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Abstract
In the milling process, it is easy to produce chatter due to the low rigidity of the thin-walled structure, which leads to the 
deterioration of workpiece surface quality and reduces the service life of cutting tools and machine tools. Therefore, a new 
chatter detection method for thin-walled parts based on optimal variational mode decomposition (OVMD) and refined com-
posite multi-scale dispersion entropy (RCMDE) is proposed in this paper. Firstly, to solve the problem that the decomposition 
effect of the variational mode decomposition (VMD) algorithm is greatly affected by its parameter, a genetic algorithm (GA) 
is used to iteratively optimize the parameter of the VMD algorithm, and a new index, square envelope spectral correlated 
kurtosis (SE-SCK), is introduced as the fitness function of the genetic algorithm. Then, the energy ratio of the decomposed 
signal is calculated as the principle of selecting sub-components, and the sub-components with rich chatter information 
are selected for signal reconstruction. To solve the problem that the multi-scale dispersion entropy (MDE) will miss some 
information in the multi-scale process, RCMDE is introduced to detect milling chatter. Finally, the experiment of the variable 
cutting depth in side milling of titanium alloy thin-walled parts is carried out. The experimental results show that the OVMD 
algorithm proposed can solve the problem of difficult separation of chatter frequency bands caused by mode aliasing and lay 
a foundation for subsequent chatter feature extraction. RCMDE is more conducive to chatter detection than the single-scale 
DE when the scale factor is 4. The distinguishing effect of RCMDE on the machining state is more than 50% higher than 
that of MDE when the scale factor is 4.

Keywords Variational mode decomposition · Thin-walled parts · Milling chatter · Refined composite multi-scale dispersion 
entropy · Squared envelope spectral correlated kurtosis

Nomenclature
K  Decomposition levels in VMD algorithm
�   Penalty factor in VMD algorithm
�t   Shear deformation energy consumption
uk(t)   The kth modal component
�k   The center frequency of the kth modal 

component
u  The original signal
�(t)   The pulse function
∗   The convolution operator
�   Lagrange multiplier
un+1
k

   The n + 1 iteration of the kth modal 
component

�n+1
k

   The n + 1 iteration of the central frequency 
of the kth modal component

�n+1   The n + 1 iteration of Lagrange multiplier
�   Scale factor in RCMDE
p
(
rv0v1⋯vm−1

)
   The average value of the probability of 

the dispersion mode corresponding to the 
coarse-grained sequence

p
(�)

k
   The probability of the dispersion model 

corresponding to the kth coarsening 
sequence under scale

X̃   The zero mean filtered signal
N  The length of signal
r
X̃(0)   The value of the autocorrelation function
SE

(
X̃
)
   The square envelope signal

rSE(0)   The value of the autocorrelation function 
of the square envelope signal

fs   The sampling frequency
fr   The spindle rotation frequency
SES(f )   The square envelope spectrum
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f  The spindle rotation frequency
�   Delay in RCMDE
m  Embedding dimension in RCMDE

1 Introduction

In the machining process, chatter refers to the self-excited 
vibration between the tool and the workpiece, which will 
lead to significant machining errors, poor surface quality, 
and poor machining quality of the machine tool [1]. In the 
actual machining process, it is usually used to select con-
servative cutting parameters to avoid chatter, which greatly 
reduces production efficiency. Although the analytical 
method can predict the chatter in advance, the prediction 
may not be accurate due to the complex dynamic system 
involved in the machining process [2], and the signals col-
lected in the milling process can accurately reflect the mill-
ing state. Therefore, using signal processing technology for 
chatter detection has been widely studied.

Chatter detection includes signal preprocessing, feature 
extraction, and state recognition. Because the signals col-
lected in the machining process are nonlinear, advanced sig-
nal processing methods are needed to eliminate the irrelevant 
information to the machining state in the original signal, 
restore the essential components of the signal, and further 
extract the chatter feature. The signal processing methods 
include time domain analysis, frequency domain analysis, 
and time–frequency domain analysis. In the cutting process, 
the original time series signal obtained by the sensor reflects 
the change of signal amplitude with time, and some statisti-
cal indexes can be directly calculated to judge the machining 
state. Lamraoui et al. [3] took root mean square, variance, 
peak value, and gap coefficient directly calculated from the 
time domain acceleration signal as chatter feature. Li et al. 
[4] calculated the real-time variance of milling force signal 
in the time domain for chatter detection. However, the time 
domain analysis method cannot provide frequency domain 
information. When the cutting parameters change, the time 
domain method may not be able to detect the occurrence of 
chatter [5].

As a frequency domain analysis method, fast Fourier 
transform (FFT) is widely used in chatter detection because 
of its advantages in capturing frequency information. Gupta 
and Singh [6] used the local mean decomposition technique 
to demodulate the collected audio signal, then performed 
FFT and extracted the chatter feature. Aslan and Altintas [7] 
used FFT to decompose the current signal provided from the 
CNC and detect the frequency of chatter from the spectrum. 
However, the traditional spectrum analysis based on FFT is 
usually only applicable to the analysis of stationary signals. 
The signal in the processing process is nonlinear and unsta-
ble, so its robustness is poor.

The time–frequency analysis method of simultaneous 
time and frequency positioning of signals can effectively 
analyze nonlinear signals and is widely used in feature 
extraction [8]. Wavelet transform (WT) overcomes the 
shortcoming that the window size of short-time Fourier 
transform (STFT) does not change with frequency. Cabrera 
et al. [9] proposed a chatter identification method based on 
wavelet analysis of cutting force signals, which has been 
proven to be effective in four different experimental con-
figurations. Gao et al. [10] proposed the method of cmor 
continuous wavelet transform (CMWT) based on acoustic 
signals for detecting the milling chatter of thin-walled parts 
and analyzed the results of chatter detection and the acqui-
sition of stable region of thin-walled parts in the milling 
process. However, because the resolution of high-frequency 
coefficients decomposed by WT is low, the application of 
high-frequency signals is greatly limited when the chatter 
frequency is high. Empirical mode decomposition (EMD) 
is an adaptive method for analyzing non-stationary and non-
linear signals. EMD does not need to set any parameters in 
advance and has a high signal-to-noise ratio. Shrivastava 
et al. [11] collected the signals in the turning process and 
further processed the chatter signal after wavelet denoising 
(WD) pretreatment by using EMD and performed FFT on 
the obtained internal model function to identify the chatter 
frequency. Chen et al. [12] used the method of ensemble 
empirical mode decomposition (EEMD) to process the sig-
nal, which overcame the shortcoming of EMD mode alias-
ing and used the Fisher discriminant ratio (FDR) to sort the 
features extracted from the sub-components and selected 
the features with higher FDR. However, there are some 
problems in the decomposition of EEMD, such as insuf-
ficient envelope overshoot and negative frequency. VMD is 
a completely non-recursive and adaptive method for signal 
processing and modal variation, which is more robust than 
EEMD and EMD. Mou et al. [13] proposed a VMD-ED 
method for chatter detection of thin-walled structures during 
milling. The experimental results show that the identifica-
tion method has a good identification effect. However, when 
using VMD, the penalty factor � and the decomposition level 
K need to be set in advance, and the selection of param-
eters has a great impact on the decomposition effect. Liu 
et al. [14] used kurtosis to optimize the parameters of VMD 
and extracted energy entropy as a chatter feature. However, 
kurtosis as a fitness function cannot effectively identify the 
transient shock sequence with periodic distribution, so it is 
very important to establish a reasonable fitness function to  
improve the decomposition effect of VMD.

In the machining process, an appropriate chatter index 
is key to detecting the occurrence of chatter. Entropy is a 
dimensionless index, which reflects the complexity and 
randomness of the sequence. The entropy will change sig-
nificantly when the machining state changes. Zhu et al. [15] 
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used the sample entropy (SE) and energy entropy to identify 
the chatter in the peripheral milling of the thin-walled work-
piece. Yang et al. [16] used approximate entropy and SE as 
chatter features to detect the occurrence of chatter according 
to its entropy change. The result of the experiment shows 
that this method is suitable for detecting both continuous and 
intermittent chatter. However, the single-scale entropy omits 
part of the machining state information, which is not enough 
to detect the accurate time point when the machining state 
changes [17]. Liu et al. [18] and Chang and Wu [19] respec-
tively applied multi-scale permutation entropy (MPE) and 
multi-scale entropy (MSE) to chatter detection, which was 
verified by experiments. However, SE has low calculational 
efficiency and is greatly affected by sudden change signals. 
Although the calculation efficiency of permutation entropy 
(PE) is high, it does not consider the magnitude relationship 
between amplitudes. To overcome the above shortcomings, 
Rostaghi et al. [20] proposed a new irregularity measure-
ment index dispersion entropy (DE). This method considers 
the magnitude relationship between amplitudes, has a fast 
calculation speed, and is less affected by sudden change sig-
nals. The multi-scale process of MDE is the same as that of 
MSE and MPE, leading to the loss of statistical information 
during isometric segmentation. Therefore, Azami et al. [21] 
proposed the RCMDE method on this basis and compared it 
with several other multi-scale methods, reflecting the advan-
tages of RCMDE in feature extraction.

Considering that the collected machining signal has a 
pair of interference components, it may lead to the mis-
judgment of chatter detection; it is necessary to filter the 
signal to separate the sub-signals with rich chatter infor-
mation. Cao et al. [22] used the comb filter to preprocess 
the vibration signal to eliminate the interference of cut-
ting frequency. Lamraoui et al. [23] used a Wiener filter 
to remove the noise signal related to the free rotation of 
the spindle. Although these filtering methods can filter the 
noise signals related to the free rotation of the spindle speed 
and the fixed colored noise component, they cannot filter 
the random interference components in the machining pro-
cess. Therefore, before extracting the chatter feature, it is 
necessary to select the frequency band containing abundant 
chatter information [24].

To solve the problem that it is difficult to detect the 
chatter of thin-walled parts in the milling process, a mill-
ing chatter feature extraction method based on OVMD and 
RCMDE is proposed. Firstly, SE-SCK is used as the fit-
ness function of GA. Secondly, the optimal parameters are 
used for the VMD decomposition of the signal, and the 
signal is reconstructed according to the energy ratio. Then, 
the influence law of scale factor on DE is analyzed, and 
RCMDE under the scale factor with the largest distinction 

to the machining state is selected as the chatter detection 
index. RCMDE can reduce the interference of random sig-
nals to detect chatter more accurately. Finally, it is verified 
by the experiment of side milling variable cutting depth of 
titanium alloy thin-walled parts.

The rest of this article is organized as follows. Sec-
tion 2 briefly introduces VMD and chatter detection index 
RCMDE. Section 3 introduces the chatter feature extraction 
method based on GA-SE-SCK-VMD and RCMDE. Sec-
tion 4 introduces the experimental setup and verifies the 
algorithm. Finally, the conclusions are laid out in sect. 5.

2  Principle of milling chatter detection 
model

Signal preprocessing and sensitive feature extraction is the 
key to the early detection of chatter. The signal collected 
by the sensor is a nonlinear and non-stationary signal in 
the milling process. VMD decomposes signals based on 
sequential iterative sifting and has good denoising perfor-
mance. It is suitable for the processing of nonlinear sig-
nals, and non-stationary RCMDE contains more informa-
tion about the machining state and can effectively analyze 
nonlinear signals. Therefore, using RCMDE to detect the 
occurrence of chatter has important advantages.

2.1  Principle of VMD

VMD is an adaptive and completely non-recursive method 
of modal variation and signal processing. VMD has a more 
solid mathematical theoretical foundation. The core idea 
of VMD is to construct and solve variational problems 
[25].

The variational model is

where uk(t) is the kth modal component, �t is the Tikhonov 
matrix, ∗ is the convolution operator, �k is the center fre-
quency of the kth modal component, �(t) is the pulse func-
tion, and u is the original signal.

To transform the constrained variational problem into 
an unconstrained variational problem, the Lagrange mul-
tiplier � and the quadratic penalty term � are introduced:

(1)

⎧⎪⎪⎨⎪⎪⎩

min
{uk}{�k}

��
k

�����
�t

��
�(t) +

j

�t

�
∗ uk(t)

�
e−jwkt

�����

2

2

�

s.t.
�
k

uk = u
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The alternating direction method of multipliers is used to 
solve the variational problem in Eq. (2), and the extended 
Lagrangian “saddle point” is obtained through iterative 
updating un+1

k
 , �n+1

k
 , and �n+1 , which is the final solution 

of Eq. (1).
To facilitate the calculation of un+1

k
 and �n+1

k
 in the itera-

tion process, these two terms are converted to the frequency 
domain, and the updated expressions of un+1

k
 and �n+1

k
 are 

determined as follows:

The flow chart of the VMD algorithm is shown in Fig. 1.

2.2  RCMDE

The RCMDE algorithm, time series with different scales � , � 
corresponds to different starting points of the coarse-grained 

(2)
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n+1
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0
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process. The RCMDE value is defined as the average value 
of the dispersion entropy of the coarse-grained sequence.

The kth coarse-grained sequence of the signal u =

{
u1,

u2,⋯
}
 is

The RCMDE value under scale � is calculated as follows:

where p
(
rv0v1⋯vm−1

)
 is the average value of the probability 

of the dispersion mode corresponding to the coarse-grained 
sequence, as shown in Eq. (7).

where p(�)
k

 is the probability of the dispersion model cor-
responding to the kth coarsening sequence under scale �.

3  Milling chatter detection method based 
on GA‑SE‑SCK‑VMD and RCMDE

In the actual machining process, the milling signals collected 
by the sensor will have many signals unrelated to the machin-
ing state, which is very unfavorable for the subsequent feature 

(5)

x
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=
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x
(�)
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, x
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,⋯
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x
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k,j
=
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ub 1 ≤ j ≤ N, 1 ≤ k ≤ �

(6)

EECMD(x,m, c, d, �) = −
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p
(
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)
ln p

(
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(7)p
(
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�
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k=1

p
(�)

k

Fig. 1  VMD algorithm flow 
chart
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extraction and the machining state recognition. Therefore, 
it is necessary to process the collected signal, filter out the 
noise in the signal, eliminate the interference signals, and 
extract the machining state representation with high robust-
ness reliability and sensitivity to identify chatter [26].

3.1  Adaptive method of VMD parameters based 
on SE‑SCK

The penalty factor � and the decomposition level K in the 
VMD algorithm are preset parameters, and the selection of 
their values will have a great impact on the signal decom-
position effect. How to select appropriate parameters is the 
premise and the key to accurate signal decomposition in 
VMD. In this paper, GA is used to optimize the decomposi-
tion level K and the penalty factor � in the VMD algorithm. 
GA algorithm has a fast global search ability [27] and has 
been applied to optimize various parameters. When using 
GA for optimization, it is necessary to determine a fitness 
function, and GA judges the optimal solution according to 
the size of the fitness function. In the actual machining pro-
cess, the cutting system will be subject to aperiodic acciden-
tal impact. When the time domain index is used as the fitness 
function, the accidental impact will affect the time domain 
index, so the time domain index is not the best parameter 
optimization index. Therefore, the frequency domain index 
squared envelope spectral correlated kurtosis (SE-SCK) is 
introduced as the index of VMD parameters optimization.

Inspired by kurtosis and signal autocorrelation, SE-SCK 
is a new index [28] proposed by redefining correlation kur-
tosis, which can accurately identify cyclic transient shocks. 
As a frequency domain index, Squared envelope spectral 
correlated kurtosis is not disturbed by accidental shocks. The 
larger the value of the square envelope spectral correlation 
kurtosis, the higher the signal-to-noise ratio of the signal and 
the more obvious the periodic pulse component.

For the zero mean filtered signal X̃ with length N, its 
square envelope signal can be expressed as

The variance of the square envelope signal is expressed as

According to the kurtosis [29] formula, the above formula 
is substituted and sorted out as follows:

According to the definition of the autocorrelation func-
tion, kurtosis is re-expressed as

(8)SE
(
X̃
)
= |X + j ⋅ Hilbert(X)|2

(9)D
[
SE

(
X̃
)]

= E
[
SE

(
X̃
)]2

−

{
E
[
SE

(
X̃
)]}2

(10)kurtosis

(
X̃
)
= D

[
SE

(
X̃
)]

+ 1

where r
X̃(0) is the value of the autocorrelation function when 

the delay coefficient is 0, and rSE(0) is the value of the auto-
correlation function of the square envelope signal SE

(
X̃
)
 

when the delay coefficient is 0.
In combination with Eq. (11), the relevant kurtosis is 

redefined as

Perform discrete Fourier transform on the square enve-
lope signal to obtain the square envelope spectrum. In 
combination with Eq. (12), SE-SCK can be expressed as

where fr is the spindle rotation frequency, SES(f ) is the 
square envelope spectrum, and fs is the sampling frequency.

Using SE-SCK as the fitness function of GA, [k, �] at 
the maximum fitness function value is obtained, which 
is the optimal parameter of VMD. In this paper, a GA-
VMD optimization method with adaptive parameter range 
search is proposed. The detailed optimization steps are 
as follows.

1. Coding and group initialization. The encoding method 
adopts real number encoding. The mapping error after 
discretization of continuous function in binary encod-
ing has a significant impact on the results. When the 
chromosome is relatively short-term, the accuracy is not 
high. The parameter range of the VMD algorithm is pre-
set to K ∈ [3, 10] , � ∈ [1000, 10000] , and the population 
size is set to 4, and the number of iterations is 15.

2. Calculate the fitness function value. Calculate the fitness 
value corresponding to each chromosome according to 
Eq. (13), and record the chromosome with the largest 
fitness value.

3. Crossover and mutation. The parent chromosomes are 
used to cross to generate offspring, and the offspring chro-
mosomes are mutated. In this paper, single-point crossover 
and single-point mutation methods are selected.

4. Determines whether to terminate the iteration. If the pre-
set requirements are met, terminate and output the results. 
Otherwise, return to step 2 until the optimal solution is 
generated.

(11)kurtosis

(
X̃
)
=

rSE(0)[
r
X̃(0)

]2

(12)
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�
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�
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r
X̃(0)

�2 = N ⋅

∑N

n=1

���̃x(n)�� ⋅ ��̃x(n) + T��
�2

∑N

n=1

���̃x(n)��2
�2

(13)SE − SCK
�
fr
�
=

fs

2
⋅

∑ fs

2

f=0

�
SES(f ) ⋅ SES

�
f + fr

��2
�∑N

n=1
SES(f )2

�2
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3.2  Chatter feature extraction method 
of the reconstructed signal based on RCMDE

In milling chatter detection, after the signal processing tech-
nology is used to process the collected signals, one or more 
features reflecting the milling state are usually extracted as 
indicators to identify the occurrence of chatter. Therefore, a 
chatter feature extraction method based on RCMDE of the 
reconstructed signal is proposed in this paper. When chatter 
occurs, the energy of the cutting system is transferred from 
the spindle rotation frequency and its multiple frequencies to 
the chatter frequency. Therefore, calculate the energy radio 
of each IMFs component of the signal after VMD decom-
position, select the IMFs component with a high energy 
ratio to reconstruct the signal, and obtain sub-components 
with abundant chatter information. The IMFs after VMD 
decomposition of the signal are represented by ui(t) , and 
the calculation formula of the energy of each component is 
shown in formula (14).

When the chatter occurs, the frequency components gradu-
ally gather at the chatter frequency, which results in the 
change of DE. However, the dynamic system involved in 
the actual machining process is very complex, so analyzing 
signals from a multi-scale perspective will better explain 
the machining state. Due to the equidistant segmentation 
and averaging of the data in the multi-scale process, the 
relationship between the segmented data is not consid-
ered, which results in the loss of statistical information.  

(14)Ei = ∫
+∞

−∞

||ui(t)||2dt i = 1, 2, 3, ...,N

And the initial signal points selected under different scale 
factors are the same, and the result has a certain devia-
tion. RCMDE method is further refined based on the MDE 
method, which can effectively reduce the lack of some sta-
tistical information in the coarse-grained process of MDE 
and can effectively solve the impact of the initial point 
position on the calculation results by averaging the posi-
tions of multiple initial points, so as to reduce the cal-
culation deviation. Therefore, the RCMDE characteristics  
of reconstructed signals are more conducive to the early  
detection of chatter.

The flow chart of the proposed milling chatter detection 
scheme is shown in Fig. 2. One is the adaptation of VMD 
parameters. GA algorithm is used to optimize the penalty 
factor � and the decomposition level K of VMD, and SE-
SCK is used as the fitness function of GA. The second is 
chatter feature extraction. The proposed OVMD algorithm 
is used to decompose the signal to obtain a series of IMFs. 
Selecting the sub-components with a high energy ratio 
for signal reconstruction. RCMDE is extracted from the 
reconstructed signal, and the machining state is judged 
through the changes in features (Table 1).

Fig. 2  Flow chart of milling chatter feature extraction

Table 1  Cutting parameters

Spindle 
speed 
(r/min)

Axial cutting 
depth (mm)

Milling 
length 
(mm)

Radial cutting 
depth (mm)

Feed speed 
(mm/min)

1800 3 ~ 15 200 0.4 300
1800 3 ~ 15 200 0.5 300
1800 3 ~ 15 200 0.6 300
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4  Experimental verification

4.1  Experimental configuration

To better reveal the changing process of the machining 
state, the variable cutting depth milling experiment was 
carried out on a CNC machine tool to verify the effec-
tiveness of this method. The experimental site is shown 
in Fig. 3. The tool used in the experiment is cemented 
carbide end mill, and the specific parameters are shown 
in Table 2.

The milling force signal is collected by a dynamometer 
(Kistler 9171) and a charge amplifier for chatter detection. 
The workpiece material is TC4, and its parameters are 
shown in Table 3. The sampling frequency is set to 5 kHz. 
The initial workpiece size is 200 mm in length, 100 mm in 
height, and 5 mm in thickness. The variable cutting depth 
experiment shows a linear change of axial cutting depth 
from 3 to 15 mm. All experiments were dry milling.

4.2  Preliminary division of the machining state

To verify the correctness of the algorithm, several groups 
of milling experiments are carried out. The machining 
parameters are shown in Table 1, and the third representa-
tive group of parameters is selected. In the milling process, 
the stiffness of thin-walled parts in the y-direction is small, 

so the milling force signal in the y-direction is selected for 
analysis. With the increase of the cutting axial depth, the 
milling force signal increases slowly. However, due to the 
chatter of the self-excited vibration between the workpiece 
and the tool, the milling force signal will fluctuate, obvi-
ously. Therefore, the machining state can be preliminarily 
divided according to the change of the original signal, as 
shown in Fig. 4a. Through the analysis of the milling force 
signal, it can be found that the machining state is stable at 
about 0–6.43 s, slight chatter at 6.43–31.87 s, and severe 
chatter at 31.87–40 s.

Chatter is a kind of self-excited vibration that reflects the 
change of frequency and energy distribution in the machin-
ing process. Therefore, the chatter can be identified by ana-
lyzing the change of frequency. When chatter occurs in the 
machining process, the main frequency of the signal spec-
trum will gradually shift from the cutting frequency to the 
natural frequency of the cutting system, and the cutting fre-
quency includes spindle rotation frequency and its multiple 

Fig. 3  Experimental scene

Table 2  Tool parameters

Number of flutes Helical angle Tool diameter Total length Blade length

z (°) D (mm) L (mm) l (mm)
4 45 10 75 30

Table 3  Material properties of Ti6Al4V

Material Density 
(Kg/m3)

Yield 
strength 
(MPa)

Tensile 
strength 
(MPa)

Modulus of 
elasticity 
(GPa)

Hardness 
(HRC)

Ti6Al4V 4430 875 940 113 31
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frequencies. FFT can sample data from continuous input 
and convert the sampled signal to the frequency domain. 
Therefore, FFT analysis can be used to judge the machining 
state preliminarily.

Three 0.4 s sub-signals are randomly selected from the 
above three signals, as shown in Fig. 4a. The selected sub-
signals are analyzed by FFT using MATLAB software. The 
sampling frequency is set to 5 kHz, and the number of sam-
pling points is 2048. The results are shown in Fig. 4b–d, 
and f is the spindle rotation frequency; the black triangle is 
the cutting frequency, and the inverted purple-red triangle 
is the chatter frequency. In Fig. 4b, the signal spectrum is 
mainly composed of the cutting frequency, which belongs to 
the stable machining state. In the frequency spectrum of the 
signal in Fig. 4c, in addition to the cutting frequency, there 
is also a chatter frequency of 1542 Hz, which has a small 
amplitude. The cutting frequency still occupies an abso-
lutely dominant position, and the machining state belongs 

to the slight chatter. In Fig. 4d, the amplitude of the chatter 
frequency of 1542 Hz increases significantly. Although it 
does not occupy a dominant position, its proportion in the 
frequency spectrum increases significantly, indicating that 
the chatter has broken out and the machining state belongs 
to the severe chatter.

4.3  Signal preprocessing based on GA‑SE‑SCK‑VMD

The machining state can be judged through FFT analysis, 
but FFT lacks the function of time to frequency positioning, 
and FFT is the overall transformation from the time domain 
to the frequency domain, which cannot separate each fre-
quency band and effectively distinguish the frequency com-
ponents. To better understand the components of the signal, 
the GA-SE-SCK-VMD method proposed in this paper is 
used to decompose the milling force signal. The parameter 

Fig. 4  Milling force signal 
analysis: a time domain signal, 
b spectrum of the signal at state 
A, c spectrum of the signal at 
state B, and d spectrum of the 
signal at state C
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settings in the algorithm have been given in Sect. 3.1. The 
GA-SE-SCK-VMD decomposition is performed for the 
above three groups of signals. The optimization iteration 
curve is shown in Fig. 5, and the optimal parameters are 
shown in Table 4.

Considering that in the subsequent chatter suppression 
stage, it is necessary to start chatter suppression when slight 
chatter is detected, so after obtaining the optimal param-
eters, the VMD algorithm is used to decompose the signal 

of slight chatter. The obtained sub-components and their 
spectra are shown in Fig. 6. It can be seen from the figure 
that the slight chatter signal is decomposed into 6 IMFs; 
the boundary between the frequency bands of different sub-
components is clear, and there is no mode aliasing. At the 
same time, the chatter frequency is successfully decomposed 
into the fifth frequency band, and the chatter frequency is 
about 1542 Hz. The proposed GA-SE-SCK-VMD algorithm 
can avoid the problem of mode aliasing and successfully 
separate the chatter frequency band, which proves the effec-
tiveness of the algorithm.

4.4  EMD decomposition of signals

EMD is a signal processing method based on the shifting 
process. Based on the local characteristics of the signal, the 

Fig. 5  Change curve of SE-SCK 
with the number of iterations

Table 4  Optimal parameters and optimal fitness value

Cutting state K � SE-SCK

Stable 8 5075 99.316
Slight chatter 6 8905 93.242
Severe chatter 6 6226 89.011

Fig. 6  GA-SE-SCK-VMD 
decomposition sub-component 
and its spectrum
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concept of IMF is proposed, which makes the instantane-
ous frequency meaningful. IMF has a symmetric envelope 
defined by local maximum and minimum, respectively 
[30].

Figure 7 shows the results of the decomposition of the 
slight chatter signal in Fig. 4 by EMD. After EMD process-
ing, the signal is decomposed into 8 IMFs and arranged in 
the order of high frequency to low frequency. The frequency 
bands with cutting frequency and chatter frequency are 
mainly distributed in the first five sub-components, of which 
the first sub-component contains most of the signal frequen-
cies, so it is impossible to effectively distinguish the com-
ponents of these signal frequencies. In the “Signal preproc-
essing based on GA-SE-SCK-VMD” section, the OVMD 
algorithm proposed is used to decompose the signal, and 
the chatter frequency is separated into the fifth frequency 
band, which avoids the disadvantage of mode aliasing. The 
signal decomposed by OVMD suffers less interference, so 
the chatter features extracted are more accurate and more 
suitable for chatter detection.

4.5  Chatter feature extraction of reconstructed 
signals based on RCMDE

Chatter is characterized by changes in frequency and energy 
distribution. In the stable state, the cutting energy mainly 
concentrates on the cutting frequency. When the chatter 
occurs, the cutting energy is gradually absorbed into the 

chatter frequency. Therefore, to improve the recognition 
accuracy, this paper selects the first three IMFs for signal 
reconstruction according to the criterion of the energy ratio 
of IMFs components from high by referring to the signal 
reconstruction method in reference [9]. Although these IMFs 
are still disturbed by the noise signal, and the cutting fre-
quency is also included in the IMFs with a high energy ratio, 
the energy is mainly concentrated on the chatter frequency, 
thus increasing the signal-to-noise ratio.

Although the chatter frequency band can be separated 
by VMD decomposition, it is not practical to detect chatter 
from the amplitude spectrum in actual production. So, it is 
necessary to use quantitative indicators to detect chatter. 
In this paper, the quantitative indicator RCMDE is used 
for chatter detection. When calculating RCMDE, embed-
ding dimension m, delay � , and scale factor � should be 
selected. Rostaghi and Azami [20] suggest that the value 
of embedding dimension m should not be too large or too 
small and m is usually taken as 2 or 3. In this paper, we 
choose the delay � as 1, and the embedding dimension m as 
3. However, at present, there is no exact calculation formula 
to select the scale factor. To determine the best scale of 
RCMDE, multiple groups of signals are randomly selected 
from the three segments of signals divided in Fig. 4a. The 
algorithm proposed is used to decompose and reconstruct 
the signals, and the change of RCMDE when the scale fac-
tor is from 1 to 16 is analyzed from the reconstructed sig-
nals. The calculation results of each group are similar, and 

Fig. 7  EMD component and its 
decomposition

954 The International Journal of Advanced Manufacturing Technology (2023) 124:945–958



1 3

one group of calculation results is selected for analysis, as 
shown in Fig. 8. When the scale factor is 1, that is, for the 
single-scale DE, the entropy values of the severe chatter 
and the slight chatter are very close, so it is difficult to dis-
tinguish between the two machining states. Moreover, the 
entropy decreases with the increase of the chatter level at 
the same scale. But the entropy value of the stable state of 
the single-scale DE is the lowest, which does not meet the 
requirements. Therefore, single-scale DE cannot effectively 
judge the milling machining state. When the scale factor is 
4 to 16, the entropy decreases with the increase of chatter 

level. Especially when the scale factor is 4, the distinction 
between the three machining states is the largest. Therefore, 
the best index for chatter detection is RCMDE with a scale 
factor of 4.

To verify that RCMDE performs better than MDE in 
chatter detection, the reconstructed signals of three machin-
ing states are selected, as shown in Fig. 8, and the change 
of MDE when the scale factor is from 1 to 16 is analyzed. 
The results are shown in Fig. 9, and the general trend is the 
same as that of RCMDE. Because RCMDE selects the ini-
tial point for multi-scaling according to the scale factor, the 
values of RCMDE and MDE are the same in the case of the 
single scale. It can be seen from Figs. 8 and 9 that when the 
scale factor is greater than 2, the value of MDE is less than 
RCMDE. Because DE is a nonlinear dynamic method to 
characterize the irregularity and complexity of time series, 
it can be judged that MDE has missed some information 
in the process of multi-scaling. In addition, the distinction 
between MDE and RCMDE in the three machining states is 
the largest, when the scale factor is 4. Calculate the distance 
between the entropy curves of MDE and RCMDE when the 
scale factor is 4, and compare the distinction between them. 
The results are shown in Table 5. RCMDE has a signifi-
cantly higher distinction in the machining state than MDE. 
Therefore, RCMDE has a better performance in chatter 
detection than MDE.

To verify the superiority of the proposed algorithm, the 
algorithm proposed is compared with the non-optimized 
VMD algorithm. The VMD parameters are initialized 
randomly by the GA algorithm. The results are shown in 
Table 6. The data in the table are taken as the parameters of 
the non-optimized VMD to avoid the influence of human 

Fig. 8  Changes of RCMDE with the scale factor of signal decom-
posed and reconstructed by GA-SE-SCK-VMD

Fig. 9  Changes of MDE with the scale factor of signal decomposed 
and reconstructed by GA-SE-SCK-VMD

Table 5  Comparison of distinguishing effects between MDE and 
RCMDE

Cutting state Distance Comparison of 
distinguishing 
effectsMDE RCMDE

Stable and slight chatter 0.2878 0.4605 Increase by 60%
Slight chatter and severe 

chatter
0.2836 0.4381 Increase by 54.4%

Table 6  GA algorithm randomly initializes VMD parameters

Cutting state K � SE-SCK

Stable 9 8359 95.754
Slight chatter 7 4163 93.754
Severe chatter 7 4039 88.681
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factors. The value of RCMDE of the reconstructed signal 
is extracted by the above method, and its change with the 
scale factor is analyzed. The results are shown in Fig. 10. 
The severe chatter state can be analyzed at a large scale, but 
the entropy values of the stable state and the slight chatter 
state are mixed and cannot be effectively distinguished. In 
summary, the effect of OVMD-RCMDE is better than that 
of non-optimized VMD-RCMDE. From the above compari-
son, it can be seen that the penalty factor � and the decom-
position level K in VMD have a significant impact on the 

decomposition effect and then affect the accuracy of chatter 
feature extraction.

The GA-SE-SCK-VMD algorithm proposed is used 
to calculate the RCMDE with the scale factor is 4, and 
the length of signal analysis is set to 1024. The results 
are shown in Fig. 11. It can be seen from the figure that 
RCMDE is divided into three parts due to the sudden change 
in its value. There is an obvious sudden change in the value 
of RCMDE at about 6.14 s, with a difference of about 0.48, 
and at about 31.74 s, the value of RCMDE changed signifi-
cantly, with a difference of about 0.47. These two obvious 
sudden changes indicate that the machining state changes 
from a stable state to a slight chatter state and then to a 
severe chatter state.

To verify the accuracy of judging the change time point 
of the machining state through the entropy diagram, the 
machining state is further divided according to the surface 
quality of the workpiece, and the machining quality of the 
workpiece is photographed with the microscope. The results 
are shown in Fig. 12. The surface quality of surface quality 
of the workpiece is good in the stable state, without obvi-
ous vibration marks. In the slight chatter state, due to the 
self-excited vibration between the tool and the workpiece, 
the workpiece surface has a slight vibration mark with small 
spacing. In the severe chatter state, as the self-excited vibra-
tion becomes more and more intense, the surface quality 
of the workpiece becomes worse, severe vibration marks 
appear, and the spacing increases significantly. According 
to the cutting parameters, the machining state is stable in 
0–6.14 s, slight chatter in 6.14–31.74 s, and severe chatter 
in 31.74–40 s, which are roughly the same as the time point 
for judging the change of the machining state according to 
entropy value, which proves the accuracy of the chatter fea-
ture extracted in this paper; comparing this time point with 
the time point that the machining state is divided accord-
ing to the time domain signal in sect. 4.2, it can be found 
that there is a lag phenomenon in judging the machining 
state according to the time domain signal, so it is not the 
best choice to divide the machining state according to the 
time domain signal. Therefore, it is particularly important 
to select the chatter feature that can reflect the machining 
state and detect the change in the machining state in time. 
Through the experiments in this section, it can be found 
that the algorithm proposed can detect the occurrence of 
chatter in the early chatter, which lays a foundation for sub-
sequent machining state identification and chatter suppres-
sion. Through the comparison of RCMDE with different 
scale factors, it is proved that RCMDE is more conducive 
to chatter detection than single-scale DE.

Fig. 10  The RCMDE of the signal decomposed and reconstructed by 
unoptimized VMD changes with the scale factor

Fig. 11  Change of RCMDE with time
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5  Conclusions

A new method for detecting milling chatter is proposed 
in this paper. Firstly, the parameters of VMD are opti-
mized by GA, and a new index SE-SCK is introduced as 
the function for judging the optimal solution of param-
eter optimization. The milling force signals collected in 
the experiment are decomposed by OVMD, and the first 
three sub-components with high energy ratios are selected 
for signal reconstruction. RCMDE features are extracted 
from the reconstructed signals for chatter identification, 
and the change of RCMDE is used to replace the absolute 
threshold to detect the occurrence of chatter. The results of 
the experiment show that the OVMD algorithm proposed 
can separate the chatter frequency band separately, and its 
performance is better than the EMD algorithm. The perfor-
mance of RCMDE in chatter detection is better than MDE. 
Compared with RCMDE extracted from the reconstructed 
signal without optimized VMD decomposition, the superi-
ority of the OVMD algorithm proposed is proven. And the 
proposed algorithm can identify the occurrence of chatter 
in the early stage of chatter and lay the foundation for sub-
sequent chatter suppression. In this paper, the method pre-
sented provides a new method for detecting milling chatter.
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