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Abstract
Designing product families is an enabling strategy for mass customization. In general, there are four prevalent classes of 
problems when designing product families: (i) product family positioning; (ii) customer preferences modeling; (iii) product 
family modeling; and (iv) product family configuration. Although these classes are interwoven through design problems 
stemming from marketing, engineering, and economic areas, they are rarely handled together in product family design 
methods. The lack of a systemic, integrated design perspective may lead to locally optimal solutions and ultimately result 
in product families not making the economic benefits of customization worthwhile. Over the years, some methods have 
attempted to overcome this absence of holistic design view. However, because they are restricted to theoretical levels or 
lack detailed applications, their practical implementation is often not possible. To bridge the pathway between theory and 
practical implementation, this paper uses the market-driven modularity (MDM) method to design a family of autonomous 
mobile palletizers economically oriented to market requirements. The empirical application of the method points out the 
palletizers family as being economically feasible. Furthermore, it also indicates which modules should be developed in suc-
cessive design phases, as well as reveal the definition of the product family structure as the MDM’s outcome that is more 
sensitive to the variation of parameters/variables composing the configuration model. The main contribution of this work 
lies in the presentation of practical implementation details of the MDM method, which, to the best of our knowledge, has 
not been reported since its proposition.

Keywords  Product family design · Platform design · Modularity · Collaborative robotics · Autonomous mobile robotics

1  Introduction

Increasing product variety without compromising the effi-
ciency of production systems has been a challenge for many 
organizations [1]. This issue has been addressed in industry 
and academia primarily via product family design, which 
embraces a collection of products sharing a common plat-
form yet having distinct characteristics to fulfill the hetero-
geneity of customer requirements [2]. Generally, there are 
four prevalent classes of problems when designing product 
families [3]: (i) product family positioning; (ii) customer 

preferences modeling; (iii) product family modeling; and 
(iv) product family configuration. Although these classes are 
interwoven through design problems stemming from mar-
keting, engineering, and economic areas [4], they are rarely 
handled together in most product family design methods [5]. 
It may seem a natural research move to focus on the specifics 
of particular classes of design problems. However, from a 
systemic standpoint, the functioning of a system cannot be 
entirely understood from an independent evaluation of its 
parts, just as parts cannot be comprehended without know-
ing their contribution to the whole [6]. Consequently, the 
lack of a systemic, integrated design view of the product 
family may result in local solutions, not optimal global ones 
[7]. Furthermore, when moderated by certain design criteria, 
it may result in economically unfeasible families [8].

Few studies have systemically addressed the classes of 
design problems. As proof, Simpson et al. [3, 9] organ-
ized several methods for designing product families and 
platforms into collections of articles. However, while these 
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works allow seeing the methods approaching particular 
classes of problems in the context of the product family 
design, they do not explore the interactions or interrela-
tions among the methods within the design process, thus 
not addressing how the classes of design problems relate to 
each other. This fact may be restrictive since comprehension 
of the whole develops through interactions among its parts 
[10]. In turn, Ferguson et al. [4] proposed a product develop-
ment framework for mass customization that partially fulfills 
the role of integrating the classes of design problems. This 
is because, given the level of granularity used, some design 
problems, such as product family planning and positioning 
and building of product family structure, are not addressed. 
For those design problems considered, their inputs and out-
puts are not made explicit. Furthermore, in terms of design 
criteria, the framework overlooks some important ones for 
assessing the economic viability of product family design, 
such as market share, demand, and profit [11]. Similarly, 
Otto et al. [12] organized many strands of research into a 
logical sequence for developing product platforms. The 
authors’ proposition presents the design problems and the 
respective inputs and outputs. The design logic is also dem-
onstrated in an empirical application concerning the design 
of a family of uncrewed ground vehicles. The problem is 
that the extension of the proposed method is limited to the 
first three classes, thus not considering the product family 
configuration. Finally, Gauss et al. [5] connected multiple 
methods for designing modular product families into a com-
prehensive functional model. Although the model addresses 
the four classes of design problems, their inputs and out-
puts, and the criteria and techniques for their execution, it 
is essentially theoretical and does not provide an empirical 
application that attests to its proposition. The cited authors 
later proposed an integrated method for designing product 
families economically oriented to the marketplace [13]. 
As complete as the previous one, the method is evaluated 
through a series of expert assessments and practical appli-
cations. Nevertheless, the level of detail presented in the 
empirical applications does not favor the method’s replica-
tion in practical terms.

In summary, on the one hand, the methods that indepen-
dently or partially address the classes of design problems 
present empirical applications that favor their adoption but 
lead to locally optimized solutions. On the other hand, the 
methods that systematically address the classes of design 
problems altogether and, consequently, lead to globally satis-
factory or optimal solutions, are essentially theoretical or do 
not provide detailed applications allowing their use in practi-
cal terms. Given those above, this study poses the follow-
ing research question: how to systemically and empirically 
design product families relying on economically feasible 
customization? Aiming to answer this question while bridg-
ing the gap between theory and practical implementation, 

this study uses the market-driven modularity (MDM) 
method [13] to conceptually design a family of autonomous 
mobile palletizers economically oriented to market require-
ments. The empirical application of the method pointed 
out the palletizers family as being economically feasible. 
Moreover, it also identified the optimal set of modules that 
should be developed in subsequent design phases, as well 
as revealed the definition of the product family structure as 
the MDM’s outcome that is more sensitive to the variation 
of parameters/variables (i.e., market size and variable cost) 
composing the configuration model. The main contribution 
of this work lies in developing practical implementation 
details of the MDM method, which have not been reported 
since its proposition. When evaluated in perspective to other 
works that have addressed palletizer design [e.g., 14–16], 
this paper brings an economic and market standpoint, com-
plementary to the engineering point of view traditionally 
adopted by machine manufacturers.

The remainder of this article is organized as follows. 
Section 2 summarizes the related work on modular product 
family design, while Sect. 3 provides details of the MDM 
method. Section 4 describes the empirical application of the 
method, and Sect. 5 discusses the findings. Finally, Sect. 6 
outlines the concluding remarks, limitations, and directions 
for future research.

2 � Related research on modular product 
family design

Designing product families is an enabling strategy for mass 
customization [17]. In contrast to developing a single prod-
uct at a time, the purpose of product family design is to 
create a modular architecture made up of platforms and 
modules, from which a multitude of family members are 
derived [12]. The instantiation of family members is carried 
out by mixing and matching modules from the platform or 
scaling the platform variables according to preset configura-
tion rules [18]. There are four prevalent classes of problems 
when designing product families [3]. The first is product 
family positioning, where product offerings are optimized 
based on customer preferences. The second is customer pref-
erences modeling, where the customer choices’ influence on 
product profiles is modeled. The third class is product family 
modeling, wherein modules and platforms are conceived. 
Finally, the last one is product family configuration, wherein 
product family variants are instantiated.

Many methods for designing product families have 
been developed in the past 20 years [5]. Besides the ones 
described in Sect. 1 [3, 5, 9, 13], the method by Jiang and 
Allada [19] also encompasses the four classes of design 
problems together. However, it presupposes that the mod-
ules’ set already exists, which makes the method sensitive to 
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extant modules’ ability to meet the customer desired attrib-
utes. Other methods covering the first three classes of design 
problems are also found in the literature [12, 20–27]. How-
ever, their fundamental drawback is choosing the modules 
to make up the product family structure based on individual 
evaluations rather than combining modules into variants. 
The problem is that the combination of modules affects the 
performance of the configured variants [28, 29]. Therefore, 
there is no guarantee that a local selection will result in 
global optimized variants.

Further methods focus on modules identification within 
the product family modeling [30–40]. However, few, if any, 
methods in this group perform the functional and physical 
decomposition concurrently, which may result in modular 
architectures constrained by physical interactions. Further-
more, such methods only measure the quality of the cluster-
ing solution on occasion, thus not assuring that the solution 
found is the most suitable one. Still concerning the product 
family modeling, some methods combine this class with 
product family positioning [40–43], whereas others com-
bine it with customer preferences modeling [14, 44–60]. In 
both cases, although few methods obtain the product desired 
attributes from the customers themselves, most only guide 
design decisions in criteria essentially linked to customer 
preferences. The disadvantage of this strategy is that it may 
end up in specifications that can barely be achieved in reality 
[61] or induce economically unfeasible product families [8].

Finally, other methods focus on the product family con-
figuration [7, 29, 62–67]. In this group, most methods solve 
the optimization problem of combining and parametriz-
ing modules into product family variants through meta-
heuristics. Among the design criteria used for composing 
the objective function, cost appears most frequently [5]. 
Nonetheless, considering it alone, or even in conjunction 
with utility, may not be enough to justify the investments 
in a product family design/redesign project [62]. There-
fore, some methods combine cost with demand and price 
to obtain profit. Although profit consists of an adequate cri-
terion for assessing economic viability [11], it assumes the 
use of fixed costs. Nonetheless, rating fixed costs has shown 
to be counterproductive in selecting the product mix, as it 
favors more high-volume variants than those more profit-
able [68]. With further regard to this group, some methods 
contemplate the product family modeling and configuration 
being performed together [17, 28, 69–73]. Nevertheless, 
as well as the work by Jiang and Allada [19], the assump-
tion that a collection of modules already exists hinders the 
use of configuration procedures to rationalize the product 
family structure, which ultimately may result in low-utility 
configuration spaces.

In summary, the missing integration among the classes 
of design problems precludes using a single method to con-
duct the entire design process and leads to local optima. 

Furthermore, when combined with profit-related design cri-
teria, this situation may end up in product families that fail 
to reap the profitability expected from customization. These 
are gaps that the market-driven modularity method [13], out-
lined next, sets out to overcome without yet demonstrating 
detailed empirical applications that would enable its use in 
practical terms.

3 � Market‑driven modularity – MDM

MDM is a method for conceptually designing product family 
structures economically driven to the customers’ requirements 
[13]. Conceived for use in early design stages, the MDM con-
sists of 23 steps organized into 4 classes of design problems 
that can be executed by an open architecture of techniques. The  
rationale of the method is to define the target market segments, 
model the customer preferences for each of them, and then  
create a modular architecture aiming at covering all segments. 
From the modular architecture, multiple instances of design 
parameters are devised and further arranged in a multitude of 
segment-related variants. Next, established the price and esti-
mated the demand, each segment variant’s throughput (sale  
price minus variable costs) is computed. Finally, the through-
puts of the most contributive variants are pooled into the prod-
uct family throughput, and the design parameter instances com-
prising them are chosen to make up the final product family  
structure. The process ceases when the profit exceeds the invest-
ment or a pre-determined profit threshold is reached, as seen in  
Fig. 1. The two primary intended outcomes are (i) ensuring the 
product family’s economic viability and (ii) the product fam-
ily structure that economically meets the market requirements.

3.1 � Product family planning and positioning (Cp1)

In further depth, MDM begins with converting the com-
pany strategy into objective measurements for product 
family design. In step S1.1, the potential market size (Mk) , 
the share of market segments (Sms) , and investment param-
eters are estimated. Similarly, the target market segments, 
MS ≡

{
msi|i = 1,… , I

}
 , technological trends, product  

family leveraging strategy, and complementary elements  
are defined. The market segmentation is then refined in step 
S1.2, and the resulting specifications trigger the identification 
of the customer desired attributes, A ≡

{
al|l = 1,… , L

}
 , in 

step S2.1, or feedback on the strategic product family plan-
ning in step S1.1.

3.2 � Customer preferences modeling (Cp2)

In Cp2, the method continues to model the influence of 
customer choices on product profiles. It starts in step S2.1 
by determining the customers’ desired attributes. The 

1379



The International Journal of Advanced Manufacturing Technology (2022) 123:1377–1400

1 3

attributes should be derived from existing or future needs, 
and, in some circumstances, they are also used to refine the 
market segments established in the preceding step. In step 
S2.2, it is undertaken the translation of customer attributes 

to engineering attributes, E ≡
{
em|m = 1,… ,M

}
 , followed 

by the mapping of their relationships in step S2.3, which 
entails that [A]L = [R]LM[E]M . The customer-related engi-
neering attributes proceed to step S2.4, while the unrelated 

Fig. 1   MDM’s diagram (adapted from Gauss et al. [13])
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ones are discarded. Engineering attributes usually have 
different levels, i.e., E∗

m
≡
{
e∗
mn
|n = 1,… ,Nm

}
 , which are 

identified in step S2.4 from a set of competing alternatives, 
Z ≡

{
z⃗ik|k = 1,… ,Ki

}
 , related to the target market seg-

ments previously defined (MS).
In other words, the competing alternative is a vec-

tor of engineering attribute values (ĕ∗) and price (p̆) , 
z⃗ik =

[
ĕ∗
1ik
, ĕ∗

2ik
,… , ĕ∗

Ω−MN ik

, p̆ik

]
 , from which the levels are 

inductively defined. From a market-pull standpoint, the 
competing alternatives may often be obtained from defini-
tions other players assumed or from the company’s actual 
products. In turn, from the technology-push perspective, the 
alternatives are derived from the company’s vision of the 
future. At this step (S2.4), new engineering attributes might 
arise; when it happens, they serve as feedback for step S2.2.

In the following step (S2.5), the set of product profiles via 
which the customers express their preferences is built. Given 
the possibility of exceptionally high combinations involving 
engineering attributes 

(
em
)
 and levels 

(
e∗
mn

)
 , 
∏N

m=1
Nm , the 

goal of step S2.5 is to minimize the number of product pro-
files while maintaining their significance. The data on cus-
tomer preferences are then gathered in step S2.6. When data 
is mainly available, the customers are asked to choose a 
profile from the set, simulating real-world purchase deci-
sions. When data is scarcely known, the experts or the key 
customers are requested to perform pairwise comparisons 
involving the customer desired attributes (a) , engineering 
attributes (e) , and their respective levels (e∗) hierarchically. 
Concluding, in step S2.7, the importance of engineering 
attribute levels and the price is computed for each segment, 
i.e., ��⃗wi =

[
w1i,w2i,… ,wΩ−MN i

,wΩ+1i

]
 . If some kind of devi-

ation in market segmentation appears, the process should be 
repeated until achieving a final solution.

3.3 � Product family modeling (Cp3)

Following the customer preferences model, in Cp3, the 
challenge is to define the product family architecture, 
break it down into modules, and then generate design 
parameter instances that might compose the product fam-
ily structure. In step S3.1, the process begins with the for-
mulation of logical entities capable of accomplishing one 
or more engineering attributes, referred to as design 
parameters, DP ≡

{
dpq|q = 1,… ,Q

}
 . The formulation of 

design parameters stems from the available technology, 
existing product features, technological trends, and analo-
gous systems, as shown in Fig. 1. Once defined, in step 
S3.2, the design parameters and engineering attributes are 
mapped into a product family architecture covering the 
target segments altogether, i.e., [DP]Q = [PFA]QM[E]M . 
Then, in step S3.3, the functional modules are derived from 
the decomposition of the product family architecture, 

FM ≡
{
fms|s = 1,… , S;fms =

{
em, dpq

}}
 , followed by the 

evaluation of its clustering solution in step S3.4. If the clus-
tering solution succeeds in producing a level of functional 
modularity higher than or equal to 0.5 (e.g., MIf ≥ 0.5 ), 
the process continues; otherwise, it ends. After defining 
the functional modules, the next step (S3.5) is to specify 
the many constructive solutions that a design parameter 
can assume, referred to as design parameter instances  
(or building blocks), i.e., DP∗

q
≡

{
dp∗

qr
|r = 1,… ,Rq

}
 .  

A design parameter instance consists of a vector formed 
of engineering attribute values and variable cost, 
���⃗dp∗

qr
=
[
�e∗
1qr
, �e∗

2qr
,… ,�e∗

Ω−MN qr

, �cv
∗

𝜔 qr

]
 ; therefore, these prop-

erties should also be specified in step S3.5. Subsequently, 
preliminary geometric layouts are undertaken in step S3.6 
to reveal the physical interactions among modules’ 
constituents. At this point of the method, it is possible to 
delete incompatible design parameter instances, but new 
design parameters may arise, closing a feedback loop with 
steps S3.6 and S3.1. The physical interactions resulting from 
step S3.6 work as inputs for mapping the structural rela-
tionships among design parameters in step S3.7,  
i.e., [DP]Q = [DSM]QQ[DP]Q . In step S3.8, the functional 
modules  are  conver ted to  physical  modules , 
PM ≡

{
pms|s = 1,… , S;pms =

{
dpq

}}
 , and then evaluated 

in step S3.9. If physical interactions do not constraint the 
modular architecture, i.e., 

(
MIp ≥ MIf |MIf ≥ 0.5

)
 , the  

process moves on. Otherwise, physical modularity is  
refined in successive iterations until achieving the  
desired threshold. Concluding, the solution space  
for product family configuration is set in step S3.10, �
DP∗

q

�

Λ=
∑Q

q=1
Rq

=
�
P̂F

∗
�

ΛΩ

�
E∗
m

�
Ω=

∑M

m=1
Nm

 . Eventually, any 

required modification may feedback step S3.2.

3.4 � Product family configuration (Cp4)

Finally, in Cp4, the aim is to pool the market and investment 
parameters, customer preferences, competing alternatives, 
product family architecture, and candidate building blocks 
into a unique model intended to select and parameterize the 
design parameter instances to constitute the product family 
structure. This class starts in step S4.1 by building the con-
figuration model, as further detailed by Gauss et al. [13]. 
Then, in step S4.2, the design parameter instances are com-
bined and parameterized, yielding a finite group of variants 
for each target market segment, i.e., P̆F ⊆ PF wherein 
PF ≡

{
���⃗pf ij|j = 1,… , Ji

}
 . In step S4.3, the price 

(
p̆ij
)
 for each 

variant is determined, ���⃗pf ij =
[
ĕ∗
1ij
, ĕ2ij ,… , ĕ∗

Ω−MN ij

, p̆ij

]
 , and 

the product family throughput (Tp) is calculated in step S4.4. 
The steps from S4.1 to S4.4 are iteratively undertaken until 
reaching a satisfactory or optimal throughput. The less 
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Table 1   MDM’s techniques (adapted from Gauss et al. [13])

Steps (S)  Techniques for scarce data Techniques for abundant data

S1.1 – strategically plan the product family Technology roadmap [74]
Aggregate project plan [75]

Market segmentation grid [76]
Delphi [77]
Three-point estimate [78]
Domain knowledge [20]

Survey [79]
Descriptive statistics [80]

S1.2 – segment the market Delphi [77]
Market segmentation grid [76]

Latent class analysis [81]

Requirements list [82]
S2.1 – identify customer desired attributes (A) Qualitative interviews [83]

Direct observation [23]
Focus group [83]

Survey [79]
Descriptive statistics [80]

Content analysis [84, 85]
S2.2 – formulate engineering attributes (E) Analysis of existing technical systems [82]

Benchmarking [86]
Reverse engineering [86]

S2.3 – map dependencies between A and E Design matrix [87]
S2.4 – define engineering attributes levels 

(
E∗
m

)
Analysis of existing technical systems [82]

Benchmarking [86]
Reverse engineering [86]

S2.5 – build product profiles Fractional factorial design [80]
S2.6 – collect data on customers' preferences Qualitative interviews [83]

Focus group [83]
Survey [79]

Analytic hierarchy process [88–90] Multinomial logistic regression [81]
S3.1 – formulate design parameters (DP) Domain knowledge [20]

Classification scheme [82]
S3.2 – map product family architecture (PFA) Design matrix [87]
S3.3 – decompose PFA into functional modules (FM) Rank order clustering [91]

Cluster identification algorithm [92]
S3.4 – evaluate clustering solution Modularity index [93]
S3.5 – define design parameter instances 

(
DP∗

)
Classification scheme [82]

Analysis of existing technical systems [82]
Benchmarking [86]

Reverse engineering [86]
Artificial neural network [94]

Pragmatic approach to product costing [95]
Request for quotation [96]
Three-point estimate [78]

S3.6 – create rough geometric layouts Sketching and rendering [97]
S3.7 – map structural dependencies among components Design structure matrix [98]
S3.8 – transform FM into physical modules (PM) Functional to physical decomposition [13]
S3.9 – compare MIf  with MIp Modularity index [93]
S3.10 – formalize the product family configuration 

space
Design matrix [87]

Generic bill-of-material [70]
S4.1 – build configuration model Mathematical modeling [99]

Data scaling [81]
S4.2 – combine/parametrize instances into variants Design heuristic–substitute way of achieving 

functions [100]
Genetic algorithm [46]

S4.3 – set price 
(
p̆ij
)
 for each variant Trial-and-error [101] Genetic algorithm [46]

S4.4 – calculate product family throughput (Tp) Throughput accounting [68]
S4.5 – build product family structure Generic bill-of-material [70]
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contributive variants are then eliminated, and the product 
family profit is discounted to present value (NPV) . In step 
S4.5, if NPV ≥ 0 , the most contributive variants are com-
puted, and their design parameter instances become part of 
the product family structure. Otherwise, the process restarts 
until reaching the desired value or a final discard, as seen in 
Fig. 1.

Lastly, Table 1 complements the functional description 
of MDM by providing an open architecture of techniques. 
The left and the right-hand side techniques are respectively 
more suitable for scarce and abundant data availability. 
Techniques in the middle part of the table serve to be used 
for both situations.

4 � Empirical application

The empirical execution of MDM in the conceptual design 
of a family of autonomous mobile palletizers is presented 
in this section. The application was carried out by the first 
author of this work with the assistance of two engineers from 
the Brazilian machine manufacturer (referred to here as to 
company) who provided data for this study. The data stem 
from 35 palletizing projects quoted by the company during 
5 years and the websites of five leading players. Such a situ-
ation configures a scarce data availability scenario.

Palletizing consists of stacking products onto a pallet, 
whereas a palletizer is equipment that executes this operation 

[102]. In general, palletizers can be of two types [14]: (i) con-
ventional or (ii) robotic. A traditional palletizer is preferred 
for long production runs handling non-variable stock-keeping 
units (SKU) and size packages. In turn, robotic palletizers are 
best suited in conditions that require palletizing of multiple 
SKU pallets with different package sizes and short produc-
tion cycles [102]. In today’s economic scenario, retailers and 
distribution centers use fewer single SKU pallets and more 
mixed-load ones. Thus, the adoption of robotic palletizers is 
expected to overtake conventional ones shortly [103]. Fol-
lowing this direction and considering industrial robotics as 
an enabling technology for advanced manufacturing [104], 
the company defined collaborative and autonomous mobile 
robotics as technological trends for product family design 
in step S1.1. The roadmap in Fig. 2 aided this definition by 
depicting the relationships among technology, product, and 
market layers, as reasoned by Paul and Muller [74]. The tech-
nology layer shows the evolution of industrial robotics in 
terms of morphology, control, and payload capacity. In turn, 
the product layer indicates how technological progress might 
support the emergence of new intermediate goods (e.g., col-
laborative robots (COBOT), autonomous mobile robots 
(AMR), autonomous mobile cobots (AMC), and unmanned 
aerial vehicles (UAV)) to compose future production sys-
tems. Lastly, the market layer suggests upcoming opportuni-
ties from the two bottom ones.

Two potential product families were identified based on 
future opportunities, as illustrated in Figs. 2 and 3. The first 

Past Short-term Medium-term Long-term Vision

I4.0 TODAY

Market

20302025202220202000

Cobot plt. 20kgf

≤ 50kgf ≤ 240kgf

AMCs ≤ 16Kgf AMCs ≤ 35kgf

AMC plt. 10kgf

Product

Technology

Robot plt. 90kgf

Robots ≤ 180kgf

Cobots ≤ 10kgf

Cobot plt. 8kgf

≤ 16 to 35kgf

AMR plt. 1500kgf

AGVs ≤ 100kgf

UAVs ≤ 18kgf

≤ 240kgf

AMRs ≤ 1500kgf

AMC plt. 20kgf

≤ 220kgf

UAV plt. 12kgf

Cobot plt. 30kgf

Number of SKUsNumber of SKUs
Mixed pallet loads

UAV plt. 20kgf

AMCs ≤ 50kgf

Batch sizesBatch sizes
Prod. rate per SKUPPrrodod. rraattee peperr SKU
Packages’ weight

Collaborative robots (cobots)Collaborative robots (cobots)
Autonom. mobile cobots (AMC)AAuuttonoonomm. mmobobililee cobocobottss ((AAMMCC)
Autonom. mobile robots (AMR)AAuuttonoonomm. mmobobililee rroboobottss ((AAMMRR))
Unmanned aerial vehicle (UAV)

Traditional roboticsTraditional robotics
Autom. guided vehicle (AGV)

Cobot palletizersCobot palletizers
AMC palletizersAAMMCC papalllleettiizzeerrss
UAV palletizersUUAVAV papalllleettiizzeerrss
Centralized palletizing systems

Traditional robotic palletizersTraditional robotic palletize
Conventional palletizers

2022: Mid-weight
fenceless palletizing

2025: Heavy-weight
fenceless palletizing

Market

2010: Automated palletizingted palletizing

2016: Light-weight
fenceless palletizing

2015: Autonomous
pallet handling

2022: Light-weight 
autonomous mobile palletizing

Product
Family 1

UAV plt. 30kgf

2027: Mid-weight autonomous
mobile palletizing

Product
Family 2

2030: Light-weight
autonomous aerial palletizing

AMC plt. 30kgf

Fig. 2   Technology roadmap for autonomous mobile palletizers
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refers to a family of autonomous mobile palletizers (PF1), 
whereas the other consists of a family of aerial palletizers 
(PF2). Given that PF2 can potentially be developed from the 
PF1 platform, the company chose first to develop product 
family PF1, which comprises the scope of this study.

Estimate the potential market size (Mk) is another activ-
ity to be done in step S1.1. In this case, such action was 
assisted by the existing market data, in conjunction with 
experts’ knowledge [20]. According to Fortune Business 
Insights [105], the global palletizer market reached USD 
1.6 billion in 2019 and possibly must surpass USD 2.2 bil-
lion by 2027. Regarding the Brazilian market, based on the 
experience of engineers who supported this work and the 
company’s historical sales data, Brazil accounts for less 
than 5% of the global demand, with an average price per 
stacking position equal to USD 120,000.00. Assuming the 
global palletizer market size as a uniform distributed vari-
able U

(
1.63.10

9
, 2.16.10

9
)
 , the Brazilian market size as a 

constant fraction (5%) of the global demand, and the price 
per stacking position as a normally distributed variable 
N
(
120.10

3
, 20.10

3
)
 , the average market size was estimated 

as 814 stacking positions a year from 2021 to 2027.
Coupled with this arose the necessity to determine the 

target market segments and the product family leveraging 
strategy. To this end, the market segmentation grid (MSG) 

was employed multidimensionally, as depicted in Fig. 4. 
The MSG axis represents the key customer desired attrib-
utes and their respective performance tiers. The markers, in 
turn, consist of palletizing projects quoted by the company 
for different markets and package types. The bars on the 
left and the upper left of Fig. 4a represent the competing 
alternatives, whereas their length suggests how they span the 
corresponding axis. In Fig. 4b, the red, green, and blue areas 
show the design frontiers of product family PF1, set based 
on cobots and AMC’s payload capacity and production rate. 
The markers dropping in these areas indirectly point out the 
target market segments of PF1, while the bars on the left 
and the upper left of Fig. 4b depict its working principle 
and leveraging strategy to reach the intended attribute levels.

The last activity of step S1.1 was to estimate the invest-
ment parameters required to develop the product family. So, 
the company estimated an investment of USD 4,000,000.00 
that would be possible to launch the product family PF1 in 
up to two years, i.e., I = 4, 000, 000.00[USD] . In addition, 
the company argued that for the project to be viable, the 
payback period should not exceed 2 years, t ≤ 2

[
years

]
 , con-

sidering a discount rate of 12% a year, i.e., i = 12
[
%∕year

]
.

With the product family strategically planned, the next 
step (S1.2) was to define the share of market niches (Sms) . 
This task started with a change in segmentation perspective, 

Derivative projects

Breakthrough
projects

R&D projects
Extensive
product
changes

Extensive
process
changes

Minor
product
changes

Minor
process
changes

Platform projects

PF1

PF2

PF1: Family of autonomous mobile palletizers
PF2: Family of autonomous aerial palletizers

Fig. 3   Aggregate 
project (adapted from 
Wheelwright and Clark 
[75])
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Fig. 4   Market segmentation grid: a market segmentation; b leveraging strategy
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which shifted from “sector” to “package type.” Then, based 
on the projects quoted, nine market niches and their respec-
tive shares were defined. Of these niches, six in line with the 
working principle and leverage strategy of PF1 were consid-
ered targets, as illustrated by Fig. 5. At the end of this first 
class of design problems (Cp1), the information generated 
was aggregated into a requirements list, as recommended 
elsewhere [82].

Next, the issue was to model the customer preferences for 
each target market niche. It was undertaken in class Cp2 and 
began with the identification of customer-desired attributes 
(A) in step S2.1. In this case, 9 customers’ desired attributes 
were derived from a content analysis performed on the 35 
projects quoted by the company, as reasoned by Bardin [84]. 
After identifying, the customer desired attributes were ana-
lyzed as to the possibility of still existing in 2027. There 
was a consensus among the company engineers that, regard-
less of their relative importance might change, they would 
nonetheless reflect the customer needs shortly. Finally, each 
attribute was linked to its respective niche, as illustrated in 
Table 2.

Subsequently, in step S2.2, 27 engineering attributes (E) , 
including price, were formulated from five competitors’ 
product portfolios in the palletizing market. This task was 
undertaken through the analysis of existing technical sys-
tems combined with benchmarking, as proposed by Pahl 
et al. [82] and Thevenot and Simpson [86]. Then, in step 
S2.3, the customer desired attributes were mapped to engi-
neering attributes, as depicted in the upper part of Table 2 
and reasoned by Suh [87]. Table 2 also shows the preferred 
direction of engineering attributes, resembling quality func-
tion deployment [106].

The engineering attributes often have different levels (
E∗
m

)
 . In order to identify these levels, the competing alter-

natives 
(
z⃗ik
)
 covering all target niches and their respective 

engineering attribute values (ĕ∗) and price (p̆) were captured 
in step S2.4, i.e., z⃗ik =

[
ĕ∗
1ik
, ĕ∗

2ik
,… , ĕ∗

Ω−MN ik

, p̆ik

]
 . This activ-

ity used the same techniques and data sources of step S2.2 
and resulted in the identification of 50 engineering attribute 
levels (e∗) retrieved from 10 competing alternatives divided 
into six market niches, as presented in Tables 2 and 3.

Fig. 5   MSG (adapted from Meyer and Lehnerd [76])

1386



The International Journal of Advanced Manufacturing Technology (2022) 123:1377–1400

1 3

Given the scenario of scarce data availability, in step 
S2.5, the customer-desired attributes, engineering attributes, 
and respective levels were organized in a three-level hierar-
chy. Then, in step S2.6, the two company engineers and the 
first author of this work independently performed a set of 
pairwise comparisons between elements of the same hier-
archical level, for each target market niche. The technique 
employed was the analytical hierarchy process [88], with 
preference aggregation being performed through geometric 
mean [89]. The outcomes of steps S2.5 and S2.6 are summa-
rized in Table 3, with all cases presenting consistency ratios 
lower than 0.1.

At the end of Cp2, it was found no deviation from 
the market niches established in step S2.1. Therefore, 
the next challenge was determining the modular product 
family architecture and creating the design parameter 
instances that might compose the product family struc-
ture. These activities happen in class Cp3 and began with 
the formulation of design parameters (DP) in step S3.1. 
The formulation of DP was assisted by the classifica-
tion scheme by Pahl et  al. [82], wherein the working 
principles (WP) related to engineering attributes were 
identified and cataloged, as illustrated in Table 4 and 

further detailed in Supplementary Material. Then, the 
logical entities underlying the working principles with 
the same physical effect were inductively derived. For 
instance, in Table 4, the working principles wp15 , wp16 , 
and wp17 , though differing morphologically, they share 
the same physical effect of gripping packages. Concern-
ing the robotic palletizers, the logical entity executing 
that function is the end-effector; thus, it was defined as 
the design parameter number seven 

(
dp7

)
.

Following this reasoning and supported by the company 
engineers, 17 design parameters stem from the 37 working 
principles recorded in Table 4.

In step S3.2, the design parameters and engineering attrib-
utes were mapped into the product family architecture, i.e., 
[DP]Q = [PFA]QM[E]M . Then, through the ranking order 
clustering [91], the rows and columns of [PFA]QM were rear-
ranged leading to the identification of functional modules 
(FM) in step S3.3. Lastly, in step S3.4, the clustering solution 
was evaluated via functional modularity index 

(
MIf

)
 [93]. 

In this application, steps from S3.1 to S3.4 were iteratively 
performed until the clustering solution, composed of seven 
functional modules, reached the MIf = 0.63 , as shown in 
Table 5.

Table 2   Product family attributes deployment

Preferred direction  =   =  - Mkt. niche (MS)

Engineering attributes (E) Type of palletizer … Type of 
labeler

Price per stk. 
loc. [USD]

RSC/L/ ≤ 15 
kgf

… BW/B/M/  
≤ 30 kgf

e1 … e26 p̆ ms1 … ms6

Customer desired 
attributes (A)

a1 Palletizing technology 1 … 1 … 1
a2 Production capabilities … 1 … 1
a3 Package handling … 1 … 1
… … … … … … … …
a8 Traceability … 1 1 … 1
a9 Price … 1 1 … 1

Competing 
alternatives (Z)

z1.1 Collaborative robotic pal-
letizer (A1)

Articulated robot … None 40,000.00 1

z1.2 Robotic pick'n place 
palletizer (B1)

Gantry robot … None 125,000.00 1

z1.3 Low infeed palletizer (C1) Conventional … None 90,000.00 1
z1.4 Robotic palletizer  

(D1)
Articulated robot … None 35,000.00 1

z1.5 Robotic palletizer  
(D2)

Articulated robot …v None 135,000.00 1

… … … … … … … …
z6.1 Hybrid robotic  

palletizer (B3)
Articulated robot … Side label 260,000.00 1

z6.2 Low infeed palletizer (C2) Conventional … Side label 160,000.00 1
z6.3 Robotic palletizer (D4) Articulated robot … Side label 185,000.00 1

Engineering attribute 
levels (E*)

Articulated robot … Side label  ≤ 260,000.00
Gantry robot … Corner label
Conventional … None
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The next issue was to define the constructive solutions 
(i.e., building blocks) that a design parameter might take, 
which MDM refers to as design parameter instances, i.e., 
DP∗

q
≡

{
dp∗

qr
|r = 1,… ,Rq

}
 . Given that a design parameter 

instance is a vector of engineering attribute values and vari-
able cost, ���⃗dp∗

qr
=
[
�e∗
1qr
, �e∗

2qr
,… ,�e∗

Ω−MN qr

, �cv
∗

𝜔 qr

]
 , these ele-

ments were also determined in step S3.5. In this context, the 
constructive solutions were derived from the classification 
scheme presented in Table 4, while the engineering attribute 
values were abductively defined based on Tables 2 and 3.

Finally, the variable cost was estimated through a lin-
ear arrangement of cost-related design features (CDF)1, 
based on Gauss et al. [13]. In this sense, the mean coef-
ficients were obtained through artificial neural networks, 
with no hidden layers, after 30 replications. The activation 
function used was linear, and the algorithm employed to 
calculate the coefficients was the resilient backpropagation 
[94]. This approach requires the existence of historical cost 
data, which, when not available, was bypassed by requesting 
quotes from suppliers [96]. In total, 134 design parameter 
instances were specified, as illustrated in Table 6. Besides 
the direction, this table also shows the case associated with 
each engineering attribute level, as recommended elsewhere 
[13]. Further details on CDFs are disposed of in Appendix 
(Fig. 10).

Next, in step S3.6, 12 geometric layouts were created to 
identify the physical interactions among the design param-
eters, as shown in Fig. 6. In the end, no incompatible design 
parameter instances were found, and the resulting interac-
tions were mapped using a design structure matrix in step 
S3.7 (Table 7), as reasoned by Browning [98].

Then, in step S3.8, the physical modules (PM) were 
established by joining together the design parameters 
belonging to the corresponding functional modules, e.g., 
pm1 ⊂ fm1 =

{
dp7, dp6, dp15

}
 , as presented in Table  7. 

Afterward, the clustering solution was again evaluated, but 
at this time from a constructive perspective, by using the 
physical modularity index 

(
MIp

)
 in step S3.9. The result was 

MIp = 0.94 , indicating that the product family PF1 had a 
modular architecture physically unconstrained. Finally, in 
step S3.10, the configuration space, composed of 7 modules 
(functional/physical), 17 design parameters, 134 design 
parameter instances, and able to generate billions of vari-
ants, was formalized in tabular (Table 6) and graphical form 
(Fig. 8a).

In product family configuration (Cp4), the goal is to 
pool the market and investment parameters, customer 
preferences (Table 3), competing alternatives (Table 2), 
product family architecture (Table  5), and candidate 
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building blocks (Table 6) into a mathematical model 
intended to choose the design parameter instances to con-
stitute the product family structure. This routine started 
in step S4.1 by formulating the configuration model, 
as detailed in Gauss et al. [13]. The design parameter 
instances were then instantiated in step S4.2, yielding 
one variant for each target market niche. In step S4.3, the 

price of variants was set, succeeded by the computing of 
the overall product family throughput (Tp) in step S4.4. In 
this work, steps from S4.2 to S4.4 were performed using a 
genetic algorithm (GA), as reasoned by Jiao and Zhang 
[107] and illustrated in Fig. 7.

The GA hyperparameters were determined using sensitiv-
ity analysis, wherein four population sizes were considered 

Table 4   Classification scheme

Working principles (WP)

... ...

DP Design parameters wp1 ... wp15 wp16 wp17 ... wp37

dp1 Package accumulation conveyor 1 ... ...

dp2 Package break conveyor ... ...

dp3 Package turner ... ...

dp4 Package singulation conveyor ... ...

dp5 Package reader ... ...

dp6 Pick and place ... ...

dp7 End-effector ... 1 1 1 ...

… … ... … … … ... …

dp17 Load labeler ... ... 1

Table 5   Modular product family architecture
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Pick and place dp6 1 1 1 1 1 1 1 1 1 1 1
Sheet dispenser dp15 1 1 1 1

Pallet hopper dp8 1 1 1 1 1 1

Pallet dispenser dp9 1 1 1 1 1 1

Pkg. singulation conveyor dp4 1 1 1 1 1

Package turner dp3 1 1 1 1 1 1
Pkg. accumulation conveyor dp1 1 1 1 1 1

Pkg. break conveyor dp2 1 1 1 1 1

Stretch wrapper dp16 1 1 1 1 1 1 1 1
Pallet station dp10 1 1 1 1 1 1

Pallet/load shuttle car dp11 1 1 1 1 1 1

Load discharge. conveyor dp12 1 1 1 1 1 1
Load turntable dp13 1 1 1 1 1 1

Sheet hopper dp14 1 1 1 1 1

Load labeler dp17 1 1 1

Package reader dp5 1 1
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to set up the experiments: 100, 300, 400, and 600. Likewise, 
four crossover rates (0.6, 0.7, 0.8, and 0.9) and five muta-
tion rates (0.005, 0.01, 0.05, 0.1, and 0.2) were also used. 
These values were defined based on the rule-of-thumb from 
previous GA applications [108]. Then, 16 experiments were 
generated through fractional factorial design [80]. After 160 
replications, ten for each experiment, the parameters were 
selected based on the highest average fitness value, as rea-
soned by Jiao et al. [109]. Considering a population size of 
300 variants, a crossover rate equivalent to 0.8, and a muta-
tion rate equal to 0.1, the GA found the results in Table 8 
after 400 generations.

The bottom row of Table 8 shows the results of PF1 
comprising all target niches, in which the maximum 
throughput reached was Tp = 16, 162, 788.81

[
USD∕year

]
 . 

Considering a fixed cost (cf ) around 2.106 [USD/year], 
a payback period (t) of 2 [years], a discount rate (i) 
equals 12 [%/year], and an investment (I) equivalent to 
4.106 [USD], the net present value was calculated as 
NPV = 7, 290, 488.53[USD] . The result indicated that it 
would be worth investing in PF1.

In step S4.5, with the family considered economically fea-
sible, the design parameter instances making up the most 
profitable variants (second column of Table 8) were chosen 
to constitute the final structure of PF1. The solution com-
prises 7 physical modules, 17 design parameters, and 49 
design parameter instances. It is able to generate 25,194,240 
variants. Figure 8b shows it. Following the original proposal, 
it is the product family structure that economically meets the 
market requirements. Thus, it is the one that should proceed 
to the following developing stages, an issue not covered in 
this work.

5 � Discussion

The primary MDM outcomes are (i) the product family’s 
economic viability and (ii) the respective structure that 
economically meets the market requirements. In manage-
rial terms, the first outcome supports the decision to invest 
or not in the product family. In the case of feasibility, the 
second outcome indicates which building blocks should be 

Table 6   Design parameter instances
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FM Functional modules DP Design parameters DP* Design parameter instances

fm1 Palletizer dp7 End-effector dp*7.1 Vacuum style - surface pad - 400 x 600 mm - 1 x 8 ≤ 8kgf 1 1 0 1 0 1 1 1 600 450 8 3,485.00

... ... ... ... ... ... ... ... ... ... ... ... ... ...

dp*7.40 Finger style - 400 x 300 mm - 2 x 15 ≤ 30kgf 1 1 0 0 1 1 0 2 600 450 15 17,948.72

... ... ... ... ... ... ... ... ... ... ... ... ... ... ...

dp15 Sheet dispenser dp*15.1 Vacuum style - Suction cups 0 1 0.78 2,564.10

dp*15.2 Vacuum style - Surface pad 1 0 0.78 0.00

dp*15.3 None 1 1 1 0.00

fm2 Pallet dispenser dp8 Pallet hopper dp*8.1 Hopper - 15 pallets 1 800 1300 681.82

dp*8.2 Hopper - 20 pallets 1 800 1300 909.09

dp*8.3 None 1 800 1300 0.00

dp9 Pallet dispenser dp*9.1 Lift and separate 1 800 1300 13,636.36

dp*9.2 Screw style 1 1000 1200 9,090.91

dp*9.3 None 0.74 800 1300 0.00

... ... ... ... ... ... ... ... ... ... ...

fm4 Pallet handling dp16 Stretch wrapper dp*16.1 Self-propelled robot ≤ 250% 800 1300 250 8,727.27

... ... ... ... ... ...

dp*16.7 None 700 1300 0 0.00

... ... ... ... ... ... ...

dp13 Load turntable dp*13.1 Turntable - CLRC - load weight ≤ 2.000 kgf 800 1300 7,500.00

dp*13.2 Turntable - TCC - load weight ≤ 2.000 kgf 800 1300 8,250.00

dp*13.3 None 800 1300 0.00

fm5 Sheet hopper dp14 Sheet hopper dp*14.1 Hopper - 100 sheets 800 1300 363.64

dp*14.2 Hopper - 200 sheets 800 1300 545.45

dp*14.3 None 800 1300 0.00

fm6 Load labeler dp17 Load labeler dp*17.1 All-electric automated labeling 1 0 0 11,250.00

dp*17.2 None 0 0 1 0.00

fm7 Package reader dp5 Package reader dp*5.1 An image-based barcode reader (1D and 2D) 3,750.00

dp*5.2 Laser barcode scanner (1D and 2D) 2,500.00

dp*5.3 None 0.00
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kept or removed from the product structure, or still, which 
ones should be further developed.

These outcomes stem from integrating the four prevalent 
classes of design problems, as shown in Fig. 9. The integra-
tion of classes is one of the contributions of MDM, and 
it naturally leads to globally satisfactory solutions. This is 
because the solution space is conceived based on customer 
preferences and the selection of alternatives considers the 
economic impact of the building blocks (local solution) 
on the configured variants (global solution), a different 

perspective if compared to the methods presented in Sect. 2. 
Another contribution of MDM that amplifies the ability to 
obtain globally satisfactory solutions is the use of through-
put as a performance measure for configuring the product 
family variants. This strategy overcomes the profit limita-
tion in favoring the configuration of higher volume variants 
rather than most contributive ones, which has to do with the 
fact that throughput does not consider the fixed costs and 
apportionment [68].

dp14:
Sheet
hopper

dp1: Package
accumulation conveyor

dp4: Package singulation conveyor
dp3: Package turner

dp2: Package break conveyor

dp5: Package reader

dp6: Pick
and place

dp7: End
effector

dp15:
Sheet

dispenser

dp8: Pallet hopper
dp9: Pallet dispenser

dp11: Pallet/load
shuttle car

dp10: Pallet
station

dp12: Load discharge
conveyor

dp13: Load turntable

dp16: Stretch
wrapper

dp17: Load labeler

Fig. 6   Example of the geometric layout

Table 7   Physical modules
dp7 dp6 dp15 dp8 dp9 dp4 dp3 dp1 dp2 dp16 dp10 dp11 dp12 dp13 dp14 dp17 dp5

End-effector dp7 1 1 1 1
Pick and place dp6 1

Sheet dispenser dp15 1 1 1

Pallet hopper dp8 1 1

Pallet dispenser dp9 1 1

Pkg. singulation conveyor dp4 1 1
Package turner dp3 1 1

Pkg. accumulation conveyor dp1 1 1

Package break conveyor dp2 1 1

Stretch wrapper dp16 1 1 1 1 1
Pallet station dp10 1 1 1 1

Pallet/load shuttle car dp11 1 1 1 1

Load discharge conveyor dp12 1 1
Load turntable dp13 1 1 1

Sheet hopper dp14 1

Load labeler dp17 1 1

Package reader dp5 1
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The MDM provides an open architecture of techniques, 
and depending on which one is used in the configuration 
process; it is possible to obtain optimal solutions. Besides 
the techniques, the MDM outcomes are also influenced by 
the parameters and variables making up the configuration 
model. Table 9 adds a sensitivity analysis in which param-
eters/variables were modified independently until one of 
the MDM outcomes changed. The variation of parameters/
variables was accounted for in relative terms concerning the 

results obtained in the previous section, referred to as base-
line in Table 9.

In a closer look, although the decision variable price 
(
p̆ij
)
 

has a negative influence on the choice probability 
(
Pri�

)
 , the 

model tended to increase it to maximize throughput (Tp) . 
The unintended effect was that the model did this for vari-
ants of shallow utility 

(
Ui�

)
 and variable cost 

(
C̆vij

)
 , a pattern 

incompatible with reality. This occurred for the reason that 
the marginal increase in throughput reached from the price 
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Fig. 7   Results of genetic algorithm for the market niche ms4

Table 8   Configuration results

MS
Product family variants 

(
���⃗pf ij

)
Mk [stk. loc./yr.] Smsi [%] Pri� [%] Qi [un./yr.] C̆vij [$/stk. loc.] p̆ij [$/stk. loc.] Tp [$/yr.]

ms1 [dp*1.3, dp*2.2, …, dp*17.2] 814 10% 24.1% 20 65,644.46 125,000.00 1,187,110.80
ms2 [dp*1.1, dp*2.1, …, dp*17.2] 814 7% 26.3% 15 103,678.00 125,000.00 319,830.00
ms3 [dp*1.3, dp*2.2, …, dp*17.2] 814 3% 22.6% 6 99,185.20 135,000.00 214,888.80
ms4 [dp*1.1, dp*2.1, …, dp*17.2] 814 38% 24.5% 76 80,130.59 160,000.00 6,070,075.16
ms5 [dp*1.4, dp*2.2, …, dp*17.2] 814 26% 26.4% 56 122,962.80 245,000.00 6,834,083.20
ms6 [dp*1.1, dp*2.1, …, dp*17.2] 814 11% 18.5% 17 94,599.95 185,000.00 1,536,800.85
PF1 [dp*1.1, dp*1.3, dp*1.4, dp*2.1, 

dp*2.2, …, dp*17.2]
814 - 23.3% 190 - - 16,162,788.81
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PF1

dp6

fm1

Product familyPF

Functional modulesFM

Design parametersDP

Design parameter instancesDP*

A kind of link

A part of link

dp*6.1

dp7

dp8

fm2

dp*8.1

dp*8.2

dp*8.3

dp1

fm3

dp*1.1

…

dp*1.4

dp10

fm4

dp*10.1

dp14

fm5

dp*14.1

dp*14.2

dp17

fm6

dp*17.1

dp*17.2

dp5

fm7

dp*5.1

(31x)

(40x)

(3,906x)

(3x)

(9x)

(4x)

(192x)

(9x)

(4,536x)

(3x)

(3x)

(2x)

(2x)

(3x)

(3x)

(551,088,728,064x)551,088,728,064 Product family variants
134 Design parameter instances

…

dp*6.31

dp*7.1

…

dp*7.40

…

dp*14.3

dp*5.2

dp*5.3

dp15 (3x)

dp*15.1

dp*15.2

dp*15.3

dp9

dp*9.1

dp*9.2

dp*9.3

(3x) dp2

dp*2.1

dp*2.2

(2x)

dp3

dp*3.1

…

dp*3.6

(6x)

dp4

dp*4.1

…

dp*4.4

(4x)

dp*10.9

dp11

dp*11.1

(8x)

…

dp*11.8

dp12

dp*12.1

(3x)

dp*12.2

dp*12.3

dp13

dp*13.1

(3x)

dp*13.2

dp*13.3

dp16

dp*16.1

(7x)

…

dp*16.7

PF1

dp6

pm1

Product familyPF

Physical modulesPM

Design parametersDP

Design parameter instancesDP*

A kind of link

A part of link

dp*6.19

dp7

dp8

pm2

dp*8.1

dp*8.2

dp*8.3

dp1

pm3

dp*1.1

dp*1.3

dp*1.4

dp10

pm4

dp*10.2

dp14

pm5

dp*14.1

dp*14.2

dp17

pm6

dp*17.2

dp5

pm7

dp*5.1
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increment was greater than the one retrieved from the raise 
in choice probability. To inhibit this behavior, a constraint 
between price and the variable cost was added to the model, 
i.e., p̆ij

C̆vij
≤ 𝜉 , as further detailed in Gauss et al. [13]. In practi-

cal terms, for the case presented in Sect. 4, the company 
indicated this relationship as being � ≤ 2 . Concerning the 
price variation, by exceeding the limits given in Table 9, the 
viability of the product family was maintained while the 
product family structure changed.

In terms of demand variation, it may be associated with 
errors in the estimation of market size (Mk) or the share of 
segments/niches 

(
Smsi

)
 . Regardless of the source of error, 

given the relationship between these two parameters, the 

variation is perceived in the demand of each market seg-
ment/niche, i.e., Qi = Mk.Smsi . Thus, for parsimony, the sen-
sitivity analysis only considered variations in market size 
(Mk) , which, when outpacing the limits of Table 9, primarily 
induced changes in the product family structure. This slight 
variation in Mk (−1.5%) was noticed in the segment/niche 
ms3 where the demand is the lowest, i.e., Q3 ≈ 24 , a pattern 
that did not occur in the others.

Two other parameters influence the outputs of the pro-
posed method; the engineering attributes values (ĕ∗) and 
the variable cost of design parameter instances 

(
ĉv

∗

qr

)
 . 

Although these parameters stem from the same construc-

Product family planning
and positioning (Cp1)

Customer preferences
modeling (Cp2)

Product family
modeling (Cp3)

Product family
configuration (Cp4)

Market segmentation
and leveraging strategy

Customer preferences and
competing alternatives

Market and
investment parameters

Customer-related engineering
design attributes

Modular product family architecture
and candidate building blocks

Product family structure
that justifies the economic
benefits of customization

Economic feasibility
of the product family

Product family
modeling (Cp3)

Fig. 9   Conceptual framework of MDM

Table 9   Sensitive analysis

Parameter/variable Δ [%] Tp [$/yr.] NPV  [$] ΔNPV  [$]

Baseline − 16,162,788.81 7,290,488.53 −
Price 

(
p̆ij
)

−3.5% 14,965,438.81 6,335,968.44 −13.1%
+0.2% 16,231,208.81 7,345,032.53 +0.7%

Market size (Mk) −1.5% 15,775,311.81 6,981,594.24 −4.2%
+0.0% 16,162,788.50 7,290,488.28 +0.0%

Engineering attribute values (ĕ∗) −20.0% 16,162,788.81 7,290,488.53 −0.0%
+3.0% 16,162,788.81 7,290,488.53 +0.0%

Variable cost of design parameter instances 
(
ĉv

∗

qr

)
−0.2% 16,198,882.22 7,319,261.97 +0.4%

+2.8% 15,657,465.35 6,887,647.76 −5.5%
Overall weight of the attribute: palletizing technology 

(
wa1

)
−12.0% 16,444,564.83 7,515,118.65 +3.1%
+10.3% 15,754,797.94 6,965,240.70 −4.5%

Overall weight of the attribute: production capabilities 
(
wa2

)
−4.5% 16,162,788.81 7,290,488.53 −0.0%
+0.8% 16,162,788.81 7,290,488.53 +0.0%

Overall weight of the attribute: price 
(
wa9

)
−3.6% 15,754,797.94 6,965,240.70 −4.5%
+1.2% 16,162,788.81 7,290,488.53 +0.0%
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tive solution 
(
dp∗

qr

)
 , they might be independently affected  

by errors arising from the techniques used to obtain them. 
For this reason, they were evaluated separately in the sen-
sitivity analysis. As shown in Table 9, the engineering 
attribute values and the variable cost of design parameter 
instances induced changes in the product family structure 
before altering decisions related to its economic feasibil-
ity. In this context, the ĉv∗

qr
 appeared to be the most influ-

ential product parameter. It is essential to mention that 
errors associated with the engineering attribute values of 
competing alternatives 

(
z⃗ik
)
 might also influence the MDM 

outcomes. However, since they are revealed parameters 
and not estimated by the proposed method, they were not 
evaluated in this work.

Whether in a configured variant 
(
���⃗pf ij

)
 or a competing 

alternative 
(
z⃗ik
)
 , a factor that moderates the effects of the 

resultant engineering attribute values 
(
ĕ∗
ωij

)
 and price 

(
p̆ij
)
 

is the customer preference. In MDM, this preference is 
modeled using a weight vector for each market segment/
niche, W ≡

{
��⃗wi|i = 1,… , I

}
 , as depicted in Table 3. Of the 

nine customer desired attributes 
(
al
)
 identified in this 

research, the three most influential ones ( a1 , a2 , and a9 ), 
accounting for 68.4% of W  , were considered in the sensitiv-
ity analysis. In all three cases, variations exceeding the lim-
its expressed in Table 9 induced changes in the product 
family structure and not in the decisions related to its eco-
nomic viability.

In short, the economic viability of the product family is 
verified by all trials in Table 9 ,i.e., NPV ≥ 0 . This means 
that the MDM outcome that is most sensitive to changes 
in the parameters/variables comprising the configuration 
model is the definition of the product family structure. 
Concerning the parameters/variables themselves, the mar-
ket size (Mk) was the most relevant, as the relative fluctua-
tions of −1.5% and +0.0% required the configuration of 
new structures.

Finally, although the MDM considers the rationale of 
platforming through the constructive solutions shared 
across different product family variants, this is done pas-
sively. In other words, no mutual exclusion constraints 
between cross-segment/niche compatible building blocks 
are considered in the model. This pattern was noticed 
after the engineers who supported this work critically 
analyzed the product family structure presented in Fig. 8b. 
On this occasion, they identified the possibility of com-
munalizing instances belonging to design parameters DP1 , 
DP2 , DP3 , DP4 , and DP9 . However, despite reducing the 
quantity of design parameter instances 

(
DP∗

q

)
 from 49 to 

43, the proposed solution decreased the throughput from 

16,162,788.81 [USD] to 13,895,896.61 [USD], which 
shows that communality is not always associated with 
obtaining better results. Having discussed the results, 
attention is now turned to the main concluding remarks 
of this work.

6 � Concluding remarks

Aiming at systemically and empirically designing product 
families that economically meet the market requirements, 
this paper carried out an in-depth application of the MDM 
method in the conceptual design of a family of autono-
mous mobile palletizers. This work made it possible to 
understand how integrating classes of design problems, 
combined with the use of throughput in the configuration 
process, supported the investment decision in the product 
family design and defined which building blocks should 
be developed, maintained, or removed from the product 
structure. Furthermore, this work allows visualizing the 
method in use and assessing the sensitivity of its results 
regarding the uncertainty of the model’s parameters and 
variables.

In addition to the main contribution of this paper, 
which lies in a detailed empirical application of the MDM 
method, limitations prompting future research directions 
were also found. The first refers to not exploring the 
adequate number of variants per segment/niche, which, 
combined with a pricing strategy, could result in com-
plementary positionings, thus influencing the throughput. 
The second is that the MDM did not consider the com-
pany’s resource capabilities in accomplishing the potential 
demand, which could be seen as a moderator of NPV and, 
consequently, project viability. The third has to do with 
the passive way the MDM considered platform identifica-
tion, which could potentially be exploited by evaluating 
the impacts of cross-segment/niche commonality con-
straints on throughput. Finally, given the sensitivity to the 
parameters/variables composing the configuration model, 
the definition of product family structures in contexts of 
uncertainty could also be explored in future studies. Fur-
ther studies should include the relationship of module-
based design with the concept of open innovation, which 
represents a change in developing innovative solutions 
and doing business within companies [110]. Open inno-
vation includes sharing intellectual property, joint search 
for innovative solutions, and creative potential outside 
the company aiming at providing a competitive edge not 
only by new products but also by new methods to support 
decision-making processes [111].
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