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Abstract
Given recent advancements in technology and recognizing the evolution of smart manufacturing, the implementation of 
digital twins for factories and processes is becoming more common and more useful. Additionally, expansion in connectivity, 
growth in data storage, and the implementation of the industrial internet of things (IIoT) allow for greater opportunities not 
only with digital twins but with closed loop analytics. Discrete event simulation (DES) has been used to create digital twins 
and, in some instances, fitted with live connections to closely monitor factory operations. However, the benefits of a con-
nected digital twin are not easily quantified. Therefore, a test bed demonstration factory was used, which implements smart 
technologies, to evaluate the effectiveness of a closed-loop digital twin in identifying and reacting to trends in production. 
This involves a digital twin of a factory process using DES. Although traditional DES is typically modeled using historical 
data, a DES system was developed which made use of live data to improve predictions. This model had live data updated 
directly to the DES model without user interaction, creating an adaptive and dynamic model. It was found that this DES 
with live data typically provided more accurate predictions of future performance and unforeseen near future problems when 
compared to the predictions of a traditional DES using only historic data, resulting in smarter decisions and implementation 
of more timely solutions.

Keywords  Digital twin · Discrete event simulation · Real-time factory analytics · Closed-loop processes · Smart 
manufacturing

1  Introduction

Recent advances in technology, having been integrated into 
factories, mean that manufacturers across the world have 
access to a wealth of equipment and process analytical data 
and information. This wealth of data has resulted in what is 
known as Industry 4.0 and an era of smart manufacturing. 
A generic framework for establishing smart manufacturing 
is as follows: smart design, smart machines, smart monitor-
ing, smart control, and smart scheduling [1]. Smart designs 
and smart machines mean that information and knowledge 
can be communicated. This allows for smart monitoring 
and control which utilizes bi-directional communication 
to receive data and send signals on a connected network. 

Additionally, smart manufacturing entails smart scheduling, 
which allows for data driven models to make decisions for 
the factory floor, without a need for user interaction. Smart 
scheduling utilizes smart control and smart monitoring to 
respond directly to information from the machines and sen-
sors. The emphasis of the majority of work around smart 
manufacturing is focused on this idea of smart monitoring 
and control [2]. In order for monitoring and control to be 
established a high level of connectivity across the factory 
must be established. There are numerous, well-documented 
ways of employing hardware and software to establish enter-
prise level connectivity [1–4]. A factory that has established 
enterprise level connectivity allows information to be trans-
ferred from equipment on the factory floor to enterprise 
level databases. This level of ubiquitous connectivity is vital 
to both monitoring a smart system and eventually controlling 
it. This type of connectivity forms a loop of bilateral data 
transfer and decision making, which has also been termed 
as “closing the loop” [5–7].

Within research on connected digital enterprises, some 
emphasis has been placed on the digital twin, recognizing 

 *	 Andrew Eyring 
	 aseyring@gmail.com

1	 Brigham Young University, Provo, UT, USA
2	 Northrop Grumman, Promontory, UT, USA
3	 University of California Santa Cruz, Santa Cruz, CA, USA

/ Published online: 27 September 2022

The International Journal of Advanced Manufacturing Technology (2022) 123:245–258

http://crossmark.crossref.org/dialog/?doi=10.1007/s00170-022-10176-5&domain=pdf


1 3

that this type of visualization in the smart factory can lead to 
smart decisions [4]. A digital twin is the virtual representa-
tion of a physical system, is connected in real time to data 
changes, and is allowed to make changes to the physical 
system [8]. A digital twin can be used to observe the cur-
rent status of the physical system, but also to optimize and 
predict the future status of the physical system. Digital twins 
can take different forms such as in the dozens of human-
machine interface software available, charts and mathemati-
cal models, and even augmented reality. The development 
of digital twins is not yet fully mature in manufacturing set-
tings, and it is understood that more research is required to 
further evaluate the benefits of implementing a digit twin 
[9].

Discrete event simulation (DES) can be used to create 
full digital twins and digital pieces of a process: for exam-
ple, DES has been used with data analytics to decrease the 
number of defects in a production line [10] and to reduce 
waiting time of items in queue in automotive production 
[11]. There are dozens of these types of examples of digital 
representation in manufacturing, demonstrating that DES 
can be effective in visualizing systems to improve outcomes 
[12–16]. The focus of this research will be the development 
of a digital twin through DES modeling of a factory process 
to analyze a traditional versus connected digital twin’s abil-
ity to simulate production.

2 � Background

2.1 � Traditional discrete event simulation

All processes found in manufacturing can be categorized as 
either discrete or continuous. Continuous events are things 
such as a lake filling up with water, the change is continuous, 
and there are infinite number of states. Discrete events are 
events in time that can be defined, identified and numbered. 
However, even continuous processes, such as steel produc-
tion, can have discrete events including melting, cutting, 
packaging, and shipping [17]. Thus, DES is used widely in 
many fields to identify problems and optimize performance.

Smart manufacturing often includes closed loop opera-
tions of an integrated part of a system [4]. Although closing 
the loop has been accomplished in different ways, DES has 
often been used and may be one of the most effective ways 
to make predictions and find automated solutions [18]. Tra-
ditionally, DES models rely on historical data and trends to 
simulate production, which then can predict outputs or find 
optimal solutions [10, 12, 13, 19–21]. In some instances, 
particularly when high variability is expected, more recent 
data has in some way been used in addition to longer-term 
historical data [14–16, 22].

Research has been done on improving factory predictions 
and estimates through the use of DES. One such experiment 
was done by creating mathematical models using a technique 
called data mining and then creating the DES model based 
on these mathematical algorithms [23]. The results from this 
research were significant, as they demonstrated that large 
amounts of data are available and can be effective in the 
use of DES modeling, specifically as it relates to the ability 
of DES to identify bottlenecks. Previous to this study, DES 
was primarily implemented as a Monte Carlo style simu-
lation in which certain input variables would be randomly 
manipulated to quantify their expected impact on outputs. 
Better et al. showed that combining data analytics and DES 
could be more intentional and specific, providing rapid and 
focused feedback [23].

DES has been used in manufacturing to enable predic-
tive analytics. Different software such as Tecnomatix Plant 
Simulation [24] and Arena Simulation [10] have been used 
to build digital models of current manufacturing processes. 
These digital models not only serve to visualize problems, 
but also to provide solutions to manufacturing problems. 
However, these models are limited to processing historical 
data within the model and lack any specific connection to 
current factory operations. Thus, they neither utilize real 
time data to improve their results, nor is it possible to loop 
results directly back into the system. Once optimized for 
a certain set of historic data, these models typically have 
served their purpose and are not of use once significant 
changes are made in the physical system, which has resulted 
in the term “throw away models” [14, 25, 26].

2.2 � Adaptive or flexible DES models

The idea of feeding up-to-date, or live data to a model built 
with historical assumptions has been explored previously. 
In a certain water fabrication scenario, recent data that was 
manually updated, proved to be essential because the pro-
cess itself is variable in production [27]. This experiment is 
notable because researchers made a clear comparison of the 
added benefits of additionally using live data versus using 
only historical data. Using estimated production parame-
ters, throughput was simulated and followed actual output 
trends. However, when actual production parameters were 
used instead of the estimates, the accuracy in prediction was 
dramatically improved.

DES models have also been connected to databases to 
allow simple integration of data as it is updated [26]. These 
types of models allow an enterprise to integrate models with 
data that is updated and extends the use of DES to adaptive 
and flexible situations. While these models do not allow for 
real-time connections to the data sources, they show that 
more up-to-date data leads to greater accuracy in predictive 
performance.
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2.3 � Connected DES models

Although adaptive DES models are beneficial and compara-
tively simpler to implement than traditional DES, a digital 
twin needs to digitally connect to the physical system. Rec-
ognizing the value of connecting to live data, frameworks 
have been set forward for establishing an adaptive and con-
nected DES model [28]. This has resulted in studies using 
live data to analyze a system and optimize scheduling in real 
time [29]. These connected DES models typically tie into 
databases and live connections in order to identify variable 
parameters within the factory enterprise. Studies have even 
been published drawing clear comparisons between models 
utilizing live data and models reliant on historical data or 
manual updating of parameters [30]. While these studies 
are just emerging and are limited in their overall application 
across a broad range of manufacturing enterprises, they are 
showing that for their focused studies the use of live data to 
build a dynamic DES may lead to more accurate predictive 
capabilities.

Bi-directional communication from digital twin to physi-
cal system is essential to closing the loop. Frameworks have 
been developed aiming to solve this dilemma and solutions 
have been well-documented [31]. The emphasis on real time 
connections is based on an understanding that in order for 
simulation in manufacturing to be effective, we must have 
valid and clean data inputs [28]. Obtaining clean and timely 
data is a major problem, and papers have been written that 
look into automating this process while preserving the data 
quality and addressing additional data collection problems 
[32]. Understanding that the quality of data is improving, 
leads to the question of what improvements in optimization 
and prediction could one get from applying a closed loop 
DES model.

These emerging, fully connected DES models are not 
simple to create, and there is a gap in the research when 
it comes to quantifying the specific benefits of converting 
a traditional DES model to a fully connected DES model. 
From these studies, it is apparent that its feasible to convert 
a traditional DES model a connected DES model. The dif-
ficulty is that there are limited studies on the benefits of 
connecting these DES to live data. Thus, the question is not 
whether it is possible to create connected DES models, but 
rather, what is the value of connecting the DES and does this 
value justify the connection of more complicated systems. 
As such, this paper will explore the creation and analysis of 
a connected and closed-loop DES.

3 � Methodology

To validate the claim that a connected DES can quickly pro-
vide more accurate short-term solutions,

1.	 A deliberately simplified and modular, lab scale dem-
onstration factory was created that implements smart 
manufacturing complete with smart designs, smart 
machines, smart monitoring, smart control, and smart 
scheduling, thus, enabling the creation of a truly con-
nected digital twin using DES.

	   Additionally, in order to quantify the benefits of a 
connected digital twin versus a traditional digital twin,

2.	 A traditional DES model was created that initially only 
used the historical data of the demonstration factory and 
subsequently, was modified to connect to live data in 
the demonstration factory. A variety of tests were then 
performed to measure the benefit of a connected DES 
versus a traditional DES model.

3.1 � Factory — physical connectivity

To better explore opportunities in smart manufacturing, a 
demonstration factory was built at Brigham Young Uni-
versity (BYU). This demonstration factory was deliber-
ately simplified to create a test bed for simple integration 
of the smart factory in a digital enterprise, specifically as 
it relates to the digital twin. The benefit of having such a 
system has recently been studied and verified [33]. Although 
this demonstration factory sorts dice, research findings can 
be applied to general manufacturing processes seeking to 
implement smart manufacturing. The demonstration factory 
delivers six-sided dice on a main conveyor belt where a robot 
picks up and sorts these dice based off the top face into a tray 
to complete a full set of dice 1–6. Once assembled, each tray 
is recycled through the system, rolling the dice and deposit-
ing them back onto the conveyor belt. Additional dice that 
cannot be placed in the current tray, are stored in a buffer 
area and these dice may be used later to fill tray positions. 
An image of this demonstration factory can be seen in Fig. 1.

Steps were taken to accurately reflect a real production 
scenario, and the demonstration factory was fitted with 
industrial level machines and technology such as an Allen 
Bradley CompactLogix 5380 PLC, Festo CPX-FB36 and 
CPX-AB-8-KL-4POL fieldbus, Robot Vision iVY2 RCX340 
vision system, Yamaha YK400XG robot and RCX340-4 
controller, and additional sensors, motors, etc. The general 
hardware structure and integration of the test bed can be seen 
in Fig. 2. The demonstration factory transfers information 
through Ethernet IP where an Allen Bradley PLC makes 
decisions and integrates all parts of the system together.

Some factory specific terms are defined in Table 1 as well 
as corresponding general process terminology.

3.2 � Enterprise level connection

Following a generally accepted path for implementing smart 
manufacturing [4], the demonstration factory integrates the 
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ability to monitor, control, and analyze data. The integrated 
enterprise contains a connection server and enterprise con-
nectivity, which connections are accomplished through PTC 
Inc. software products, namely Kepware and ThingWorx 
respectively. The complete digital enterprise of the demon-
stration factory can be seen in Fig. 3.

The factory connection connects to the physical devices 
and allows properties and status of the demonstration fac-
tory to be placed on a server, allowing for ubiquitous and 
bi-directional data transfer. Through industrial connectivity, 

the smart factory platform provides a software environment 
where that data can be evaluated using custom coded algo-
rithms to store, visualize, monitor, and control information. 
Data is stored in an external PostgreSQL database that func-
tions as the factory enterprise. Ultimately, this industrial 
level software provides an integrated interface for monitor-
ing, controlling, scheduling, and visualizing. This imple-
mentation has led to a digitally integrated enterprise test 
bed, and an ideal environment to quantify the benefits of the 
closed-loop digital twin of a smart factory.

3.3 � Closed loop digital twin

A DES model was created based on the historical and live 
data of the demonstration factory. The model was verified 
and validated against multiple runs of the demonstration fac-
tory. Specifically, it was confirmed that the digital twin was 
accurate in modeling the physical state of the demonstration 
factory at any given moment as well as accurate in replicating 
the average production volume of the system. The model was 
created using FlexSim, a simulation software developed by 
FlexSim Software Products. This software allows for real time 
connections to servers, databases and even PLCs. The result-
ing digital twin is a 3D replica, which can be seen in Fig. 4.

To create a genuine digital twin, the simulation connected 
to live data using 2 different methods. First, for data that 
required analysis of distributions, information was sent in 
5-min intervals. The 5-min interval allowed data to be aver-
aged while still ensuring timely data updates. These pack-
ages were stored in the enterprise, see Fig. 5. Secondly, 
in some instances, 5 min was not enough for the response 

Fig. 1   The demonstration fac-
tory at BYU

Fig. 2   Hardware structure of the BYU demonstration factory
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to be considered live or real time. In such cases, such as 
when the robot speed was reduced, the DES model was tied 
directly to the factory connection, which connected directly 
to the PLC for real-time connectivity of process variables. 
Regardless of how it was accomplished, in both instances, 
data was directly connected to the simulation without a need 
for any human interaction, thereby, completely automating 
the solutions. Additionally, data could be sent back to the 
physical system using the same two methods, either in infor-
mation packets sent through the enterprise or sending signals 
through the factory connection. Figure 5 shows the complete 
closed loop system with the DES model, which acts as the 
digital twin with connection pieces to the enterprise and the 
factory. When the DES detects a potential problem, it will 
send a signal through these connections. Signals can be sent 
through the enterprise for the smart factory to then convert 
to a display or notification in order to alert the operators. 
Signals are sent through the factory connection to directly 
control the factory and stop or modify production.

The specific connections from the physical system to 
the digital twin can be seen in Table 2. The input parame-
ters are taken from the physical system using the specified  
data transfer method. These are inputs for the DES model 

to use in its analysis. Results are then generated from the 
DES model, and these outputs are sent to the physical sys-
tem using the specified data transfer method.

The DES follows the same sequence of events as the 
physical factory. Dice were rolled onto the conveyor belt 
where the robot would sort them either into a tray or the 
buffer area. The dice could then be sorted from the buffer 
to the current tray when needed. The conveyor belt would 
then cycle and the process would continue. A diagram of 
this process can be seen in Fig. 6, which also goes into 
the greater detail of the logic of the DES. This diagram 
identifies the live data inputs and outputs from Table 2 in 
dark circles.

3.4 � Testing setup

On startup, dice will be placed in the buffer with an equal 
number of dice 1–6; however, it was noted that dice do not 
follow this assumed uniform distribution. Dice numbers 
4–6 are rolled more often than 1–3. This led to inconsist-
encies in production, because in the beginning of startup 
the demonstration factory’s buffer had an equal number 
of dice it could pick from to fill up trays quickly. As time 

Table 1   Terms used in this paper as they relate to manufacturing processes

Term Description General process term

Dice Produced Whenever a dice is picked up and sorted, a dice is produced Unit production, raw production
Dice position When the dice is removed from the conveyor the x and y position 

and rotation of the piece is recorded
Alignment of units, could lead to waste and lost materials

Robot speed The percentage of the max physical speed at which the Yamaha 
robot is working

Speed of the line and process, leads to potential bottlenecks

Dice distribution When the dice were rolled on the conveyor, the distribution 
of the dice faces was not uniform, for instance, the faces of 
the dice were more often 4, 5, and 6. This refers to the real 
distribution

Supplier quality, raw material specs and limits

Fig. 3   The software implemen-
tation of a digitally integrated 
enterprise, showing how indus-
trial level connections are used 
in the smart factory platform. 
The smart factory contains 
the ability to monitor, control, 
aggregate, and visualize data
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elapsed, it would eventually run out of the fewer rolled 
dice and production slowed slightly. It was therefore nec-
essary to first determine the length of time it would take 
for the system to reach a steady operational state.

Although there are variations in the number of dice 
produced every five minutes, in the first 15 to 20 min of 
production more dice are produced. This is because of the 
uniform distribution of dice in the buffer, from which the 
system can pull dice from to fill trays, thus increasing the 
number of dice produced. After 15 to 20 min, the initial 

buffer is depleted, and the number of dice produced is 
not dependent on the dice manually placed in the buffer. 
Thus, the warmup period was determined to be 20 min. 
All tests will be ran after this 20-min period.

3.5 � Types of tests to run

The demonstration factory was run for several shifts — a shift 
refers to a 12-h run—and averages were recorded. The aver-
ages were used to create historic distributions and a traditional 

Fig. 4   The DES model of the 
demonstration factory

Fig. 5   FlexSim closing the loop 
and creating a digital twin
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or base line DES model. Three tests, seen in Table 3, were 
then performed to evaluate the variety of benefits that may 
be seen in a connected digital twin. The inputs into each of 

these tests is the live data component; all other parameters are 
held constant and thus historic data can be used to emulate 
these processes that would otherwise change our production 

Table 2   List of parameters and data information

Parameter Description DES model I/O Data transfer method

Dice produced Counter for how many dice are sorted by the robot Output Factory connection
Dice position The position of the dice on the conveyor belt when picked up Input Enterprise
Robot speed The set percentage of the max speed the robot is operating at Input Factory connection
Dice distribution The distribution of the dice being sorted from the conveyor Input Enterprise
Time until failure A prediction provided by the DES of the estimated time until the 

demonstration factory drops too many dice off the conveyor
Output Enterprise

System shutdown A signal that shut downs the factory based off the time until failure Output Factory connection

Fig. 6   A flow chart of the DES model. Dice queued refers to dice entering onto the conveyor belt and waiting to be picked up by the robot
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outputs. These constants are inputs such as motor speeds, light 
quality, processing times, and other variables. The outputs of 
these models are predictions that can then be used by operators 
and managers to make timely decisions and, specifically refer-
ring to the third test seen in Table 3, even allow the model to 
autonomously make decisions and control factory parameters 
and production.

3.5.1 � Test 1: throughput and bottlenecks — method

The purpose of this first test was to determine how effective a 
connected DES model would be in improving the accuracy and 
precision of predicting throughput when an unexpected failure 
or modification occurred. Assuming that large amounts of data 
are available, a factory should know approximately how often 
their lines shut down or maintenance is performed, even so, a 
factory may still have unexpected events that are not accounted 
for in their large historical data sets. For instance, lines may 
have to be shut down, speeds on conveyors reduced, or workers 
may be unavailable. By connecting the model to live param-
eters such as speeds and line shutdowns, the connected DES 
would be able to make predictions based on these changes 
without needing additional historical data, and instead, rely on 
live data. To test this hypothesis, a test was run with variable 
robot speeds to analyze how a traditional and connected DES 
would respond.

The connected DES was connected to live robot speeds, 
and a bottleneck was created by intentionally modifying the 
robot speed to model a line failure and other random event. 
The traditional DES model was created using the data during 
testing, so it had access to the averages, highs and lows of dice 
produced, but because it was not connected to live data, could 
not specify robot speeds and thus could not identify when 
production may be higher or lower than the average. Using 
Microsoft Excel, we produced 7 randomly generated numbers 
between 1 and 10. These numbers corresponded to the percent 
speed the robot would run as described in Table 4. The dem-
onstration factory was then run, modifying the robot speed 
every 10 min to the new speed specification, thus modeling 
factory line variation. The number of dice sorted was recorded 
as dice produced every 5 min, so 2 values were recorded at 
each speed. The test started for 10 min at full speed (100%) 
and ended at full speed (100%) for 5 min. Table 4 shows the 
number of dice produced and the robot speed. The number 
of dice produced does not have a linear relationship with the 
robot speed; this is a good example of why a connected model 

can be useful. Multiple variables may affect an output and rela-
tionships between variables may not be immediately obvious. 
The connected DES model was running in the background and 
was instantaneously adjusting predictions based on the vari-
able speed, thus allowing it to identify trends. The traditional 
DES model, used as a basis of comparison, was created using 
this historic data.

3.5.2 � Test 2: supplier quality — method

Similarly, in test 2 of Table 3, we wanted to quantify 
how a connected model responds to unexpected changes. 
Specifically, we were testing if a connected DES model 
could identify unique trends in a system where no previ-
ously recorded data is available. To test this, we intro-
duced material from a new supplier. Similarly, plants may 
source raw material from different suppliers, and while 
these suppliers advertise identical specs, they may actually 
deliver material on opposite ends of their specified limita-
tions, meaning production with that specific material may 
vary from historical trends. This test looked at evaluating 
how effective the connected DES model can predict these 
variations.

The demonstration factory was run using dice with pips, 
but through observation, we noticed that when we rolled 
these dice on the conveyor, the distribution of dice faces 
were not uniform. Additional dice were purchased that 
had printed numbers instead of pips, and we observed that 
these dice had a unique distribution as well. Although both 
sets of dice were advertised as fair and uniformly distrib-
uted dice, we found that in fact they had a different distri-
bution. Finding the correct distribution of materials is time 
consuming and takes large amounts of experimentation. 

Table 3   Tests run and inputs/
outputs of the tests

Test number Process represented Inputs to model Outputs from model

1 Throughput and bottlenecks Robot speed Dice produced
2 Supplier quality Dice distribution Dice produced
3 Process alignment Dice position Time until failure

Table 4   List of random robot speeds used in testing

Random number Robot speed % Dice produced

N/A 100 42, 47
7 70 37, 42
4 40 34, 36
9 90 40, 44
7 70 45, 46
2 20 25, 27
10 100 47, 49
1 10 21, 15
N/A 100 40
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This led to us wondering what the quality of historic data 
would be when materials with unique distributions are 
introduced. To test this, we ran the factory with only the 
numeric dice and recorded the number of dice produced. 
Then, to represent a new supplier’s material, we removed 
the numeric dice from the system and replaced them with 
the pipped dice. We assumed that we had no historic data 
on the distribution of either dice and instead used historic 
distributions to predict dice produced. However, the con-
nected DES model used the distribution of the last 1000 
dice sorted as an input for our model based on live data. 
The distribution was taken from the PostgreSQL database, 
and the method for this in FlexSim can be seen in Fig. 7.

3.5.3 � Test 3: process alignments — method

This third test of Table 3 aims at further demonstrating the 
ability to identify serious errors and problems on the factory 
floor that would otherwise go unnoticed. One such instance 
in our demonstration factory is an alignment piece that keeps 
dice from rolling out of the reach of the robot. If damaged, 
more dice fall out of reach of the robot, and they will fall off 
the end of the conveyor belt. The dice are recycled in our sys-
tem, so if too many dice fall off the conveyor, then the dem-
onstration factory runs out of dice to sort and stops until more 
dice are delivered. This leads to a buildup of material waste 
and takes negatively impacts the productivity of the factory. 

We have termed this waiting as a system failure, since only 
an operator can come and resolve the issue. We wanted to 
eliminate this unnecessary waste of material and time.

Using our historic data to build the traditional DES 
model, we recognized the average position on the conveyor 
belt meant that nearly all dice were picked up by the robot. 
Only 1 in 1000 would be missed. This test was a little bit 
different in that we did not use live data to “train” the model, 
instead the model was simply looking for variations from 
what it was expecting in the historical data. This meant that 
when a dice was missed the connected DES model could run 
a prediction on how long the demonstration factory could 
run before failure. We defined a failure as the demonstra-
tion factory running out of dice to process on the conveyor 
belt. It was assumed that every shift, which runs for 12 h, an 
operator could restock whatever dice had been lost by being 
out of position, if the system ran dry before an operator got 
there then a failure would occur.

To calculate the time until failure, the DES connected to 
the external database to determine the current percentage of 
dice missed by the robot. It would then simulate production, 
running 60 h into the future, and record back in the database 
the estimated time until failure. If time until failure was less 
than 20 h, an operator was notified to go restock the system. 
If time until failure was less than 10 h, the DES system was 
shut down through the Kepware connection, and an operator 
was notified to resolve the problem.

Fig. 7   FlexSim connected model input
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4 � Results and discussions

4.1 � Test 1: throughput and bottlenecks

After running the test described in 3.5.1, we discovered that 
long term, the actual number of dice produced in the 85-min 
period was 637 units. Using the historical data of dice pro-
duced, we predicted 629 and using the live data of the robot 
speed, predicted just 577. The historical model did better 
because we built the historical model off the number of dice 
produced from the same data set, effectively overfitting the 
model, in order to show a best-case scenario for the tradi-
tional DES model. However, when looking at specific time 
intervals, the live data of the connected DES was still much 
more precise in predicting units produced, because historical 
data model predicted ranges of dice produced much wider 
than the live data model. These results can be seen in Fig. 8. 
The dotted lines refer to the historic DES model and solid 
lines correspond to the live model. As seen in Fig. 8, the 
number of dice produced in 5 min had a wide range of values 
because of the randomness of the dice. The system fills trays 
one at a time, so at any given tray may wait longer or shorter 
depending on the dice it is sorting from the conveyor. The 
stochastic nature of the system also led to differences in the 
actual number of dice produced and the predicted number 
of dice produced.

The model with live data was able to predict highs and 
lows in a much tighter margin. Overall, it could predict 
greater specificity at a 35.1% improvement. Additionally, the 
average error for the historic data was 28.3% and only 12.9% 
for live data, effectively cutting the error in half. These num-
bers can be seen below in Fig. 9.

With the intent of analyzing the accuracy of the long-
term predictions of these models, the experiment was run 
a second time. A new set of random values was chosen for 
the robot speed, and 655 dice were produced. While the his-
torical model predicted 646 dice produced, the live model 

predicted 649 dice produced, showing that comparable long-
term results could be achieved from both models. The con-
nected DES and the traditional DES had comparable results 
because the historical data was intentionally not updated 
with the most current run. In the first run, the historic model 
was overfitting its predictions based off the training data,  
and in this second test that advantage was limited. In this 
case, both models were within 10 total dice produced when 
predicting long-term production. All other measurements 
in this second run closely reflected our findings from the 
first test.

In summary, we found that both the traditional DES and 
the connected DES had comparable long-term predictions 
for average number of dice produced. The benefit seen here 
is that a live model can maintain accurate long-term pre-
dictions while also improving the ability to more precisely 
make short-term predictions. A traditional DES would be 
able to find long-term averages, but when a factory experi-
ences disruptions to production then a connected DES would 
be useful in identifying the potential short-term losses. As 
shown in Fig. 9, short-term predictions are consistently 
twice as accurate. Conversely, if small improvements are 
made that increase speed of production, the connected DES 
will immediately reflect that change in its short-term pre-
dictions. The benefits of live data seen in this test are the 
improved ability to make short-term predictions.

4.2 � Test 2: supplier quality

Following the methodology outlined in 3.5.2, we ran test 
2 of Table 3 and observed, as shown in Fig. 10, that the 
connected DES model, in this case, benefited our predic-
tions. The historic data model was extremely accurate when 
predicting using material 1 (the numeric dice). However, 
when a new material is introduced the prediction for dice 
produced is unchanged because the historic model uses the 
large amounts of historic data, but it is untrained on any new  

Fig. 8   Precision of models in 
predicting dice produced when 
adjusting the robot speed
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data until it is taken offline and updated. The connected 
model, on the other hand, reads in the new distribution and 
creates an adaptable moving average calculation to account 
for these slight variations with only some delay.

As a manager in this factory, you may not be expecting a 
significant variation in production due to raw material, and 
the effects of this change may not be clearly reflected until 
many parts have been produced. In reality, changes that go 
undetected by operators may have dramatic effect on the 
outcome of production. In this case, the actual average of 
the historic/numeric dice is 43 dice every 5 min. For the 
new units, the actual average is closer to 35. This may not 
seem significant and may even go unnoticed by the system, 
but in a 12-h shift the demonstration factory would be pro-
ducing 1000 fewer units than expected. The connected DES 
model does not respond instantly to the change, but in 5 min, 
it already starts to adjust and between 15 and 45 min can 

completely adjust for the distribution of the new material. 
This has a large impact to industries processing raw materi-
als, because not all suppliers deliver comparable material 
and traditional predictive analytics requires large amounts of 
historical data to build an accurate model. It was shown here 
that a connected model can adapt quickly to change, whereas 
the traditional model required an offline update and the user 
needing to be aware of a possible issue.

4.3 � Test 3: process alignments

Initially, we were unaware as to how many dice we could 
afford to lose off the conveyor belt of our demonstration 
factory before production was affected. After running the 
test outlined in 3.5.3, the DES accurately identified when 
the demonstration factory would fail. The results can be 
seen in Fig. 11 below. We ran the connected DES, manually 

Fig. 9   Error and precision 
comparison
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feeding it possible distributions of missed dice from 0.1 
to 1%, and it recorded in a database how many hours until 
failure, meaning the system had run out of dice and was 
stopped waiting. From this report, 0.1% of the dice being 
missed would lead to a failure after 53 h, giving an operator 
sufficient time to restock these dice during a shift. The DES 
estimated that when 0.3% of the dice were being missed 
the system would shut down in less than 20 h, and an alert 
was sent to the operator to restock. The DES also estimated 
that when 0.7% of the dice were missed, the system would 
completely shut down in under 10 h, and thus, it shut down 
the physical demonstration factory and alerted an operator 
to resolve this issue. These results are subject to change and 
in another scenario — with different speeds or distributions 
— this time until failure would change, so having a live 
connection adds significant value. A connected DES can 
accurately model the current scenario and identify changing 
targets of how many dice could be missed.

It was shown in this test that a use of live data in the 
DES model accomplished what is otherwise impossible in 
traditional DES models. The connected model updated, in 
real time, distributions that effected the performance of the 
demonstration factory and was able to use these updated 

distributions to accurately adjust future predictions. Fur-
thermore, the digital twin allows for adaptable adjustments 
based on live data parameters. This test further demonstrated 
how DES could be used to close the loop. Using a con-
nected DES, we were able to input data from the database 
and write packets of information back into the database for 
our other systems to read and access. In this way, the loop 
was closed, so workers could receive live updates, and in 
extreme situations, the digital twin even took control and 
shut down processes. Although there are other methods to 
closing the loop, many of which are in place in state of the 
art manufacturing settings, the ability to close the loop using 
a digital twin allows for integration of emerging technolo-
gies into antiquated systems.

5 � Conclusions and future work

A digital twin was created using DES software that digitally 
represented our demonstration factory system. This DES 
model was validated using historical data. Additionally, a 
second DES model was connected in real time to our dem-
onstration factory process. In addition to using historic data, 

Fig. 10   Prediction of change in 
production when new material 
is introduced
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this second DES model was updated in real time, without 
user interaction, and the model itself could control certain 
factory parameters and alerts to make smart decisions in a 
factory environment creating a smarter closed-loop digital 
twin.

Using these DES digital twins, the benefits of using a 
real time connected DES as opposed to a traditional histori-
cal data DES was analyzed and quantified using three tests.

1.	 The throughput and bottlenecks test aimed at assisting a 
factories desire to increase throughput by tracking per-
formance. Although the long-term predictions, an hour 
or more, of these two types of DES models were very 
similar, the connected model enhanced our ability to 
predict short term performance, including

•	 35% improvement in the precision of predictions.
•	 Twice as accurate in making short-term predictions 

over 5-min intervals.

2.	 The supplier quality test quantified the benefits of a 
connected DES when a change in material or suppliers 
results in unexpected change in quality and production.

•	 Unexpected changes in production were unaccounted 
for by the historical DES, but the connected DES 
model immediately began making adjustments in its 
predictions.

•	 Within 15 min of this change in supply, the con-
nected DES alerted operators of potential long-term 
scenarios.

3.	 The process alignments test used the connected DES to 
identify the need for maintenance in the demonstration 
factory.

•	 A distribution of product that was falling off the con-
veyor was updated live in the connected DES model. 
This value reflected a maintenance need on the fac-
tory floor.

•	 The DES model accurately predicted failure and 
through live connections stopped production and 
alerted operators, preventing waste.

Ultimately, it was determined that a traditional historical 
DES makes accurate long-term predictions using historical 
averages, but a real time connected DES with live connec-
tions to the demonstration factory can be used to predict 
significant changes where correlation between inputs and 
outputs is not immediately obvious. This benefit was quanti-
fied to better show the improved performance of the digital 
twin. The application of these findings can be generalized 
across a wide spectrum of manufacturing enterprises and 
give greater insight when determining if a digital twin is a 
viable addition to forward thinking smart enterprises.

Future research points to evaluating the speed at which 
problems may be identified and viable options for auto-
mating those responses. In some cases, the tests here were 
performed using 5-min packages of information. Research 
could be done aimed at shortening or lengthening that time 
and observing results to try to achieve more similar results 
fit to the physical system. Tests were done assuming con-
stant relative variance, additional tests may be performed 
that aim at quantifying variation under various operating 
conditions of interest. Additionally, an in-depth comparison 
between the benefits of DES and predictive analytics may 
be explored, particularly as it relates to their ability to close 
the loop on a system.
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