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Abstract
When the motorized spindles fail, the vibration signal at the bearings will contain the information related to the fault degree 
and operation condition. Extracting and utilising this information in an industrial environment with strong noise are the key 
issues of the health condition evaluation of the motorized spindles. In this paper, a health condition evaluation method for 
motorized spindles on the basis of optimised variational mode decomposition (VMD) and Gaussian mixture model-hidden 
markov model (GMM-HMM) is proposed. Firstly, using the composite index KEI as the fitness function, the parameters 
in the VMD are optimised by the sooty tern optimisation algorithm (STOA), and a low-dimensional feature matrix that 
can represent the health condition of a motorized spindle is further constructed. Secondly, the GMM-HMM of each health 
condition is trained, and the health condition of the motorized spindle is evaluated based on the library. Finally, the hybrid 
simulation signal is analysed to verify the effectiveness and superiority of the optimised VMD. The rotor unbalanced fault 
experiment is carried out by using the motorized spindle performance monitoring test platform. The proposed method is 
used to evaluate the health of the tested motorized spindle, and the results verify its superiority.

Keywords Motorized spindle · Health condition evaluation · Optimised VMD · Composite index KEI · GMM-HMM

1 Introduction

As a key functional component of CNC machine tools, CNC 
machine tool manufacturers have focused on motorized spin-
dle for its advantages of compact structure, low noise and 
fast response [1]. The performance degradation of motorized 
spindle seriously affects the machining accuracy and effi-
ciency of CNC machine tools and causes serious economic 
losses [2]. Using the monitoring information collected by 
sensors to infer the health condition of the motorized spin-
dle and further develop maintenance strategies is an effec-
tive means of preventing motorized spindle failure [3, 4]. 

When the motorized spindle fails, the vibration signal at the 
bearings shows nonlinear and non-stationary characteristics. 
For such signals, the commonly used signal pre-processing 
methods include wavelet packet transform (WPT), empiri-
cal mode decomposition (EMD), ensemble empirical mode 
decomposition (EEMD), and local mean decomposition 
(LMD) [5–8]. The combination of the above methods with 
machine learning to obtain accurate results has aroused the 
research interest of scholars. Fei proposed the combination 
of WPT and SVM to realise the fault evaluation of rolling 
bearings [9]. Sun et al. proposed that EEMD to decompose 
vibration signals and used PSO-SVM to identify the faults 
of bevel gears [10]. Tian et al. proposed to use of LMD and 
SVD to process vibration signals and then ELM to identify 
rolling bearing faults [11]. Although the above methods have 
been applied, some shortcomings remain; for example, WPT 
requires the artificial selection of parameters [12]. EMD has 
some problems, such as modal aliasing and the endpoint 
effect. Although LMD can reduce the mode aliasing to a 
certain extent, it is greatly affected by noise [13]. EEMD 
is limited by its large amount of computation and requires 
human experience to determine the added white noise ampli-
tude and the number of iterations [14]. VMD is an adaptive, 
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non-recursive modal variational signal processing method 
that can overcome the shortcomings of the above methods 
to a certain extent [15, 16]. An and Zhang proposed to use of 
VMD to decompose the vibration signals of bearing loosen-
ing and gear faults and carry out the envelope demodulation 
analysis of sensitive modal components [17].

However, the traditional VMD is susceptible to the influ-
ence of penalty factor α and decomposition layers K, and the 
setting of these two key parameters is a problem that must be 
urgently solved. Kumar et al. used kernel mutual informa-
tion as a fitness function, genetic algorithm to optimise two 
parameters, and the optimised VMD to extract the early fault 
features of bearings [18]. Zhong et al. proposed to use the 
whale algorithm to optimize two parameters, and proposed 
a millimeter-wave radar FOD detection method based on the 
optimised VMD [19]. To sum up, on the basis of a reason-
able fitness function, the penalty factor α and decomposition 
layers K in the VMD can be optimised by using a heuris-
tic algorithm. In addition, the performance of the heuristic 
algorithm can determine the computational efficiency of this 
process. Therefore, the STOA is proposed to optimise two 
parameters in the VMD. In terms of convergence and com-
putational complexity, the STOA is highly competitive with 
nine other heuristic algorithms [20].

The essence of data-driven health condition evaluation 
is to establish the mapping relationship between the feature 
space and the health condition. Compared with some intel-
ligent algorithms such as artificial neural networks (ANN), 
decision tree (DT), support vector machine (SVM), hidden 
Markov model (HMM) has the advantages of simple struc-
tural expression and strong physical interpretation, which 
can be better applied to the health condition evaluation of 
motorized spindle [21–23]. However, the signal measured 
by a sensor is a continuous signal. Although this signal can 
be discretised, the use of limited discrete symbols to repre-
sent continuous observation variables will inevitably lead 
to information loss. Aiming at the above problems, the con-
tinuously fault features can be represented by introducing 
a probability density function. Theoretically, the Gaussian 
mixture model (GMM) can use several weighted Gaussian 
distributions to approximate the probability density function 
of the observation matrix in each condition. GMM-HMM 
has better modelling and analysis abilities than HMM. Liu 
et al. proposed to use of GMM-HMM for bearing fault diag-
nosis, input the test data into the trained GMM-HMM, and 
output the bearing state [24]. Zheng and Gao proposed to use 
GMM-HMM to create classifiers for diagnosing the down-
dole operating conditions of sucker rod pumping [25].

This paper uses the optimised VMD to remove the noise 
component in the original signal and combines the dynamic 
modelling ability of GMM-HMM to construct the health con-
dition evaluation model of the motorized spindle. The rest 
of this paper is arranged as follows. In Sect. 2, the related 

methods of this paper are briefly introduced. In Sect. 3, the 
steps of the proposed method are described in detail. In Sect. 4, 
the hybrid simulation signal is analysed by using the optimised 
VMD to verify the superiority of this method. In Sect. 5, the 
rotor unbalance fault experiment is carried out on a motor-
ized spindle, and the proposed method is used to diagnose 
the health condition to verify the effectiveness and superiority 
of the proposed method. The paper is summarised in Sect. 6.

2  Methodology

2.1  Optimised VMD

VMD has a complete mathematical theoretical basis and can 
decompose the original signal (f) into a series of intrinsic mode 
functions (IMFs) nonlinearly and determine the frequency cen-
tre and bandwidth of the IMFs. The constrained variational 
model can be expressed as follows:

where uk(t) is the intrinsic modal function, ωk is the centre 
frequency, ∂t is the gradient relative to the time series, and 
δ(t) is the unit pulse function.

Equation (1) is transformed into an unconstrained varia-
tional problem using penalty factor α and Lagrange multiplier 
λ(t) as follows:

An alternating direction multiplier algorithm is used to 
update relevant parameters as follows:

where τ is the fidelity coefficient, ̂  represents the Fourier trans-
form, and n is the number of iterations Given discrimination 

(1)

⎧⎪⎨⎪⎩

min
{uk},{�k}

�∑
k

�����t
��

�(t) +
j

�t

�
∗ uk(t)

�
⋅ e−j�kt

����
2

2

�

s.t
∑
k

uk = f

(2)

L
(
uk,�k, �

)
= �

∑
k

‖‖‖‖�t[(�(t) +
j

�t
) ∗ uk(t)] ⋅ e

−j�kt
‖‖‖‖
2

2

+
‖‖‖‖‖
f −

∑
k

uk(t)
‖‖‖‖‖

2

2

+

⟨
�(t), f −

∑
k

uk(t)

⟩

(3)ûn+1
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accuracy ε, i.e. ε > 0, if Eq. (6) is satisfied, then the iteration 
is stopped.

However, the traditional VMD is susceptible to the influence 
of penalty factor α and decomposition layers K. When penalty 
factor α is improperly selected, VMD cannot obtain the optimal 
bandwidth IMF. When decomposition layers K is set improperly, 
over-decomposition or under-decomposition will occur. To solve 
this problem, this paper proposes to optimise the two parameters 
of the VMD by using the STOA and takes composite index KEI 
as the fitness function. Sooty terns are marine gregarious birds 
that mainly feed on fish, earthworms and insects. The racial 
characteristics of sooty terns include migratory and aggressive 
behaviours, and the mathematical model is as follows:

Migration behaviour: During migration, sooty terns 
should meet three conditions, namely, avoiding conflict, 
gathering and updating. The relevant descriptions are shown 
in Eqs. (7)–(9).

where Cst represents the position of an individual that does 
not collide with other individuals, Pst(z) represents the cur-
rent location of the individual, SA is a variable used to avoid 
conflicts between adjacent individuals, Cf is the control vari-
able used to adjust SA, and z represents the iteration times.

where Mst represents the different locations of individual Pst 
towards best fit individual Pbst(z) , CB is the random variable 
responsible for improved exploration, and Rand is a random 
number between 0 and 1.

where Dst represents the gap between the individual and best 
fit individual.

Aggressive behaviour: When sooty terns attack their prey, 
their spiral behaviour in the air can be described as follows:

where Radius represents the radius of each spiral, i is a vari-
able between 0 and 2π, and u and v are constants for defining 
the spiral shape.
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According to Eq. (10), the position of the updated indi-
vidual is as follows:

where Pst(z) represents updating the positions of other search 
individuals and saving the best optimal solution.

Another key problem of the optimised VMD is the 
construction of a fitness function. In the field of mechan-
ical fault diagnosis, envelope entropy and kurtosis 
indexes are mainly used to measure the degree of fault. 
However, envelope entropy can only reflect the periodic-
ity of the signal but not the impact characteristics of the 
signal. The kurtosis index only considers the distribu-
tion density of the impact signal and ignores the highly 
dispersed components. In this paper, the characteristics 
of the two indexes are comprehensively considered, the 
envelope entropy is modified by the kurtosis index, and 
fitness function KEI is constructed. The relevant defini-
tions are as follows:

where Kv
k is the kurtosis index of the kth IMF, and He

k is 
the envelope entropy of the kth IMF. The relevant definitions 
are as follows:

where N is the number of data points, and hk(ti) is the enve-
lope signal after Hilbert demodulation. He is the correspond-
ing envelope entropy.

where uk(t) is the mean value of the IMFs, and σk is the 
standard deviation of the IMFs.

Considering that the optimised VMD takes the mini-
mum fitness value as the optimisation objective, the opti-
misation objective is expressed as follows:
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2.2  GMM‑HMM

The HMM is a double stochastic process, including a 
Markov process that describes the transition between con-
ditions and a stochastic process that describes the observed 
sequence in each condition. The relationship between these 
processes is shown in Fig. 1. Generally, the HMM consists 
of the following five elements:

1. Q is the number of hidden states. If the state at time t is 
denoted as qt, then qt ∈ {S1, S2, ...., SQ}.

2. M is the number of the observation symbols. If the 
observations at t time is ot, then ot ∈ {v1, v2, ...., vM}.

3. A is the state transition probability matrix. A = {aij}Q×Q , 
and aij represents the probability of transition from state 
Si at time t to state Sj at time t + 1.

4. B is the observation probability matrix. B = {bi(vm)}Q×M , 
and bi(vm) represents the probability that the observation 
symbol is vk when the state is Si at time t.

5. π is the initial state distribution. πi represents the prob-
ability of being in state Si at the initial time.

A complete HMM can be represented by λ = (π, A, B). 
However, in the actual process of condition monitoring, the 
observation symbols of the signal are usually continuous 
variations. Although the continuous signal can be discre-
tised, the use of discrete symbols to represent continuous 
observation variables will inevitably cause information 
loss. To solve the above problems, the GMM can be used 
to approximate the probability density function of the 
observation matrix in each state. The observations at time 

(16)aij = P(qt+1 = Sj|qt = Si), i ≥ 1, j ≤ Q

(17)bi(vk) = P(vk|qt = Si), 1 ≤ k ≤ M

(18)�i = P(q1 = Si), 1 ≤ i ≤ Q,

Q∑
i=1

�i = 1

t is assumed to be a D-dimensional vector. For state Si, the 
continuous probability distribution function bi(ot) can be 
expressed as follows:

where Mi is the number of Gaussian components, bim(ot) is 
the probability density function of the mth component, wim is 
the weight of the mth Gaussian component, μim is the mean 
vector, Covim is the covariance matrix, and N(ot,�im,Covim) 
is the Gaussian probability density function:

In this part, the algorithms used are the Forward–Backward 
and Baum–Welch algorithms.

3  Proposed method

In this study, a health condition evaluation method for 
motorized spindle on the basis of optimised VMD and 
GMM-HMM is proposed. The flow of the proposed method 
is shown in Fig. 2.

Step 1 According to the historical information, divide the 
health condition into L levels and collect the original signals 
of each level.

Step 2 Initialise the parameters of the STOA.

Step 3 Randomly initialise the search individuals and cal-
culate the fitness value of each search individual. Update 
the individual location and record the global optimal fitness 
value. If the iteration condition is reached, then the optimal 
parameter combination [α, K] is produced. Otherwise, the 
iteration continues.

Step 4 The original signal is decomposed by the optimised 
VMD, and the KEI of the IMFs is calculated. The IMFs are 
sorted by the KEI, and the former ⌈K/2⌉ IMFs are recon-
structed. ⌈K/2⌉ indicates that K/2 is rounded up.

Step 5 Extract the 10-dimensional time (P1–P10), 
5-dimensional frequency (P11–P15) and 10-dimensional 
scale (P16–P25) domain features of the reconstructed 
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Fig. 1  Schematic of the structure of the HMM
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signals to construct and normalise the multi-domain high-
dimensional feature matrix F.

The mathematical expressions of time domain and fre-
quency domain features are shown in Table 1. The main 

parameters of multi-scale weighted permutation entropy 
include embedding dimension l = 5, delay time τ = 1 and 
scale factor s = 10 [26, 27].

In Table 1, P1-P10 are time-domain features, and P11-
P15 are frequency domain features. x(t) is the reconstructed 

Fig. 2  Flowchart of the proposed method

Table 1  Mathematical expressions of time domain and frequency domain features

Parameter Expression Parameter Expression
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signal, and N is the number of data points. s(y) is the fre-
quency spectrum of x(t), Y is the number of spectral lines, 
and fy is the frequency value of the y-th spectral line. The 
intermediate parameter σ is defined as follows:

Step 6 Use the supervised L-Isomap (SL-Isomap) for the sec-
ondary feature extraction of multi-domain high-dimensional 
feature matrix F to obtain low-dimensional feature matrix F′ 
[28, 29].

Step 7 Divide the training and test data according to a cer-
tain proportion. Train the GMM-HMM of each health con-
dition using the Baum–Welch algorithm and establish the 
GMM-HMM library.

Step 8 Substitute the test data into the GMM-HMM library 
and calculate the log-likelihood probability (LLP) of each 
model using the Forward–Backward algorithm. Meanwhile, 
the Softmax function is used to map LLP into [0, 1] to obtain 
intuitive results, namely:

The SLLP can reflect the degree of membership between the 
test data and each model, so the condition corresponding to the 
maximum SLLP is the most probable health condition, that is,

4  Simulation signal analysis

In this section, the hybrid simulation signal y(t) is analysed by 
using the optimised VMD. The purpose of the analysis is to 
determine the sensitive IMF with the most fault information 

(21)�=

√√√√ N∑
i=1

[x(t) − x(t)]2

/
N − 1

(22)
SLLPi= =

exp(LLPi)

N∑
i=1

exp(LLPi)

, 1 ≤ i ≤ L

(23)Label(O) = arg max{SLLPi)}, 1 ≤ i ≤ L

and further extract the fault frequency. The hybrid simulation 
signal y(t) consists of 4 parts, including fault impact signal 
x(t), the rotation signal r(t) of other components, random 
impact signal h(t) and random noise n(t). Among them, fault 
impact signal x(t) is based on the partial fault of the sun gear 
in the planetary gearbox, and its mathematical model can be 
expressed as follows [30]:

where ak(t) and bk(t) are amplitude and frequency modu-
lations, respectively; s(t) is amplitude modulation caused 
by the rotation of the sun gear; fm is the gear meshing fre-
quency; fs is fault frequency; and fsr is the absolute rotation 
frequency of the sun gear.

The rotation signal r(t) of the other components can be 
represented by multiple harmonic components as follows:

where Ci, fi and θi represent the amplitude, frequency and 
phase of each harmonic component, respectively.

The random impact signal h(t) is shown as follows:

where Rj is a random variable, H(t) is the unit pulse com-
ponent, β is the damping coefficient, and fRE is the pulse 
resonance frequency.

Random noise n(t) is an AWGN with SNR =  − 8db. The 
sampling frequency is set to 5120 Hz and the sampling time 
to 2 s. The main parameter values of hybrid simulation sig-
nal y(t) are shown in Table 2.

(24)
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(25)r(t) =
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i

Ci sin(2�fit + �i)

(26)

�
h(t) =

∑
i

RjH(t − Trj)

H(t) = e−�t sin(2�fREt)

Table 2  Main parameter value 
of hybrid simulation signal

x(t) r(t) h(t)

Parameter Value Parameter Value Parameter Value Parameter Value

K 3 A1, B1 0.5 i 2 j 3
N 3 A2, B2 0.3 C1 0.8 R1 1
fm 1000 Hz A3, B3 0.1 C2 0.5 R2 1.5
fs 50 Hz αkn 0 f1 3 Hz R3 2
fsr 30 Hz βkn 0 f2 20 Hz β 125
φk 0 θi 0 fRE 2000 Hz
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The time domain waveform of the hybrid simulation 
signal y(t) is shown in Fig. 3, and the FFT spectrum and 
the envelope spectrum is shown in Fig. 4. Figure 3 shows 
that fault impact signal x(t) has been completely covered by 
strong background noise, and the periodic impact caused 
by the fault cannot be observed in the time-domain wave-
form. In the FFT spectrum of hybrid simulation signal y(t), 
only the frequencies (f1 and f2) of the two harmonic com-
ponents can be observed, and fault frequency fs cannot be 
observed. In the envelope spectrum of hybrid simulation 
signal y(t), although the fault frequency fs can be observed, 
its amplitude is not prominent, and there are many interfer-
ence components around. During calculation, the search 
range of penalty factor α is set as [1000, 8000], the search 
range of decomposition layers K is set to [3, 7], the number 
of searched individuals is 15, and the maximum iteration 
number is 25. The optimal parameter combination calcu-
lated by the STOA is [5, 4100], and the iteration process 
is shown in Fig. 5. Convergence can be achieved after 10 
iterations.

The decomposition result of the optimised VMD is 
shown in Fig. 6. In Fig. 6a, the IMF corresponding to the 
maximum value of KEI is IMF3, so IMF3 is selected as 
the sensitive component and envelope spectrum analysis is 
carried out. The analysis results are shown in Fig. 6b. The 
fault frequency and its frequency multiplier (fs = 50 Hz, 
2 fs = 1000 Hz, 3 fs = 150 Hz, 4 fs = 200 Hz), the absolute 
rotation frequency of the sun gear (fsr = 30 Hz) and related 
frequency (fs-fsr = 20 Hz) can be clearly extracted. The 
above results verify the effectiveness of the optimised 
VMD.

To further verify the superiority of the optimised VMD, 
this method is compared with EMD and EEMD. Among 
them, 9 IMFs were obtained by EMD, and 13 IMFs are 
obtained by EEMD. Figure 7 shows the envelope spectra of 
the first 4 IMFs by EMD and EEMD.

In Fig. 7a, EMD can extract absolute rotation frequency 
fsr, fault frequency fs and its 2 times frequency, but many 
interference components exist within the range of 100 Hz 
to 200 Hz. In Fig. 7b, EEMD can extract absolute rotation 

Fig. 3  Hybrid simulation signal

Fig. 4  FFT spectrum and envelope spectrum of hybrid simulation signal
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frequency fsr and fault frequency fs, but many interfer-
ence components also exist within the range of 50 Hz to 
200 Hz. The above results further verify the superiority of 
the optimised VMD.

5  Case analysis

5.1  Rotor unbalance fault experiment of motorized 
spindles

In this paper, the rotor unbalance fault simulation experi-
ment of a certain type of motorized spindle was carried out 
by using the motorized spindle performance monitoring 
test platform. The structure of the test platform is shown 
in Fig. 8. The test platform is controlled by the control 
cabinet and the computer, which can simulate the actual 
working conditions of the motorized spindle. The tested 
motorized spindle is fixed by the clamping device, and the 
auxiliary devices such as oil–gas lubrication device, water 
cooler and frequency converter can ensure the operation 
of the tested electric spindle.

Rotor unbalance fault is simulated by adding dif-
ferent numbers of bolts at the output end of the tested 

Fig. 5  Iterative process

Fig. 6  Decomposition results of 
optimised VMD
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motorized spindle without applying force and torque. The 
health condition is divided into five levels. During the 
experiment, the vibration signal of the front bearing of 
the tested motorized spindle was monitored. The model 
of the acquisition device was NI-cDAQ9184, the spin-
dle speed was 5000r/min, the sampling frequency was 
1.28 kHz, the sampling time of the sample signal was 
0.1 s, and 50 groups of sample signals were collected at 
each level.

According to Steps 2 to 4 in Sect. 3, the sample sig-
nal is decomposed by the optimised VMD, the KEI of 
the IMFs is calculated, and the selected IMFs is recon-
structed. According to Step 5, the multi domain features 
of the reconstructed signal are extracted, and the nor-
malised high-dimensional feature matrix is constructed. 
The mean value feature curves of all levels are shown 
in Fig. 9.

In Fig. 9, time domain features P1, P2, P3, P5 and fre-
quency feature P11 can effectively identify each health 
condition. Although the entropy features (P17 to P22) in 
the scale domain can accurately identify levels 4 and 5, 

the recognition effect for levels 1 to 3 is poor. To sum 
up, if all 25-dimensional features are used to represent 
the health condition of the motorized spindle, redun-
dant information will be inevitably produced. According 
to Step 6, SL-Isomap was used to carry out secondary 
feature extraction to construct low-dimensional feature 
matrix F′. In SL-Isomap, the nearest neighbour parameter 
is set to 50 and regulating factor a to 0.5. The visualisa-
tion result of a low-dimensional feature matrix is shown 
in Fig. 10. In Fig. 10, intrinsic dimension d = 3, the sam-
ples of each health condition can be basically stripped, 
and the spacing between the samples is clear.

The training and test samples were randomly divided 
in 2:3. Ready, the number of hidden states of the GMM-
HMM was set to four, the number of Gaussian components 
to two, and the maximum number of iterations to 50. The 
iteration process is shown in Fig. 11. The curves of all 
the levels converge after the 24th, 11th, 16th, 22nd, and 
8th iterations. The library is constructed based on GMM-
HMM, and then the test samples are respectively input 
into the library to calculate LLP. The health condition 

Fig. 7  Decomposition results of 
EMD and EEMD

Fig. 8  Motorized spindle 
performance monitoring test 
platform
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corresponding to the maximum LLP is the most likely 
condition of the motorized spindle.

The evaluation results of five health condition levels 
are shown in Fig. 12 in which solid points represent the 
real labels of the test samples. The label corresponding to 
the highest point in each sample is the evaluation result. 
In Fig. 12, the evaluation accuracy of level 1 is 90%, level 
2 is 90%, level 3 is 86.67%, level 4 is 90%, level 5 is 
86.67%, and the average evaluation accuracy of the five 
levels is 88.67%. When the evaluation result is wrong, the 
evaluation label and the real label are always adjacent, 
which also conforms to the degradation law of motorized 
spindle. The above results verify the effectiveness of the 
proposed method.

5.2  Comparison and analysis

The ‘SL-ISOMAP + GMM-HMM’ was compared with 
several combination methods to further verify the supe-
riority of the method. Various combination methods 
are composed of three manifold learning methods and 
two classical classifiers [31, 32]. The three manifold 
learning methods include Isomap, t-Distributed Sto-
chastic Neighbour Embedding (t-SNE), and Laplacian 
eigenmaps (LE). The two classical classifiers include 
PSO–SVM and genetic algorithm optimisation-ELM 
(GA-ELM).

The nearest neighbour parameter of the Isomap, the 
LLE and the LE is set to 50, and the perplexity of the 
t-SNE to 30. In PSO–SVM, the population size is 20, 
the learning factor is 1.5, the inertia weight is 0.6, the 
maximum number of iterations is 50, and the radial basis 
function is selected as the kernel function. In GA–ELM, 
the population size is 20, the generation gap is 0.95, the 
crossover probability is 0.7, the mutation probability is 
0.01, the maximum genetic generation number is 50 and 
the number of neurons in the hidden layer is 30. Tak-
ing the average accuracy as the performance index, the 
calculation results of various combination methods are 
shown in Table 3.

In Table  3, the average accuracy of ‘SL-Isomap +  
GMM-HMM’ ranks first among the combination meth-
ods. Compared with ‘SL-Isomap + PSO-SVM’ and ‘SL-
Isomap + GA-ELM’, the average accuracy of the pro-
posed method improved by 4% and 5.33%, respectively. 
For the same manifold learning method, the average 
accuracy of GMM-HMM is the highest, and that of GA-
ELM is the worst. For the same classifier, SL-Isomap 
has the best dimension reduction performance, while 
LE has the worst. For levels 3, 4 and 5, the accuracy  

Fig. 9  Mean feature curves of all levels

Fig. 10  Visualisation of low-dimensional feature matrix

Fig. 11  Training curves of GMM-HMM
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Fig. 12  Evaluation results of 
five health condition levels

Table 3  Evaluation accuracy of 
combined methods

Classification algorithm Manifold learning Accuracy(%)

Level 1 Level 2 Level 3 Level 4 Level 5 Average

GMM-HMM SL-Isomap 90.00 90.00 86.67 90.00 86.67 88.67
Isomap 73.33 63.33 66.67 73.33 80.00 71.33
t-SNE 83.33 80.00 76.67 70.00 66.67 75.33
LE 50.00 56.67 53.33 56.67 46.67 52.67

PSO-SVM SL-Isomap 80.00 90.00 83.33 86.67 83.33 84.67
Isomap 63.33 66.67 63.33 56.67 60.00 62.00
t-SNE 80.00 73.33 66.67 76.67 66.67 72.67
LE 53.33 56.67 46.67 56.67 36.67 50.00

GA-ELM SL-Isomap 90.00 83.33 80.00 83.33 80.00 83.33
Isomap 66.67 53.33 63.33 50.00 56.67 58.00
t-SNE 63.33 66.67 73.33 63.33 70.00 67.33
LE 53.33 46.67 56.67 46.67 43.33 49.33
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of ‘SL-Isomap + GMM-HMM’ is higher than the other  
combined methods. For level 1, the accuracy of ‘SL- 
Isomap + GMM-HMM’ and ‘SL-Isomap + GA-ELM’  
is 90%. For level 2, the accuracy of ‘SL-Isomap +  
GMM-HMM’ and ‘SL-Isomap + PSO-SVM’ is 90%. 
The above results further verify the superiority of 
‘SL-Isomap + GMM-HMM’.

6  Conclusion

Extracting and using the useful information of vibration sig-
nals in the industrial environment with a strong noise are the 
key problem of the health condition evaluation of motorized 
spindle. In this paper, a health condition evaluation method 
for motorized spindles on the basis of the optimised VMD 
and the GMM-HMM is proposed. This paper is summarised 
as follows:

1. The optimised VMD is used to decompose the hybrid 
simulation signal, and the fault frequency and its fre-
quency doubling part can be clearly extracted from the 
envelope spectrum of the sensitive IMF. The results 
show that the optimised VMD can effectively extract 
the fault information hidden in strong background noise.

2. To verify the proposed method, rotor unbalance experi-
ment was carried out on a certain type of motorized 
spindle. The evaluation results show that the accuracy 
of levels 1 to 5 is 90%, 90%, 86.67%, 90%, and 86.67%, 
respectively, and the average accuracy is 88.67%, indi-
cating that the proposed method can effectively evaluate 
the health condition of motorized spindle.

3. The average accuracy of ‘SL-Isomap + GMM-HMM’ 
ranks first among the combination methods. The result 
further verifies the superiority of the proposed method.
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