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Abstract
Coordinate measuring machines (CMMs) are massively exploited as measuring tools in the modern manufacturing industry. 
The performance of these machines, in terms of accuracy, has been considerably improved in recent years by using quasi-
static errors compensation. Considering the shorter cycle times required during measurement tasks, CMMs are to be operated 
at high measuring velocity. In such measuring conditions, dynamic errors have a critical impact on measuring accuracy. 
Consequently, dynamic errors assessment, modeling, and compensation are needed to improve the overall CMM metrologi-
cal performances. In this paper, a comprehensive predictive modeling strategy for dynamic error compensation is developed 
and applied successfully. The main measuring parameters that influence CMM dynamic performance are identified and 
used in a systematic experimental investigation. The positioning accuracy is then evaluated concerning dynamic conditions 
using a high-precision laser interferometer. Based on the experimental results, neural network models are built according 
to a structured modeling procedure inspired by the Taguchi method. Improved statistical analysis tools and performance 
measurement criteria are used to extract the most appropriate variables and conditions leading to well-founded predictive 
modeling. The resulting models are implemented on a bridge-type CMM to compensate for both geometric and dynamic 
errors. The results demonstrate a reduction of more than 80% of dynamic errors. This demonstrates that the compensation 
of dynamic-induced errors using high-speed measurement is achieved leading to shorter cycle times of measurement tasks 
while maintaining high accuracy measurements.

Keywords Coordinate measuring machine · Dynamic errors · Predictive modeling · Error compensation · Design of 
experiments · Analysis of variance · Artificial neural network

Nomenclature
CMM  Coordinate measuring machine
ANOVA  Analysis of variance
ANN  Artificial neural network
PD  Positioning distance
PV  Positioning velocity
AP  Approach distance
AV  Approach velocity
MPE  Maximum positioning error
RPE  Residual positioning error
MAE  Maximum approaching error

RAE  Residual approaching error
% C  Percent contribution
F-test  Fisher test
MSEt  Training residual mean square error
MSEv  Validation residual mean square error
MSEtot  Total residual mean square error

1 Introduction

Coordinate measuring machines (CMMs), a 3D metrology 
tool as presented in Fig. 1, are frequently used in modern 
industrial sectors such as automotive and aerospace indus-
tries, manufacturing of consumer goods, and medical prod-
ucts. Given that the current manufacturing trend is toward 
product miniaturization and batch size reduction, the impor-
tance of machines’ flexibility in production is increased. 
Nowadays, one of the main performance criteria and key 
performance indicators (KPI) of a production cell is the 
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ability to manufacture parts at high speeds while maintain-
ing high accuracy. In this regard, CMMs are regularly used 
to control the dimensional accuracy of products on the shop 
floor as well as in the quality control rooms close to the 
production line. However, the CMM’s accuracy can also be 
affected by the usage condition and the part geometry to 
be measured. In fact, two sources of errors can downgrade 
the accuracy of multi-axis machines such as CMMs [1, 2]. 
The first error sources contain quasi-static errors, includ-
ing geometric errors, errors related to the finite stiffness of 
the machine’s components, and thermal errors. The second 
error sources refer to dynamic errors, which are defined 
as velocity-dependent deformation of CMM components. 
Dynamic errors are caused due to self-induced and forced 
part movements and vibrations.

Quasi-static error compensation has been dealt with in the 
past two decades; it is currently a widely adopted method and 
is applied successfully to compensate for quasi-static errors 
[3–7]. However, controlling dynamic errors remains a chal-
lenge in 3D geometric measurement using CMMS. To avoid 
dynamic errors of CMMs, low to very low operating veloci-
ties can be adopted in the measuring procedures. However, 
this error reduction method is no longer acceptable in indus-
trial sectors considering that the competitive manufacturing 
markets require increasing production volume and decreasing 
leading time accordingly. In this regard, it is necessary to find 
new methods to reduce the effects of dynamic errors through 
which high productivity can be maintained. In order to take 
into consideration this crucial issue, research works are pre-
sented to compensate for dynamic errors [1, 2, 8–19]. Using 

displacement sensors to analyze the dynamic errors of CMM 
during fast probing, Weekers and Schellekens [20] concluded 
that dynamic errors are chiefly caused by unwanted structural 
deflection in the joints of the machine. However, their model 
and the calibration process are too complex to be consid-
ered a compliant and flexible solution. Chensong et al. [21] 
directly measured the angular error of the main connect-
ing mechanism during the movement to model the probing 
errors. Investigating the main factors influencing dynamic 
errors, Kaichen and Guoxiong [22] suggested that the coor-
dinate position of CMMs is the most important factor in com-
parison with measurement velocity. Zhang and Jizhu [23], 
Jinwen and Yanling [24] focused on the deformation analyses 
of CMM’s crossbeam using finite element analysis (FEA). 
By analyzing the crossbeam deformation with acceleration, 
constant speed, and deceleration, a model of beam defor-
mation with respect to loading conditions was developed. 
However, this method is only useful for error compensation 
in one direction. Krajewski and Woźniak [25] presented a 
method of applying a simple master artifact for evaluating 
the dynamic performance of CMM through the identifica-
tion and assessment of dynamic error sources. This approach 
can achieve a quantitative assessment for a specific scanning 
probe at different scanning speeds. The structural charac-
teristic, deformation, and stress distribution of a CMM are 
studied by Chan et al. [11] leading to dynamic characteristics 
of the measuring bed structure using FEA. The geometric 
accuracy of the CMM is improved using their calibration 
equipment. Budzyn et al. [17] developed a configuration of 
a laser interferometer to study the behavior and geometry of 
a computer numerical controlled (CNC) machine. Based on 
Bayesian inversion, Jiang et al. [18] proposed a method to 
compensate for dynamics errors of a self-developed contact 
probe and improve probe system measurement accuracy.

1.1  Dynamic error analyses

In a CMM without dynamic error compensation, a typical 
probing (measurement) operation (as shown in Fig. 2) con-
sists of two steps, positioning the probe and measurement. 
During the positioning step, the probe travels at a high speed 
to get closer to the probing point and then moves at a slow 
speed until contact is made with the workpiece. The velocity 
of the probe is changed for two reasons. The first reason is 
to allow damping dynamic errors before the measurement 
is made and thus reduce their impact on the measurement 
accuracy. Nonetheless, this is not regularly happening in 
practice. In the case of short approaching distances, CMM 
will still be accelerating when contacting the measuring part. 
Particularly, given small measuring elements, approaching 
distances can usually be short and therefore the CMM is 
likely to be subjected to disturbing forces during the probing. 
The second reason is to avoid damage occurring to the probe 

Fig. 1  A bridge-type coordinate measuring machine
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or the workpiece, although this only concerns touch-trigger 
probes equipped CMMs. Machine parameters considering 
the cycle time of a probing operation are positioning dis-
tance (PD), positioning velocity (PV), approach distance 
(AD), and approach velocity (AV). Other parameters such as 
geometric parameters (coordinate of points to be measured 
and probing direction), the type of CMM, and its architec-
ture (positioning acceleration and approaching acceleration) 
can also affect the measurement accuracy and precision.

The main purpose of this study is to develop an approach 
to increase the productivity rate of the CMM while main-
taining high accuracy, which means a shorter cycle time 
for measurement tasks. To achieve this, measurement tasks 
need to be performed at high speeds and short distances. 
Depending on the type of probing device being used, three 

scenarios for executing a measurement task are to be dis-
cussed as illustrated in Fig. 3. Case 1 reflects the use of a 
touch trigger probe. During the positioning, the probe will 
travel most of the distance with a maximum velocity achiev-
able by the machine VM; then, the probe will travel a shorter 
distance with the maximum limit velocity VL. That will 
cause no damage to the probe when contact is made with 
the workpiece. Because of the acceleration change during 
the motion, the dynamic errors will be very pronounced and 
will cause inaccuracies in the measurement. In case 2, a non-
contact probe is used such as proximity or scanning devices. 
Given that there is no approaching phase, VM velocity can be 
adopted. However, using high velocities for probe displace-
ments can cause higher decelerations before the probing and 
thus will cause dynamic errors in the measurements, which 

Fig. 2  A typical probing opera-
tion in a CMM

Fig. 3  Typical probing opera-
tions scenarios

2747The International Journal of Advanced Manufacturing Technology (2022) 122:2745–2759



1 3

will decrease the machine's accuracy. For this issue, the 
solution proposed in case 3 suggests that VL is used during 
probing operations. This solution is not adequate to com-
pletely remove the dynamic error effects since the velocity 
used is not sufficiently low to allow the dumping of errors. In 
addition, it does not solve the problem concerning the reduc-
tion of measurement cycle time. This emphasizes the impor-
tance of developing an approach to using high measuring 
velocities while maintaining high accuracy measurements.

In a practical example, measuring parts using a bridge-
type CMM (Fig. 1), acceleration/deceleration in X-direction 
produces large inertial forces on the machine’s structure due 
to the mass distribution of machine components. Given that 
the driving system is located on one side of the bridge and 
considering the limited stiffness of air bearings, the bridge 
undergoes rotational motion around the joints of air bear-
ings. The bridge also presents elastic deformation under 
the pressure of inertial forces. These undesired rotational 
motions result in positioning and angular errors at the probe 
as a consequence of Abbe offset in the path of motion [26]. 
In order to present error compensation strategies, dynamic 
error attributes are defined and evaluated with respect to 
measurement parameters. In this regard, an experiment 
was set and run, in which a typical probing operation 
(PV = 40 mm/s and AV = 12 mm/s) was executed. Applying 
a laser interferometer, the evolution of dynamic errors in 
regard to velocity/acceleration was recorded. Using a laser 
interferometer enables evaluating the deformation of CMM 
components under dynamic conditions. It also allows iden-
tifying the contribution of each error source in the global 
dynamic error. Analyzing the results of this experience, 
as illustrated in Fig. 4, four dynamic error attributes can 
be identified, namely maximum positioning error (MPE), 

residual positioning error (RPE), maximum approaching 
error (MAE), and residual approaching error (RAE). MPE 
appears just after the positioning acceleration; RPE can be 
detected after the acceleration dissipation and is character-
ized by an average of ten consecutive values of the dynamic 
error before deceleration; MAE is observed immediately 
after the approaching acceleration; and RAE is detected 
after some settling time between decelerating probing and 
is characterized by the dynamic error value in a second 
before probing.

It can be observed that the acceleration peaks occur only 
in a very short time; in consequence, the corresponding 
dynamic errors (MPE and MAE) do not have an immedi-
ate impact on the accuracy of the measurement seen that 
the probing has not taken place yet. Thus, RPE and RAE 
are the attributes to be taken into consideration during the 
development of error compensation algorithms. In fact, 
RPE and RAE are applied to both contact and non-contact 
probes. For these reasons, compensation models will solely 
be developed for RPE and RAE. In this regard, experimen-
tal investigations are carried out to analyze the contribution 
and the effect of machine parameters such as positioning 
distance (PD), positioning velocity (PV), approach distance 
(AD), and approach velocity (AV) on dynamic errors (RPE 
and RAE) [27]. Using Automated Precision Inc. (API) laser 
system, error measurements are performed by evaluating 
dynamic translations and rotations in different directions. 
The results of this experimental analysis, as illustrated in 
Table 1 and Fig. 5, reveal that PV and PD are the most 
affecting factors on RPE with the contribution of 79.1% and 
13.6% accordingly, which is strongly sensitive to the accel-
eration/deceleration. In fact, the increase of the positioning 
distance (PD) improves the dissipation of the acceleration’s 

Fig. 4  Definition of dynamic 
error attributes (positioning 
velocity [mm/s], acceleration 
[mm/s2], time [s], dynamic error 
[µm])
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effects. It can also be observed that AV and AD are the most 
affecting factors on RAD with a contribution of 61.8% and 
29.1%, respectively.

To the best of the authors’ knowledge, there is no 
approach allowing dynamic error prediction and compen-
sation of measuring machines. In this regard, this article 
presents an ANN-based approach to predicting the dynamic 
errors of CMMs in relation to machines’ parameters. More 
specifically, this article presents a structured and compre-
hensive approach developed to design an effective model to 
predict and compensate for dynamic errors in CMMs. The 
proposed approach evaluates machine parameters and condi-
tions, which have an influence on the dynamic errors to build 
a prediction model step by step. The modeling procedure is 
based on a structured and exhaustive experimental investi-
gation to identify possible relationships between dynamic 
error sources and positioning accuracy. Using experimental 
orthogonal arrays, statistical analysis, and a multi-criterion 
assessment, neural networks-based prediction models are 
developed and evaluated.

2  Dynamic errors compensation method 
and strategy guidelines

Dynamic errors are by nature nonlinear and stochastic. 
Deterministic models that are usually used for this kind of 
application are commonly accurate for only a certain type 
of error affecting a CMM. In order to obtain the finest solu-
tion, an appropriate modeling form, techniques, and vari-
ables are to be figured out. Various modeling approaches are 
available for such tasks, namely the finite element method 
and the artificial neural networks. The finite element method 
(FEM), a numerical method for solving problems of engi-
neering and mathematical physics, is a very capable method 
for modeling complex physical phenomena. However, the 
approach is very time-consuming to set up by modeling all 
detailed components of a machine and can’t be implemented 
as a compensation method for dynamic errors. Nonetheless, 
it can be used to assess and simulate dynamic errors [12]. 
Multivariate polynomial regression can also be used as a 
prediction model. Polynomial regression fits a nonlinear 
relationship between a series of input values and the cor-
responding conditional response of output. The biggest 
advantage of nonlinear regression over other techniques is 
the broad range of functions that can be fit to represent the 
process. However, they are highly sensitive to outliers and 
not suitable for problems where high nonlinearity is present 
in the data such as dynamic errors. The other type of mod-
eling being considered for the compensation is the artificial 
neural networks (ANNs). A form of connected calculations, 
they are computing models inspired by the neural structure 
of the human brain. The main asset of ANN models over 
other statistical methods is that the latter considers linear 
relationships and/or normal distribution, while real data are 
nonlinear and non-normal. Thus, ANN models can better 
conform with data acquired from real physical problems. 
Among various methods presented in neural modeling, the 
multilayer network technique is one of the most convenient 
alternatives for this type of application due to its simplicity 
and flexibility [28, 29].

Including all the variables in a model (classic model) is 
not always a viable solution; hence, it is recommended to 
ascertain the ideal combination of variables that result in 
the optimal model. To this end, a design of experiments is 
set up as a base for the modeling scheme. The objective is to 
compare a model involving all the variables (classic model) 
and assorted models with a reduced number of variables. 
This process is divided into three main steps as follows:

Table 1  Percent contribution of 
measurement factors in dynamic 
error attributes [27]

Source PD PV AD AV Error Total

RPE 13.60 79.10 0.01 2.40 4.89 100
RAE 0.80 0.70 29.10 61.80 7.62 100
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Fig. 5  Effects of measurement parameters on RPE and RAE [27]
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1. Producing an acceptable number of models, where each 
model includes a subgroup of explicitly selected vari-
ables.

2. Assessing each model's performance in accordance with 
a precise criterion.

3. Rating the fallout of each modeling variable's contri-
bution to lowering training, validation, and prediction 
errors using statistical analyses.

The quality assessment of a model depends on the condi-
tions that the model will be applied which are specified as 
the model success criterion. In this case, the model suc-
cess criterion should be presented as a predictive modeling 
criterion to allow the selection of appropriate models. To 
evaluate continuous-valued estimation models, metrics are 
often used as the coefficient of determination (R2), aver-
age error, sum of squared error (SSE), total squared error 
(Mallow’s Cp), mean squared error (MSE), median error, 
average absolute error, and median absolute error. In each 
of these metrics, the model deviation is first calculated, 
and the appropriate statistic is then computed. While aver-
age errors are used in determining whether the models are 
biased toward positive or negative errors, average absolute 
errors are usually used to estimate the magnitude of errors. 
In this regard, the overall value of the model acceptance 
criterion along with the entire range of predicted values, by 
considering scatter plots of actual versus predicted values 
or actual versus residuals (errors), is evaluated. Most mod-
eling techniques are developed based on the minimization 
of SSE. It is worth noting that MSE, Cp, and R2 are linear 
functions of SSE. Considering a fixed number of variables, 
the combination of variables that minimizes SSE leads to 
minimizing MSE and Cp and maximizing R2. Among these 
criteria, R2 does not have a maximum value and shows a 
gradually increasing trend when the number of variables in 
the model is increased. Thus, the use of R2 as a variable’s 
selection criterion can allow some subjectivity. If p variables 
among q variables are chosen, the residual mean square error 
is MSEp = SSEp / (n-p-1), where n is the total number of 
observations. The terms SSEp and n-p both decrease with 
increasing the number of separate variables p which can 
result in maximizing MSEp value. In this paper, for each 
of the chosen dynamic error attributes, we used the crite-
ria to adjust the models’ performance wherein the training 
residual mean square error (MSEt), the validation residual 
mean square error (MSEv), in addition to the total residual 
mean square error (MSEtot) are minimized.

In this study, the orthogonal arrays (also called the Taguchi 
method [30]) are adopted as an experimental design method 
[31]. The method has been employed with great success in 
engineering experiments to study the effect of several con-
trol factors (variables). The choice is justified by the advan-
tages that this method offers, among which a reduced number 

of experiments to be conducted which reduces greatly the 
experimental costs, the conclusions are legitimate over the 
entire region spanned by the control factors and their settings, 
and finally, the analysis of the results is straightforward. The 
detailed model making can be resumed in six distinct steps 
as follows:

1. Input data for training and validation of models are 
gathered. Besides, parameters and conditions that could 
affect the process are identified and taken into account.

2. The modeling technique and the performance criteria are 
selected.

3. The proper orthogonal array for the required number of 
models is set up.

4. Training and validation of models in accordance with 
the chosen criteria are performed.

5. The effect of each variable on models’ performance is 
evaluated using analysis of variance (ANOVA).

6. The final model configuration is established and imple-
mented as dynamic errors compensator of the measuring 
machine.

3  Application of the proposed strategy

This section presents the implementation of a predictive 
modeling procedure, as described in Sect. 2, to achieve 
compensation for the designated dynamic error attributes 
(RPE and RAE). The experience is performed on a bridge-
type CMM equipped with a touch-trigger probe as shown 
in Fig. 6.

Fig. 6  Experimental data acquisition set
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3.1  Experimental data analysis

The success of constructing an effective compensation 
model is linked not only to the judicious choice of the rel-
evant modeling technique but also to the data being used 
for the modeling. The most reliable data are typically those 
obtained by experimentation through which the real aspects 
of the physical phenomenon can be modeled. Thus, it is 
critical to choose appropriate data acquisition equipment, 
strategy, and variables included in the model. In this article, 
the data for modeling are solely provided by experimen-
tations. The dynamic error measurements are performed 
using an Automated Precision Inc. (API) 6/D laser inter-
ferometer set. This measurement device allows five simul-
taneous displacement measurements (linear displacement, 
horizontal straightness, vertical straightness, yaw, and pitch 
errors) along with velocity and acceleration measurements. 
To avoid other environmental elements from disturbing the 
measurement process, all the experiments are conducted in 
a controlled environment wherein relative humidity and tem-
perature are set at 43% and 20 °C, respectively. Furthermore, 
to achieve a higher measurement accuracy, the experiments 
are only performed after the laser is preheated to a precision 
standard as determined by the user manual of the device 
provided by Laser Automated Precision Inc. Setting up the 
experimental configuration as shown in Fig. 6, dynamic 
errors are measured while the bridge is moving along the 
x-guideway. Locating the x-carriage in the middle position 
along the laser beam at Y = 250 mm, the bridge moves in 
the x-direction at different speeds and accelerations. Each 
experiment is repeated three times and their average is used 

in modeling to reduce the possibility of errors and anomalies 
during measurement. Four machine parameters PV, PD, AV, 
and AD are used as input variables. The acceleration is not 
included among the variables in conformity with the hypoth-
esis stating that there are cumulative effects of velocity and 
acceleration.

3.2  Artificial neural network modeling

Among miscellaneous ANN models, a multilayer feed-
forward neural network is employed as a modeling tech-
nique in this article considering its simplicity and flex-
ibility. As illustrated in Fig. 7, a neural network consists 
of N neurons, for which each neuron is connected to neu-
rons of adjacent layers.

Let Ij,l be the input to the jth neuron on layer l; then, the 
output of this neuron (Oj,l) is given by:

Given that,

where Oi,l-1 is the output of the ith processing neuron of 
layer l-1, nl-1 is the number of neurons on layer l-1, θj,l is 
the threshold associated with neuron j of layer l, and Wi,j,l is 
the weight of the connection between neuron i on layer l-1 
and neuron j on layer l (also called synaptic strengths). The 
ANN structure shown in Fig. 7 provides a typical and useful 

(1)Oj,l =
1

1 + ���(−Ij,l + �j,l)

(2)Ij,l =
∑nl−1

i=1
Wi,j,lOj,l−1

Fig. 7  Simple computational 
elements of the multilayer feed-
forward neural network [32]
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example to illustrate the mechanism of a supervised learn-
ing process. In response to a pattern presented to the input 
layer, ANN attempts to produce an associated pattern by its 
output layer. The hidden layers are employed to filter noises 
that are present in the input signals so that the task of feature 
extraction can be performed effectively. Input values in the 
network are linearly mapped between the range of 0 and 1 
resulting network’s output values between 0 and 1, which 
can be mapped back to the full range. In order to determine 
the optimized parameters of each neuron, the backpropaga-
tion algorithm is used. In fact, ANN training by backpropa-
gation involves three steps, namely feed-forward of input 
training pattern, calculation and backpropagation of associ-
ated errors, and adjustments of the weights. After training, 
the application of the network involves only the computa-
tions of the feed-forward phase. The performance of the net-
work is determined by the mean squared error. Lower MSE 
corresponds to better learnability and predictability. In this 
study, the Levenberg–Marquardt algorithm is used as a train-
ing function for backpropagation. This method involves an 
iterative improvement to weight values to minimize the MSE 
of the training data. The Levenberg–Marquardt algorithm is 
presented as a combination of two minimization methods, 
the gradient descent, and the Gauss–Newton method. This 
algorithm acts more like a gradient descent method when the 
parameters are far from their optimal value and acts more 
like the Gauss–Newton method when the parameters are 
close to their optimal values.

3.3  Modeling design

The practicality of a design of experiments generally 
depends on the efficiency and precision of experimental 
equipment, the quality of acquired data, and the data col-
lection method. Full factorial designs are usually used in 
scientific research as they allow to achieve all possible 
combinations of variables. However, full factorial design is 
not always efficient nor a cost-effective approach. In fact, a 
design of an experiment including lots of variables cannot 
be easily implemented given the increased number of repeti-
tions involved. This type of design is costly and increases 
the risk of experimental error leading to erroneous results 
accordingly. For these reasons, the orthogonal array (OA) 
design is adopted in this study as an alternative to using full 
factorial designs. In this regard, the selection of a convenient 

OA is an important step. OA must contain all the factors 
and their respective levels. Moreover, OA’s degrees of free-
dom should be greater than or equal to the total degrees of 
freedom of the concerned variables. For these reasons and 
as a matter of resolution and accuracy, an  L8 OA [30] was 
chosen, shown in Table 2, as a design of experiments. The 
(+) and (-) signs indicate whether the variables are included 
in the model or not, respectively. All in all, 8 ANNs are to be 
built with data generated by the experimental OAs.

3.4  Training and validation of the neural models

Before proceeding with the training and validation of mod-
els, it is crucial to set up the ANN topology and optimize 
training performances. The objective is to come close to a 
relationship between the network parameters and the com-
plexity of variables to be estimated, notably given the vari-
ation of the number of variables concerned from one model 
to the other. Regardless of the hidden layer size, every single 
model built has to have an average error inferior to 1%. To 
this end, a [(i) × (2i + 1) × (o)] network structure is adopted 
where (i) and (o) are the number of inputs and outputs 
accordingly. Another consideration regarding the choice of 
this structure is to prevent long training and over-fitting that 
could affect the model’s accuracy. Given that the starting 
weights influence the optimal configuration found by ANN, 
multiple random starting weights are used to avoid getting 
stuck in a local minimum. It is important to note that dur-
ing the training stage, the input data are normalized to the 
range of [-1, 1]. The weights and biases of the network are 
initialized to small random values to avoid a fast saturation 
of the activation function.

Levels for each of the variables involved in the experi-
ments are to be determined. Several facts are taken into con-
sideration when the levels of the variables are selected. First, 
each factor level is selected inside the operating limitation 
range that is set by the machine manufacturer. In addition, 
the levels are also limited to represent real measurement 
conditions to reflect a typical high-frequency production 
cell. The resulting levels are represented in Table 3.

As it can be deduced from the design of experiments 
chosen (Table 2), a total of 8 networks with distinct input 
combinations are to be made. By choosing which examples 
to present and in which order to present them to the learning 
system, one can guide training and remarkably increase the 

Table 2  Modeling design 
procedure

Models M1 M2 M3 M4 M5 M6 M7 M8

Variables PD + + + + - - - -
PV + + - - + + - -
AD + - + - + - + -
AV + - - + - + + -
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speed at which learning can occur [17]. Since the neural net-
work objective functions are non-convex, using the different 
ordering of training samples would lead to possibly different 
local minima. For this reason, the data for training are shuf-
fled. A total of 24 samples composed of 18 samples from the 
 L18 and 6 samples randomly picked from the  L16 are used for 
the training of neural networks. The remaining 10 samples 
of the  L16 are used for the validation. The performance of 
the built models in accordance with the criteria is illustrated 
in Table 4. The best two among eight networks with random 
sets of starting weights are selected, and then, the average 
performance of models is submitted for more analysis. It is 
worth mentioning that each MSE value is computed using 
normalized data to allow comparing the models.

4  Analysis of the modeling results

Investigating the modeling results, presented in Table 4, 
reveals the presence of an important variation in regard to 
the models’ performance. For all models, the validation 
MSE values are greater than those of the training. In addi-
tion, most of the RAE prediction errors are lower than those 
of RPE for all models. Only models 1 and 2 for RPE, and 
models 1 and 7 for RAE matched the data relatively well as 
it can be figured out from their respective mean square error 
values. The worst prediction models are those that use AD 
and AV for the prediction of RPE as well as PD and PV for 
the prediction of RAE. This is easy to foretell since RPE is 

heavily affected by PD and PV, the same can be said about 
RAE with AD and AV, respectively (see Table 2).

To study the impact of variables on the models’ perfor-
mances, an ANOVA is performed on the results of MSE. In 
this case, the analysis is based on two statistical indicators. 
The percent (%) contributions and the average effects of each 
variable are included in the models. The (%) contribution of 
a variable indicates the portion of the observed total variation 
assigned to this variable. Ideally, the sum of the (%) contribu-
tion of all involved variables must be 100%; however, this is 
not possible because of the contribution of some other uncon-
trolled modeling variables and experimental shortfalls. The 
main effect graphs, illustrated in Figs. 8 and 9, approximately 
present the effects of each variable on the modeling perfor-
mances. Considering the variables' effects on RPE models, 
Fig. 8 presents the effect of machine parameters on the models’ 
mean square error for both training and validation. In both 
graphs, PD and PV have a positive impact on the models’ 
accuracy with PV dominating. However, AD and AV seem to 
have an opposite effect on the designed models’ performance, 
especially in the validation phase. This can be confirmed by 
the variables' contributions as presented in Tables 5 and 6. 
The positioning velocity (PV) is the governing variable in 
reducing the total MSE values with an estimate of 96.35%. It 
is followed by the positioning distance (PD) with a value of 
1.79%. The contribution of the approach distance and velocity 
(AD and AV) is negligible for the training, validation, and the 
total MSE value. A negligible error contribution, very close to 
0% (0.73%), signifies that no important variables are excluded 
from the modeling procedure. Thus, the positioning distance 
and velocity (PD and PV) are the variables to be appropriate 
for the RPE compensation model. In addition, no interaction 
has been detected for the RPE.

Considering the variables' effect on RAE models, as illus-
trated in Fig. 9, the approaching distance and velocity (AD 
and AV) have a drastic reducing effect on the training and 
validation MSE values. Further, the positioning distance and 
velocity (PD and PV) seem to increase the training mean 
square error values and, in a more pronounced manner, the 
validation MSE values. These observations are validated by 

Table 3  Variables and levels of  L18 and  L16 experiments designed for 
training and validation data

Variables L18 L16

PV (mm/s) 40 70 100 55 85
PD (mm) 40 60 - 47 53
AV (mm/s) 8 12 16 10 14
AD (mm) 5 10 15 7.5 12.5

Table 4  Resulting training, 
validation, and total mean 
square error  (MSEt,  MSEv, 
 MSEtot) values for residual 
positioning error (RPE) and 
residual approaching error 
(RAE) of CMM

RPE RAE

Models MSEt MSEv MSEtot MSEt MSEv MSEtot

M1 0.478 1.113 0.665 0.310 0.406 0.338
M2 0.490 0.757 0.568 3.423 3.131 3.337
M3 6.123 6.442 6.217 2.227 2.391 2.275
M4 5.962 7.153 6.313 1.270 1.323 1.285
M5 1.384 0.391 1.092 2.334 2.346 2.338
M6 1.303 0.771 1.146 1.128 1.211 1.152
M7 6.872 6.636 6.803 0.348 0.291 0.331
M8 6.431 4.646 5.906 3.171 2.438 2.956
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the percent contribution of each variable. In fact, Tables 5 
and 6 unveil that the approaching velocity (AV) is the varia-
ble that reduces the most the MSE values with nearly 72.03% 
total contribution. The approaching distance (AD) comes in 
second place with a total contribution of 24.56%. The con-
tribution of positioning distance and velocity is negligible. 
The error contribution is below 1% for the training MSE 
value and around 3% for the validation and total MSE val-
ues, which implies that no important variables are omitted 
in the procedure. Finally, no significant interaction is noticed 
between the two major variables reducing the MSE values.

The next step of the procedure is the choice of the models 
that predict the best RPE and RAE. To this end, the thresh-
old of the model accepting criteria at a variable percent 
contribution of at least 2.5% is set. For both RPE and RAE, 
one model is selected and compared with the classic model 
containing all the variables (M1). The best predictive model 
of RPE (M2) contains PD and PV, as for RAE, the model 
(M7) containing AD and AV will be considered. As it can 
be observed in Fig. 10, both models for RPE (M1 and M2) 
fit well the training data and to a lesser extent the validation 
data. M2 seems to fit slightly better than M1 as it can be 
confirmed by the corresponding MSE values and thus will 
be retained for the final compensation model.

Figure 11 illustrates the predicted and measured RAE 
for the classic model containing all the variables (M1) and 
the selected model (M7) which includes only two vari-
ables. A good distribution of the training and validation 
data is observed for the prediction models. M7 seems to 
fit better than M1, which can be explained by the fact that 
M7 does not include the positioning distance (PD) as a 
variable that has a contribution of 1.5%. Therefore, M7 is 
the most appropriate model to be used for the compensa-
tion of RAE.

Based on the modeling process results, various statistical 
indicators are estimated to evaluate the performance of each 
model. Coefficient of determination  R2 is commonly applied 
to training errors. Its main defect is its growth with the addition 
of input variables to the model, whereas an excess of variables 
does not always lead to robust models. This is why one is 
interested in the adjusted coefficient  R2

adj. Mean square error 
(MSE) and root mean squared error (RMSE) are indicators 
based on the standard deviation of prediction errors that meas-
ure the extent of residual errors and indicates the concentration 
of data around the line of best fit. Mean absolute percentage 
error (MAPE) is a useful measure of forecasting accuracy, 
which is expressed in percentages and thus easy to interpret. 
The criteria are expressed mathematically as:
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�2

∑n

i=1

�
yi − y

�2

(4)R2

adj
= 1 −

(1 − R2)(n − 1)

(n − p − 1)

(5)MSE =
1

n

∑n

i=1
(yi − ŷi)
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where n, p, yi , ŷi , and y denote, respectively, sample size, 
number of input process parameters, actual output, estimated 
output, and the mean of actual output.

The evaluation of the selected models using the pro-
posed statistical performance indicators is summarized 
in Table 7. As already explained, among the eight (8) 
generated predictive models, models M2 and M1 repre-
sent the best RPE, while models M7 and M1 predict the 
best RAE. Referring to the results presented in Table 7, it 
can also be seen that the models  R2 and  R2

adj of M1, M2, 
and M7for RPE and RAE reach approximately 0.92 and 
0.84, respectively. The MAPE of these models is less than 
10% inferring small prediction errors in these models. 
However, considering RPE, the precision of M2 is higher 
than M1 due to its superior  R2 and  R2

ajust values as well 
as its inferior error values (MSE, RMSE, and MAPE). 
The same logic can be observed for RAE for which M7 

Table 5  ANOVA performed on the built models’ training, validation, and total mean square error  (MSEt,  MSEv,  MSEtot) for residual positioning 
error (RPE)

MSEt for RPE

Source PD PV AD AV Error Total

DF 1 1 1 1 3 7
Seq SS 1.0782 59.0457 0.0563 0.0044 0.0841 60.2687
Contribution 1.79% 97.97% 0.09% 0.01% 0.14% 100.00%
Adj SS 1.0782 59.0457 0.0563 0.0044 0.0841
Adj MS 1.0782 59.0457 0.0563 0.0044 0.0280
F-Value 38.46 2106.23 2.01 0.16
P-Value 0.008 0 0.251 0.719

MSEv for RPE

Source PD PV AD AV Error Total

DF 1 1 1 1 3 7
Seq SS 1.1411 59.6515 0.1969 1.4781 1.0164 63.4839
Contribution 1.80% 93.96% 0.31% 2.33% 1.60% 100.00%
Adj SS 1.1411 59.6515 0.1969 1.4781 1.0164
Adj MS 1.1411 59.6515 0.1969 1.4781 0.3388
F-Value 3.37 176.07 0.58 4.36
P-Value 0.164 0.001 0.501 0.128

MSEtot for RPE

Source PD PV AD AV Error Total

DF 1 1 1 1 3 7
Seq SS 0.1754 59.2236 0.0888 0.1635 0.2455 59.8967
Contribution 0.29% 98.88% 0.15% 0.27% 0.41% 100.00%
Adj SS 0.1754 59.2236 0.0888 0.1635 0.2455
Adj MS 0.1754 59.2236 0.0888 0.1635 0.0818
F-Value 2.14 723.62 1.08 2
P-Value 0.239 0 0.374 0.252
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presents a more precise model with respect to M1. It is 
worth mentioning that PD and PV as well as AD and AV 
are the two variables considered in M2 and M7, respec-
tively, whilst all four variables are taken into considera-
tion in M1.

5  Geometric and dynamic error compensation 
results

In the previous sections, ANN predictive models are 
developed allowing dynamic error compensation during 

Table 6  ANOVA performed on the built models’ training, validation, and total mean square error  (MSEt,  MSEv,  MSEtot) for residual approach-
ing error (RAE)

MSEt for RAE

Source PD PV AD AV Error Total

DF 1 1 1 1 3 7
Seq SS 0.0077 0.0041 1.7803 8.2020 0.0473 10.0413
Contribution 0.08% 0.04% 17.73% 81.68% 0.47% 100.00%
Adj SS 0.0077 0.0041 1.7803 8.2020 0.0473
Adj MS 0.0077 0.0041 1.7803 8.2020 0.0158
F-Value 0.49 0.26 113 520.6
P-Value 0.535 0.646 0.002 0

MSEv for RAE

Source PD PV AD AV Error Total

DF 1 1 1 1 3 7
Seq SS 0.1164 0.0530 0.8907 6.2575 0.2101 7.5277
Contribution 1.55% 0.70% 11.83% 83.13% 2.79% 100.00%
Adj SS 0.1164 0.0530 0.8907 6.2575 0.2101
Adj MS 0.1164 0.0530 0.8907 6.2575 0.0700
F-Value 1.66 0.76 12.72 89.35
P-Value 0.288 0.448 0.038 0.003

MSEtot for RAE

Source PD PV AD AV Error Total

DF 1 1 1 1 3 7
Seq SS 0.0263 0.0127 1.4870 7.6028 0.0457 9.1745
Contribution 0.29% 0.14% 16.21% 82.87% 0.50% 100.00%
Adj SS 0.0263 0.0127 1.4870 7.6028 0.0457
Adj MS 0.0263 0.0127 1.4870 7.6028 0.0152
F-Value 1.73 0.84 97.73 499.66
P-Value 0.28 0.428 0.002 0

Fig. 10  Predicted and measured 
RPE between the classic and the 
selected models
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measurements using CMMs. In order to achieve an exhaus-
tive error compensation method, the prediction models 
should be integrated into the error compensation algorithm 
of CMM and their performance needs to be investigated by 
comparing with the existing compensation model for the 
geometric errors. In fact, geometric error compensation 
models, developed by our team, apply laser-interferometer-
based measurement [32]. In this regard, the accuracy of 
CMMs is improved by evaluating and compensating geomet-
ric errors based on 3D volumetric error mapping using rigid 
body kinematics and a homogeneous transformation matrix. 
It is demonstrated that this ANN-based geometric error com-
pensation approach can improve the machine's accuracy by 
reducing more than 90% of quasi-static errors [32]. Combin-
ing geometric and dynamic errors compensation approaches, 
the integration architecture is shown in Fig. 12. Both the 
predicted geometric and dynamic errors are combined before 
calculating the resulting errors in x, y, and z directions, Ex, 
Ey, and Ez. The error compensation system operates using 
the machine parameters as well as the encoder positions X, 
Y, and Z. When the probe is triggered, the system returns 
the compensation Δx, Δy, and Δz that must be added to the 
encoder position so as to improve the machine position accu-
racy. ANN models provide error components for geometric 
errors as a function of encoder positions (X, Y, and Z) and 
dynamic errors as a function of machine parameters (PV, PD, 
AV, and AD). Volumetric error components are synthesized 
using the kinematic model of a machine. The compensated 

position is then used as an input to CMM software for geo-
metric computations and metrological analysis.

In order to evaluate the performance of the proposed inte-
grated geometric and dynamic errors compensation procedure, 
three tests are performed. In each test, the CMM is controlled 
to move from the reference coordinate system position along 
X-axis with a travel distance of 400 mm. The machine is con-
trolled to move 40 mm in each step along X-axis. At each posi-
tion step, its coordinates from the CMM controller are collected 
and transferred to the computer where the errors are synthesized. 
The actual and predicted distances are then compared, and the 
correction of the travel distance is applied. In the first test, the 
machine travels at the slowest speed to reveal only the geometric 
errors and will be used as a reference. In the second one, the 
standard measuring pattern, using positioning and approaching 
velocities during measurement, is performed using a position-
ing velocity of 70 mm/s and an approach velocity of 12 mm/s. 
Given that the measurement is performed in approaching veloc-
ity, the second test represents RAE. In the final test, the meas-
urement pattern for a non-contact probe-equipped machine is 
adopted with a travel velocity of 70 mm/s. Positioning error 
(RPE) can be evaluated in this test pattern since the measuring 
is performed in position velocity. The actual and predicted travel 
distances as well as the residual errors for each test are illustrated 
for the indicator of each test pattern (geometric error, RPE, and 
RAE) in Fig. 13. It can be observed in these graphs that the 
errors exceeded 12 μm for RAE and 16 μm for RPE while the 
maximum geometric error recorded does not reach 8 μm. The 

Fig. 11  Predicted and measured 
RAE values for the selected 
models

Table 7  Comparison of the performance of the built models

RPE RAE

M1 M2 M1 M7

R2 0.9232 0.9241 0.9160 0.9189
R2

adj 0.8320 0.8446 0.8168 0.8344
MSE 0.5413 0.4981 0.2876 0.2583
RMSE 0.1185 0.1174 0.0864 0.0846
MAPE 7.47% 7.36% 8.34% 8.13% Fig. 12  The architecture of an integrated compensation model com-

bining geometric and dynamic error compensation models
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maximum residual error is lower than ± 1 μm for the geometric 
errors, while it is ± 2 μm for RAE and between 2 and -3 μm for 
RPE. This demonstrates the proposed compensation procedure 
is efficient allowing the use of higher velocities while maintain-
ing very good measurement accuracy. Using this errors compen-
sation approach results in raising the productivity of production 
cells by allowing a higher frequency of measurement operations.

6  Conclusions

To increase productivity, 3D geometrical measurements, 
using coordinate measuring machines (CMMs), are per-
formed at the highest permissible velocity, which leads to 

dynamic errors. These errors negatively affect the measure-
ment accuracy during high-speed measuring of parts. In 
this article, a comprehensive predictive modeling strategy 
of dynamic errors in CMMs is developed. The proposed 
approach consists of six distinct steps:

1. Identifying key parameters and conditions that affect 
CMM dynamic performance and proceeding to experi-
mental investigation to evaluate the effects of these 
parameters and conditions on the positioning accuracy.

2. Selecting the modeling technique and the performance 
criteria.

3. Setting up the adequate orthogonal array to fit the mod-
eling procedure specifications.

4. Training and evaluating the developed models.
5. Selecting the best combination of variables to include in 

the optimal models.
6. Establishing and integrating the selected models in the 

proposed dynamic errors compensation strategy.

Implemented on a bridge-type CMM equipped with a touch-
trigger probe, the proposed approach results in the develop-
ment of predictive error compensation models presenting good 
agreement with experimental data with a correlation of more 
than 95% and 97% for residual positioning error (RPE) and 
residual approaching error (RAE) of probe, respectively. While 
employing high traveling velocities, the final integrated mod-
els succeeded in reducing the total errors by 80% regardless 
of the used measurement pattern. The proposed compensation 
strategy is easy to implement allowing the use of a CMM at its 
highest productivity while maintaining accuracy. The devel-
oped models are able to reduce the dynamic errors from 12 μm 
to 2 μm using 12 mm/s as approach velocity and from 18 μm 
to 3 μm using 70 mm/s as positioning velocity.

Although the results of this study are promising, the 
research can be extended to apply the method to a wider 
range of machine parameters and different types of measur-
ing machines.
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