence algorithms

Method name D1 D2 D3

Classification 
accuracy

Modeling run 
time (s)

Classification 
accuracy

Modeling run 
time (s)

Classification 
accuracy

Modeling 
run time 
(s)

KPCA + WOA-SVM 93.56% 29.26 94.29% 33.67 92.91% 28.12
KPCA + GWO-SVM 90.71% 43.47 91.43% 46.677 89.45% 41.86
KPCA + GSA-SVM 87.84% 84.26 89.29% 82.28 87.14% 83.14
KPCA + ABC-SVM 86.67% 234.82 88.45% 229.53 86.43% 234.13
KPCA + GA-SVM 85.36% 54.73 87.50% 57.50 84.64% 54.26
KPCA + SVM 67.86% 8.93 68.57% 11.04 66.43% 8.47
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compared with that of SVM classification model optimized 
by other common optimization algorithms. The classifica-
tion accuracy and modeling run time of different classifi-
cation models are shown in Table 4. It can be found that 
compared with other forms of SVM classification models, 
the WOA-SVM classification model has the highest clas-
sification accuracy in D1, D2, and D3.

It is also found that the modeling run time of WOA-SVM 
classification model is less than that of SVM classification 
model optimized by other swarm intelligence optimiza-
tion algorithms, but greater than that of SVM classifica-
tion model. The main reason is that SVM model does not 
optimize the parameters in the process of classification and 
recognition. Therefore, the modeling run time is the short-
est, but it also leads to the worst classification performance 
of the model. Results show that WOA algorithm has strong 
parameter optimization ability and high optimization effi-
ciency, establishing WOA-SVM model with good classifica-
tion performance. The model has strong generalization abil-
ity, and it can fully mine the relevant information between 
fusion features and wear.

Considering the accuracy of wear classification and the 
running time of modeling, the KPCA + WOA-SVM method 
based on signal singularity proposed has good advantages 
and feasibility in tool wear classification and recognition in 
this article. The research results are of great significance for 
accurate identification of tool wear status, timely replace-
ment of tools, improvement of machining quality, and guar-
antee of safe and stable operation of manufacturing system.

5  Conclusions

Accurate, reliable, efficient, and stable tool wear condition 
monitoring is essential for evaluating tool status, improving 
machining quality and efficiency, and ensuring the stability 
of manufacturing system. Based on the correlation infor-
mation between the singularity statistical characteristics of 
cutting force and vibration signals and tool wear, this paper 
proposed a new method based on WOA-SVM with statisti-
cal feature fusion of multi-signal singularity to monitor tool 
wear state innovatively. The effectiveness and feasibility of 
the method proposed were verified by milling experiments. 
Some main conclusions can be drawn as follows:

1. A tool wear condition monitoring method based on 
WOA-SVM with multi-signal singularity feature fusion 
was proposed, which can fully mine the useful informa-
tion between multi-signal singularity feature fusion and 
tool wear. Based on the limited experimental data, the 
tool wear status can be identified efficiently and accu-
rately.

2. The K-means unsupervised clustering algorithm was 
used to overcome the traditional experience-based cali-
bration of different tool wear stages, which was highly 
subjective. Random forest and KPCA algorithms were 
used for multi-signal singularity feature screening and 
dimension reduction fusion. To some extent, it can avoid 
the occurrence of overfitting in the model training. The 
model performance and of classification accuracy was 
improved.

3. The classification performance of different methods was 
evaluated based on the tool wear experimental datasets 
of the high-speed CNC machine tool. In the same data 
combination, compared with WOA-SVM method based 
on complete feature set and other dimension reduction 
fusion features, KPCA + WOA-SVM method had the 
best classification accuracy. Results showed that KPCA 
dimension reduction fusion features had the best perfor-
mance. It was also noticed that different data combina-
tions based on the same method have different classifica-
tion accuracy, which may be caused by the differences 
in data quality and distribution between training set and 
testing set.

4. Compared with some commonly used optimization algo-
rithms to optimize SVM classification model, WOA-
SVM classification model had the highest classification 
accuracy in all data combinations. The modeling run 
time was less than that of SVM model optimized by 
other optimization algorithms except that it was greater 
than that of SVM model without parameter optimiza-
tion. Results showed that WOA algorithm had strong 
parameter optimization ability and high optimization 
efficiency, establishing WOA-SVM model with strong 
classification performance and generalization ability.

The tool wear condition monitoring method proposed in 
this paper can provide an effective way for timely replace-
ment and early condition warning of the tool in the actual 
machining, having a certain potential application value. 
However, the method was only studied under fixed cutting 
conditions in milling. For future work, the method will be 
applied in different machining methods and variable cutting 
conditions to demonstrate the practicality of the method. In 
addition, the swarm intelligence optimization algorithm and 
SVM structure will be improved to make the method more 
effective in the subsequent implementation.
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