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Abstract
Regenerative chatter is the most important factor affecting the stability of the milling process. It is core for suppressing chat-
ter and improving production efficiency to accurately and efficiently identify the stable region of milling chatter. Therefore, 
according to the theory of predictor-corrector, three predictor–corrector methods (PCM) are, respectively, proposed for the 
milling stability region by applying the fourth-order Adams-Bashforth-Moulton formula, Simpson formula, and Hamming 
formula. Firstly, the regenerative chatter milling process is described as a second-order time-delay differential equation 
(DDE) with periodic coefficients. Thus, the forced vibration time can uniformly be discretized as a time node set. Secondly, 
the fourth-order Adams-Bashforth formula is used to predict the displacement at every time node, whereas the fourth-order 
Adams-Moulton formula can be employed to correct this predicted value. In addition, the fourth-order Simpson formula and 
Hamming formula can also correct the predicted value. Thus, a higher precision discrete prediction-correction expansion 
is constructed for the transformation of DDE into the state transition express. The Floquet theory can be depended on to 
present the judgment criterion of milling stability. Moreover, finally, under the same milling process parameters, compari-
sons of both the stability lobe curve and the local discrete error curve show that the PCM has a faster convergence rate than 
the 1st-SDM (first-order semi-discretization method) and 2nd-FDM (second-order full-discretization method). This shows 
that the PCM can obtain better computational accuracy under the same discrete number, whereas the PCM is significantly 
higher computational efficiency over 1st-SDM and 2nd-FDM. Meanwhile, considering the actual machining environment, 
helix angle effect and multiple modes effect of the tool are analyzed; experimental verification considering multiple modes 
with helix angle further indicates the applicability of the PCM.
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1 Introduction

In milling process, chatter is a bad cutting condition that 
seriously reduces the surface quality of the workpiece and 
restricts the production efficiency. Although there is regen-
erative effect, vibration mode coupling effect, hysteresis 
effect, and negative friction effect, the dynamic change of 
cutting thickness caused by regenerative effect is consid-
ered to be one of the most important factors causing chatter 
[1]. In recent decades, extensive and profound theoretical 

research and experimental verification have been carried 
out on the problem of regenerative chatter [1–4]. In light 
of the research works of Tobias and Tlusty on the mecha-
nism of milling chatter, Altintas and Weck established the 
corresponding mathematical model [1]. In fact, to achieve 
the problem on the regenerative effect cutting chatter is to 
establish the dynamic model which is a time-delay differ-
ential equation (DDE) with periodic coefficients firstly and, 
secondly, its solution method which can solve the DDE to 
obtain the stability lobe diagram (SLD) [1, 5, 6]. Up to now, 
the research methods on SLD can mainly be categorized 
into direct time-domain solution method, semi-analytical 
frequency-domain solution method, and semi-analytical 
time-domain solution method.

For the direct time-domain solution method, Wiercigroch 
and Budak [6] found that the amplitude of the milling force 
would increase rapidly when the machining parameters were 
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selected at the boundary of the milling stability region. The 
difference between the maximum and the minimum force 
amplitude was used as the stability criterion to obtain the 
peak-to-peak (PTP) contour map of milling force. Li and 
Shin [7] proposed a comprehensive time-domain simulation 
model of the milling process, and the PTP criterion is used 
for the milling stability of thin-walled parts with a large 
axial depth of cut. Minis and Yanushevsky [8] used a set of 
differential-difference equations with time-varying periodic 
coefficients to describe the dynamic behavior of the milling 
process. And the stability of the system could be checked by 
Fourier analysis and linear periodic system parameter trans-
fer functions. Campomanes and Altintas [9] proposed an 
improved milling time-domain model, in which the ratio of 
dynamic cutting thickness to nominal static cutting thickness 
was used as a stability criterion. It can not only be used to 
predict cutting force, surface finish, and chatter stability but 
also accurately explain difficult modeled nonlinear effects. 
Davies et al. [10, 11] established a new theoretical frame-
work for predicting the stability of highly interrupted cut-
ting. It modeled the interrupted cutting as a kicked harmonic 
oscillator with time-delay to validly predict the additional 
unstable regions at the depth of cut. Obviously, the judgment 
of the system stability is actually based on the cutting thick-
ness or cutting force changes in the time domain during the 
cutting process in the direct time-domain solution method. It 
mainly takes the milling force model as the research object. 
When the milling force model considers the nonlinear effect 
factors in the milling process, such as tool runout, eccentric-
ity, and so on, the direct time-domain solution method can 
achieve high precision. However, because these judgment 
criteria do not define the stability limit value, it is difficult 
to give an accurate conclusion of the stability under arbi-
trary milling parameters. Moreover, either a large calculation 
amount or a low calculation efficiency restricts the wide use 
of the direct time-domain solution method.

For semi-analytical methods, based on the work of Minis 
and Yanushevsky [8], Altintas and Budak [12] expanded the 
periodically changing milling force coefficient matrix onto 
the frequency domain to only retain the zeroth-order term by 
using the Fourier transform method. And the critical stable 
region could be obtained by solving the eigenvalue of the 
differential equation. He was the first to establish a zero-
order approximation method (ZOA) for solving the milling 
stability region in the frequency domain. ZOA is widely used 
due to its fast calculation speed and high accuracy. Neverthe-
less, ZOA ignores the high-order terms of the Fourier series 
so that it cannot predict the additional stable region that 
appears under the small radial depth of cut. In order to solve 
this shortcoming of ZOA, Merdol and Altintas [13] estab-
lished again a multi-frequency method (MF) to solve the 
milling stability domain in the frequency domain. However, 
since the MF method needs to iteratively search the chatter 

frequency in the calculation process, it is of low calcula-
tion efficiency. Subsequently, Altintas and his research team 
extended the frequency-domain solution method to stability 
judgment of various complex machining conditions, such as 
the ball nose milling [14], variable pitch milling [15], 3D 
milling with axial vibration [16], variable helix angle mill-
ing [17], and plunge milling operation [18]. Based on the 
works of Davies et al. [10, 11], Bayly et al. [19] proposed a 
temporal finite element analysis (TFEA). The TFEA utilizes 
the weighted residual method to obtain the state transition 
matrix between two adjacent cutting periods of the milling 
system by discretizing the cut-in time. And then, the Floquet 
theory is relied on to judge the milling stability according to 
the state transition matrix. One weakness of this method is 
low computational efficiency, and another is not fully appli-
cable to the working conditions of large radial depth of cut.

Insperger and Stepan [20, 21] created a rigorous semi-
analytical method for computing the stability domain of 
milling process which was the semi-discretization method 
(SDM). In the SDM, the tooth passing period is uniformly 
discretized into finite time intervals. The time-delay term 
and periodic term of the DDE are averaged in each time 
interval, and the DDE in the discrete time interval is trans-
formed into an ordinary differential equation (ODE). Thus, 
the state transfer matrix of the milling system in a single 
cutting period is further constructed to determine the sta-
bility of the system based on the Floquet theory. This SDM 
can well calculate the stability region under different cutting 
conditions. But its calculation accuracy and calculation effi-
ciency depend heavily on the periodic discrete number. The 
larger the discrete number is, the higher the calculation accu-
racy is whereas the lower the calculation efficiency is. More-
over, the computational efficiency of the SDM is also sub-
ject to the mesh density of the “spindle speed-depth of cut” 
plane. Subsequently, Insperger et al. [22] proposed again 
a higher-order semi-discrete method with higher algebraic 
precision. It is worth noting that the higher-order approxima-
tion for each discrete time interval can improve the calcula-
tion accuracy, but also reduce the computational efficiency 
simultaneously. Ding et al. [23] used the direct integration 
formula to establish a semi-analytical method called the full-
discretization method (FDM). Likewise, the tooth passing 
period is firstly discretized into a finite number of uniform 
time intervals. Then the time-delay term, state term, and 
periodic term of the DDE were linearly interpolated accord-
ing to two end-point values of each time interval. Similar to 
the SDM, the FDM also converted the DDE in the discrete 
time interval into an ODE. Thus, the state transfer matrix of 
the milling system could be constructed in a tooth passing 
period such that the Floquet theory is used to determine 
the stability. The FDM can greatly improve the calculation 
efficiency compared with the SDM without losing calcula-
tion accuracy. This is because the exponential matrix, which 
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has a great influence on the calculation efficiency, does not 
depend on the depth of cut in the “spindle speed-depth of 
cut” plane but the spindle speed. Again, Ding et al. [24] also 
improved the FDM as the second-order FDM by applying 
the second-order Lagrange interpolation to the state term. 
The 2nd-FDM can reduce the truncation error of the algo-
rithm to improve the calculation accuracy. But its calculation 
efficiency will also decrease with the increase of the interpo-
lation order number. Wan et al. [25] considered the effects of 
the runout and the pitch angles on the milling stability. And 
a unified method was suggested for predicting the stability 
lobes of milling process with multiple delays. Based on the 
FDM of Ding et al. [23, 24], the third-order FDM [26, 27] 
and the other enhanced FDM [28–31] have been succes-
sively proposed by performing higher-order interpolation 
on the state term. Tang et al. [32] proposed and verified an 
effective stability prediction model with consideration of 
multiple modes and the cross-frequency response functions 
in the time domain. Zhou et al. [33] took into account the 
impact of helix angle and multi-mode on the milling stabil-
ity. The fourth-order FDM was adopted to establish the sta-
bility analysis model. Zhang et al. [34] proposed a stability 
analysis method for the high speed milling system with two 
degrees of freedom (DOF) based on the finite difference 
method. Li et al. [35] proposed a complete discrete scheme 
(CDS) based on Euler formula by adopting the same homog-
enization treatment as the SDM on the periodic coefficient 
term and linear interpolation approximation as the FDM on 
the delay and state terms. Compared with SDM and FDM, 
CDS has higher computational efficiency. But the larger 
accumulation truncation error can also cause a relatively 
large computational error. Ding et al. [36] operated numeri-
cally integration on the integral term in discrete time inter-
vals. And the Floquet transition matrix of the system was 
constructed in a tooth passing period to explore a numerical 
integration method (NIM). Niu et al. [37] calculated further 
the state term with the fourth-order Runge-Kutta formula to 
propose the CRKM and GRKM (i.e., Classical Runge-Kutta 
Method, and Generalized Runge-Kutta Method) which have 
high convergence speed and computational efficiency. Olvera 
et al. [38] proposed an enhanced multistage homotopy per-
turbation method (EMHPM). In combination with the simu-
lated annealing algorithm, the EMHPM was used to deduce 
a three-dimensional SLD calculation method considering the 
material removal rate. Zhang et al. [39] adopted the Simpson 
numerical integration formula to propose a concise SLD pre-
diction method by turning the solution process of the milling 
process into the initial value problem of ordinary differen-
tial equations. Recently, Qin et al. [40] used a second-order 
Lagrange interpolation polynomial for the approximation of 
the state term, delay term, and time period parameter matrix 
to be the holistic-discretization method (HDM). Dai et al. 
[41] used the Taylor formula to expand the inhomogeneous 

terms to be the exponential matrix which can be solved by 
the 2nd-order algorithm. Thus, the complete discretization 
of the iterative formula was successfully realized to establish 
a precise integration method (PIM). Dong and Qiu [42] pro-
posed a numerical integration method based on the Hermite 
method. Lou et al. [43] proposed and verified a new numeri-
cal integration method combining Lagrange interpolation 
and Cotes integration. In addition, Wu et al. [44] proposed 
a cubic Hermite-Newton approximation method to predict 
the milling stability boundary.

As above stated, because the semi-analytical time-domain 
method is of wide adaptability and better calculation accu-
racy, it has now become the focus of current research. Figure 1 
shows a flow chart on the construction of SLD by using the 
semi-analytical time-domain method. By discretizing the tooth 
passing period, an equivalent discrete system is constructed 
with various numerical calculation methods to obtain the state 
transition matrix of the DDE. The next is to judge the stability 
according to the relationship between the spectral radius of the 
state transition matrix and one. The focus of these methods 
is on the following two contradictory concerns. One is how 
to obtain a faster discrete error convergence speed under less 
period discretization number when the numerical calculation 
method is utilized to solve the state transition matrix   (that is, 
how to obtain better calculation accuracy). Another is how to 
improve the calculation efficiency as high as possible when 
the period discretization number is increased. Up to now, the 
judgment methods on the milling stability have not better dealt 
with the two problems on the computational performance. In 
numerical analysis theory, the numerical solutions of ODE are 
mainly categorized into the single-step method, the multi-step 
method, and the explicit method, the implicit method. Gener-
ally speaking, the calculation of the explicit formula on the 
predicted value in combination with that of the implicit for-
mula on the correction value can always achieve better numeri-
cal stability for both low-order and high-order methods [45]. 
The main methods for the ODE are the direct replacement of 
differential quotient by the differential quotient, numerical inte-
gration method, and Taylor expansion method. Among them, 
the Taylor expansion method is more flexible and general. It 
can also realize the estimation of the truncation error as well 
as the construction of the calculation formula. Therefore, a 
series of new linear multi-step predictor-corrector methods 
(PCM) are proposed to quickly calculate accurately the mill-
ing stability region. The Taylor expansion method is adopted  
to obtain the linear multi-step methods including the fourth-
order Adams-Bashforth-Moulton explicit-implicit, Simpson 
implicit, and Hamming implicit formula. And then, the posi-
tions corresponding to the two endpoints of every discretiza-
tion interval of the tooth passing period are approximated in 
sequence by employing the fourth-order Adams-Bashforth 
explicit formula and the fourth-order Adams-Moulton (or 
Simpson, Hamming) implicit formula. The state transition 
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expression is finally concluded for the DDE so that its state 
transition matrix can be relied on to judge the stability of the 
milling system.

2  Dynamics model

If the vibration of the tool system is taken along the feed direc-
tion x into account as well as that along the thickness direction 
y, the dynamic milling process can be represented by the two-
DOF milling dynamics model shown in Fig. 2. The dynamic 
milling process considering the regeneration effect can be 
described by the following second-order DDE [2, 3, 46]:

where M, C, and K are the modal mass matrix, modal damp-
ing matrix, and modal stiffness matrix of the tool system, 
respectively. q(t) is the tool vibration displacement vector. 
T is the time-delay of the DDE. Usually, in milling process, 
T = 60/N/Ω represents the tooth passing period in which N 
is the number of teeth and Ω is the spindle speed. K(t) is the 
dynamic milling force coefficient matrix. It is the periodic 
function of T, so K(t) = K(t + T). K(t) can be expressed as

(1)𝐌�̈�(t) + 𝐂�̇�(t) +𝐊𝐪(t) = ap𝐊(t)[𝐪(t) − 𝐪(t − T)]

(2)�(t) =

[
−hxx(t) −hxy(t)

−hyx(t) −hyy(t)

]

with

where Kt and Kr are, respectively, the linearized cutting force 
coefficient in the tangential direction and the normal direc-
tion which can be obtained from the calibration experiment 
of the milling force coefficient. �j(t) is the current angular 
of the tooth j whose expression is as follows:

g(�j(t)) is a window function to judge whether the tooth 
j is cutting. It is defined as

(3)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

hxx(t) =

N�
j=1

g(�j(t)) sin(�j(t))
�
Kt cos(�j(t)) + Kr sin(�j(t))

�

hxy(t) =

N�
j=1

g(�j(t))cos(�j(t))
�
Kt cos(�j(t)) + Kr sin(�j(t))

�

hyx(t) =

N�
j=1

g(�j(t)) sin(�j(t))
�
Kr cos(�j(t)) − Kt sin(�j(t))

�

hyy(t) =

N�
j=1

g(�j(t)) cos(�j(t))
�
Kr cos(�j(t)) − Kt sin(�j(t))

�

(4)�j(t) =
2�Ω

60
t +

2�(j − 1)

N

(5)g(𝜙j(t)) =

{
1, 𝜙st < 𝜙j(t) < 𝜙ex

0, others

Fig. 1  The flow chart of obtain-
ing SLD with semi-analytical 
time-domain method

Start

Milling system

Dynamics differential

equations

State transition matrix

Stability lobe diagram

End

��Structural dynamics theory
��Instantaneous rigid force model

��SDM (Refs.[21-23, 26])
��FDM (Refs.[24, 25, 27-32, 34])
��Numerical Method (Refs.[35, 37, 38, 40-44])
��RKM,CDS et al.  (Refs.[33, 36, 39, 45])

��Floquet theory
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where �st and �ex denote the start and exit angle of 
the jth tooth, respectively. It is worth noting that there 
a re  �st = arccos(2a∕D − 1) ,  �ex = �  and  �st = 0  , 
�ex = arccos(1 − 2a∕D) in the down milling and the up mill-
ing, respectively. a is the radial depth of cut, and D is the 
diameter of the milling tool.

Two new matr ices  𝐩(t) = 𝐌�̇�(t) + 𝐂𝐪(t)∕2 and 

�(t) =

[
�(t)

�(t)

]
 are introduced to rewritten Eq. (1). By substi-

tuting U(t) and p(t) into Eq. (1), the DDE can be transformed 
into the state space form, i.e.,

where � =

[
−�−1�∕2 �−1

��−1�∕4 −� −��−1∕2

]
, �(t) =

[
� �

�(t) �

]
.

It can be clearly seen from Eq. (6) that matrix A is a constant 
coefficient matrix only related to the modal parameters. It char-
acterizes the time-invariant property of the milling system. B(t) 
is the periodic coefficient matrix related to the dynamic milling 
force. It meets the condition of B(t) = B(t + T).

3  Solution method

In order to successfully obtain q(t) in Eq. (1), it is crucial to 
effectively convert the continuous state equation of Eq. (6) 
into a discrete form. The end time of the previous tooth pass-
ing period is defined as the start time of the current tooth 

(6)�̇(t) = ��(t) + ap�(t)[�(t) − �(t − T)]

passing period, and it is denoted as t0. The time interval from 
t0 to the start time t1 of the cutter tooth is denoted as tf in 
which the cutter tooth is of free vibration. Again, a second 
time interval from t1 to the exit time tm+1 of the cutter tooth 
is implied as T − tf in which the cutter tooth is in the forced 
vibration state. Therefore, the tooth passing period T con-
sists of the non-cutting time interval tf and the cutting time 
interval T − tf.

Now the forced vibration time interval T − tf is uniformly 
divided into m small time intervals. Obviously, the range 
of each interval is τ = (T − tf)/m, as shown in Fig. 3. Thus, 
the continuous time t in the tooth passing period T can be 
expressed as the following discrete time nodes:

Similar to the second kind of the Volterra integral equa-
tion, if the term of ap�(t)[�(t) − �(t − T)] in state equa-
tion Eq. (6) is considered as the inhomogeneous term of 
the homogeneous equation �̇(t) = ��(t) , then Eq. (6) can 
be written as

It is known from the Eq. (7) that, when t is on the closed 
interval from ti to ti+1, the following expression can be fur-
ther obtained as

(7)ti = t0 + tf + (i − 1)� i = 1, 2,⋯ ,m,m + 1

(8)

�(t) = e�(t−t0)�(t0) + ap ∫
t

t0

{
e�(t−s)�(s)[�(s) − �(s − T)]

}
ds

Fig. 2  Two-DOF milling 
dynamics model
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with �[s,�(s)] = e�(t−s)�(s)[�(s) − �(s − T)].
When the tool is not cutting, that is, t is within the time 

range tf, there is B(s) = 0. Thus, Eq. (8) degenerates into

However, when the tooth is in cutting, i.e., t belongs in 
the time range T − tf, Eq. (8) obviously needs to be solved 

by the more sophisticated methods. Accordingly, a series 
of semi-analytical solution methods are created by using a 
linear multi-step “predictor–corrector” formula.

3.1  ABM‑PCM linear multi‑step method

According to the linear multi-step method, a fourth-order 
Adams-Bashforth-Moulton “predictor-corrector” formula 
(i.e., ABM-PCM) is proposed as the following expression:

Equation (11) is the Adams-Bashforth formula which is a 
four-step fourth-order explicit formula. If the error produced 
by replacing the differential equation with the difference equa-
tion is defined as the local truncation error, the local truncation 

(9)�(t) = e�(t−ti)�(ti) + ap ∫
t

ti

�[s,�(s)]ds

(10)�(t) = e�(t−t0)�(t0)

(11)

�P(ti+4) = e���(ti+3) +
ap�

24
(55�[ti+3,�(ti+3)] − 59�[ti+2,�(ti+2)]

+ 37�[ti+1,�(ti+1)] − 9�[ti,�(ti)])

(12)

�(ti+4) = e���(ti+3)+
ap�

24
(9�[ti+4,�

P(ti+4)] + 19�[ti+3,�(ti+3)]

− 5�[ti+2,�(ti+2)] +�[ti,�(ti)])

error of Eq. (11) is RAB = 251∕720�5�(5)(t) + O(�6) . There-
fore, Eq. (11) has the fourth-order algebraic precision. Equa-
tion (12) is a three-step fourth-order implicit Adams-Moulton 
formula. Because the local truncation error of Eq. (12) is 
RAM = −19∕720�5�(5)(t) + O(�6) , its algebraic precision is 
also fourth-order.

The next step is to iteratively solve Eq. (9) by, respectively, 
using Eq. (11) as a predictor and Eq. (12) as a corrector. In 
principle, Eq. (9) can be further expressed on the closed inter-
val [ti+4,tm+1] as

In order to simplify the representation of Eqs. (13) and (14), 
denote Ui, Ui−T, Bi, Bi−T to be U(ti), U(ti − T), B(ti), B(ti − T). 
Thus, the combination of Eq. (13) with Eq. (14) can be depended 
on to obtain the following “predictor-corrector” formula as

where �i = −
27ap��i+4

8
ape

4�� , �i+1 = (� +
111ap��i+4

8
)ape

3��

,   �i+2 = (−5� −
177ap��i+4

8
)ape

2��  , 
�i+3 = (19�+

165ap��i+4

8
)ape

�� , I is the unit matrix.
By separating into the delay term and the state term, 

Eq. (15) can further be rewritten as

(13)�P
i+4

= e���i+3 +
ap�

24
(55e���i+3(�i+3 − �i+3−T ) − 59e2���i+2(�i+2 − �i+2−T )

+ 37e3���i+1(�i+1 − �i+1−T ) − 9e4���i(�i − �i−T ))

(14)

�
i+4

= e���i+3 +
ap�

24
(9�i+4(�

P
i+4

− �i+4−T ) + 19e���i+3(�i+3 − �i+3−T )

−5e2���i+2(�i+2 − �i+2−T ) + e3���i+1(�i+1 − �i+1−T ))

(15)

�i+4 = e���i+3 +
�

24
(9ape

���i+4�i+3 − 9ap�i+4�i+4−T

+�i+3�i+3(�i+3 − �i+3−T ) +�i+2�i+2(�i+2 − �i+2−T )

+�i+1�i+1(�i+1 − �i+1−T ) +�i�i(�i − �i−T ))

(16)

�i+4−T�i+4−T + �i+3−T�i+3−T + �i+2−T�i+2−T + �i+1−T�i+1−T + �i−T�i−T

= �i+4�i+4 + �i+3�i+3 + �i+2�i+2 + �i+1�i+1 + �i�i

Fig. 3  Schematic diagram of 
periodic dispersion
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where �i =
�

24
�i�i , �i+1 =

�

24
�i+1�i+1 , �i+2 =

�

24
�i+2�i+2, 

 �i+3 = e�� +
9ap�

24
�i+4e

�� +
�

24
�i+3�i+3 , �i+4 = −� , �i−T = 

�

24
�i�i , �i+1−T =

�

24
�i+1�i+1 , �i+2−T =

�

24
�i+2�i+2 , �i+3−T =

�

24
�i+3�i+3 , �i+4−T =

9ap�

24
�i+4.

It is worth noting that the ABM-PCM is a linear four-step 
method. Only there are not less than five discrete time notes, 
can it be applied. Therefore, the condition of m ≥ 4 can use 
the ABM-PCM, whereas the condition of m < 4 should apply 
other methods including Runge-Kutta method, trapezoidal for-

mula, Simpson linear two-step method, Adams linear two-step 
method, Newton-Cotes numerical integration, and so forth. 
The detail discussion is carried out as follows.

First of all, at the time of t1 = t0 + tf, the relationship between 
the initial value U1 of the state item and Um+1−T can be easily 
obtained

When m = 1, the value of U2 can be implicitly expressed by 
a Trapezoidal formula, that is

Similar to Eq. (16), Eq. (18) can be clarified as follows 
according to the delay term and state term:

w h e r e  �2

1
= −(e�� +

ap�

2
e���1)  ,  �2

2
= (� −

ap�

2
�2)  , 

�2

1−T
= −

ap�

2
e���1 , �2

2−T
= −

ap�

2
�2.

When m = 2, since the Simpson method, which is a two-step 
fourth-order method, has the highest algebraic accuracy in the 
linear two-step method, the value of U3 is implicitly expressed 
using the Simpson method:

(17)�1 = �(t + tf ) = e�tf�0 = e�tf�m+1−T

(18)
�2 = e���1 +

ap�

2

[
e���1

(
�1 − �1−T

)
+ �2

(
�2 − �2−T

)]

(19)�2

2−T
�2−T + �2

1−T
�1−T = �2

2
�2 + �2

1
�1

(20)
�3 = e2���1 +

ap�

3

[
e2���1(�1 − �1−T ) +4e

���2(�2 − �2−T ) + �3(�3 − �3−T )
]

Likewise, by separating the time-delay term from the state 
term, Eq. (20) can further be simplified as

w h e r e  �3

1
= −(e�2� +

ap�

3
e2���1)  ,  �3

2
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4ap�

3
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 �3
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3
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3
e2���1 , �3

2−T
= −

4ap�

3
e���2 , 

�3

3−T
= −

ap�

3
�3.

When m = 3, a similar operation is carried out to obtain the 
following formula according to the Newton integral formula

where  �4

1
= −(e3�� +

3ap�

8
e3���1) ,  �4

2
= −

9ap�

8
e2���2  , 

�4

3
= −

9ap�

8
e���3,�4

4
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8
�4) , �4
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8
e3���1 , 

�4
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9ap�

8
e2���2 , �4

3−T
= −

9ap�

8
e���3 , �4

4−T
= −

3ap�

8
�4.

By combining Eq. (22) with Eqs. (16), (17), (19) and 
(21), the discrete map of the delay term to the state term can 
be deduced as

with

(21)
�3

3−T
�3−T + �3

2−T
�2−T + �3

1−T
�1−T = �3

3
�3 + �3

2
�2 + �3

1
�1

(22)�4

4−T
�4−T + �4

3−T
�3−T + �4

2−T
�2−T + �4

1−T
�1−T = �4

4
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3
�3 + �4

2
�2 + �4

1
�1

(23)�

⎡
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�1

�2

⋮
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⎤⎥⎥⎥⎥⎥⎦
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(25)�=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

� � � � � ⋯ � � � � � e�tf

�2

1−T
�3

2−T
� � � ⋯ � � � � � �

�3

1−T
�3

2−T
�3

3−T
� � ⋯ � � � � � �

�4

1−T
�4

2−T
�4

3−T
�4

4−T
� ⋯ � � � � � �

�1−T �2−T �3−T �4−T �5−T ⋯ � � � � � �

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
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Therefore, the state transition matrix in one milling 
period can be expressed as

It is known from the Floquet theory, the system stabil-
ity can be judged according to the spectral radius �(�) of  
the state transition matrix Ψ. If 𝜌(�) < 1 , the system is of 
stability. If 𝜌(�) > 1 , the system is in an unstable state. But 
if �(�) = 1 , the system is in the limit stability.

Consequently, if the spectral radio of the state transition 
matrix corresponding to every point on the “spindle speed-
depth of cut” plane is calculated, obtain the limit stability 
boundary of the milling system can be obtained.

3.2  AS‑PCM/AH‑PCM linear multi‑step method

If the Adams-Moulton formula expressed by Eq.  (12) is 
replaced by the Simpson formula or Hamming formula in the 
linear multi-step methods, this solution method is called the 

Adams-Simpson predictor-corrector method (AS-PCM) or 
the Adams-Hamming predictor-corrector method (AH-PCM). 
The local truncation errors of the two-step Simpson formula is 
RS = −1∕90�5�(5)(t) + O(�6) , whereas that of the three-step 
Hamming formula is RH = −1∕40�5�(5)(t) + O(�6) . Both of 
them have fourth-order algebraic precision.

Thus, Eq. (12) can be rewritten as follows according to 
the two-step fourth-order Simpson formula:

(26)� = �−1�

By analogy, if Eq. (11) is taken as the predictor whereas 
Eq. (27) is taken as the corrector, the following “predic-
tor-corrector” formula can be obtained as

where  �i,AS = −
1

8
(ap�)

2�i+4e
4���i  ,  �i+1,AS =

37

72
(ap�)

2

�i+4e
3���i+1 , �i+2,AS =

1

3
ap�(e

2�� −
59

24
ap��i+4e

2��)�i+2  , 
�i+3,AS =

1

3
ap�(

55

24
ap��i+4e

�� + 4e��)�i+3.
By separating the time-delay term from the state term, 

Eq. (28) can be clearly reorganized as

where �i−T ,AS = �i,AS  ,  �i+1−T ,AS = �i+1,AS  ,  �i+2−T ,AS =

�i+2,AS , �i+3−T ,AS = �i+3,AS, �i+4−T ,AS =
1

3
ap��i+4 , �i,AS = 

�i,AS , �i+1,AS = �i+1,AS , �i+2,AS = e2��+�i+2,AS , �i+3,AS =

1

3
ap��i+4e

��
+�i+3,AS , �i+4,AS = −�.

By unifying Eq. (29) with Eqs. (16), (17), (19) and (21), 
the matrix ΓAS and ΛAS can be constructed to judge the sys-
tem stability.

(27)
�(ti+4) = e2���(ti+2)+

ap�

3
(�[ti+4,�

P(ti+4)]
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Also, Eq. (12) can be rewritten into the following equa-
tion in light of the three-step fourth-order Hamming formula

If Eq. (11) is still used as the predictor but Eq. (32) is 
chosen as the corrector, the “predictor-corrector” formula 
of Adams-Hamming can be obtained as

where �i,AH = −
27

192
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2e4���i+4�i , �i+1,AH =
111

192
(ap�)

2e3��

�i+4�i+1 ,�i+2,AH = −
177

192
(ap�)

2e2���i+4�i+2 −
3

8
ap�e

2���i+2  , 
�i+3,AH =

3

4
ap�e

���i+3 +
165

192
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By putting Eq. (33) in order according to the delay term 
and the state term, its clearer form can be achieved as

where �i−T ,AH = �i,AH  , �i+1−T ,AH = �i+1,AH  , �i+2−T ,AH =
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As a result, the combination of Eq. (34) with Eqs. (16), 

(17), (19), and (21) can construct the matrix ΓAH and ΛAH in 
order that the system stability is analyzed.
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4  Numerical verification and analysis

Here, two typical examples are chosen to demonstrate the 
calculation accuracy and efficiency of the proposed PCM.

4.1  One‑DOF model

Suppose the milling system shown in Fig. 2 has a unique 
one-DOF along the feed direction. The modal parameters 
and cutting force coefficients are taken from the Insperger 
et al. [22, 24], as shown in Table 1. Furthermore, the milling 
system applies a milling tool with two teeth to down mill-
ing the workpiece. Obviously, the milling system belongs 
one-DOF milling model along the feed direction with the 
expression [20–23, 47] of

where ζ is the damping ratio of the tool, ωn is the natural 
angular frequency of the tool, ap is the axial depth of cut, 
and mt is the modal mass of the tool.

Let 𝐩(t) = 𝐌�̇�(t) +
𝐂

2
𝐪(t) and �(t) =

[
�(t)

�(t)

]
 with M = [mt], 

C = [2mtζωn] and q(t) = [x(t)]. When the state space transfor-
mation is performed on Eq. (37), it can ultimately be expressed 
as the same as Eq. (6), that is

where

(37)
mtẍ(t) + 2mt𝜁𝜔nẋ(t) + mt𝜔

2

n
x(t) = −aphxx(t)[x(t) − x(t − T)]

(38)�̇(t) = ��(t) + �(t)[�(t) − �(t − T)]

1941The International Journal of Advanced Manufacturing Technology (2022) 122:1933–1955



1 3

4.1.1  Calculation accuracy

It is known from the Refs. [22, 24] that the local truncation 
errors of the 1st-SDM and the 2nd-FDM are Ο(τ3). From 
the point of view of mathematical approximation, they have 
second-order algebraic precision. Likewise, the local trun-
cation error of the PCM can easily be obtained as Ο(τ5). In 
other words, the PCM has fourth-order algebraic precision. 
In order to illustrate the computational performance of these 
methods, a further comparison can be on their convergence 
rate curve.

Firstly, in order to avoid interrupted cutting, the radial 
immersion ratio a/D is determined to be 1. Four sets of mill-
ing parameters are considered as listed in Table 2. Secondly, 
when the discrete number is selected as m = 800, the 1st-
SDM is used to calculate the state transition matrix Ψ for 
every group of milling parameters listed in Table 2. Finally, 
the modulus ||�0

|| of the critical eigenvalue corresponding 
to the state transition matrix can be taken as the theoretical 
value of every group of milling parameters. The convergence 
rate coordinate system is established by, respectively, taking 
the discrete number m and the difference |�| − ||�0

|| between 
the modulus of the critical eigenvalue and the exact value as 
the horizontal and vertical coordinate axis. Here |�| − ||�0

|| 
is defined as the local discrete error which is caused by the 
discrete number m.

Thus, the convergence rate curve can be obtained by the 
1st-SDM, 2nd-FDM, AS-PCM, ABM-PCM, and AH-PCM 
under four groups of milling parameters, as shown in Fig. 4. 
It is worth mentioning that the “spindle speed-depth of cut” 

(39)� =

[
−��n 1

/
mt

mt(��n)
2 − mt�

2
n
−��n

]

(40)�(t) =

[
0 0

−aphxx(t) 0

]

plane constructed by every group of milling parameters is 
uniformly divided into 200 × 200 meshes. All calculations 
were programmed in MATLAB 9.11, and they are run on 
the same personal computer [Intel(R) Core™ i7-10,700 CPU 
@ 2.90 GHz 8 GB].

It can be obviously seen that with the increase of m, 
the local discrete errors gradually approach 0, but the 
convergence speeds of the proposed PCMs including 
AS-PCM, ABM-PCM, and AH-PCM are greatly faster 
than 1st-SDM and 2nd-FDM. Under the arbitrary dis-
crete number m, the solution accuracies of the proposed 
PCMs are higher than 1st-SDM and 2nd-FDM. That is 
to say, under the same conditions, the SLDs obtained by 
the proposed PCMs are closer to the theoretical value 
than the SLD obtained by the 1st-SDM and 2nd-FDM. 
In addition, it can be seen from this example, the PCMs 
have basically tended to be numerically stable when m 
equals 50, which is significantly better than 1st-SDM 
and 2nd-FDM.

4.1.2  Calculation efficiency

Here, the radial immersion ratio a/D is respectively consid-
ered as 0.05, 0.5, and 1. Other milling conditions remain 
unchanged. In the computing process, the periodic discrete 
number is selected as m = 40. Moreover, the “spindle speed-
depth of cut” plane still meshed 200 × 200 grids. Thus, 
the calculation results with various methods are shown in 
Table 3. Figure 5 illustrates the corresponding calculation 
times. The results show that in order to obtain higher cal-
culation accuracy, the computational times of the PCMs 
are greatly less than 1st-SDM and 2nd-FDM. The PCMs 
are about 76% and 48% less than 1st-SDM and 2nd-FDM, 
respectively.

The reasons for the significant improvement in the com-
putational efficiency of the PCMs mainly include the follow-
ing two aspects.  On the one hand, the exponential state tran-
sition matrix of the SDM depends not only on the spindle  
speed but also on the depth of cut. Thus, the calculation 
is done at every value of m and every grid of the “spindle 
speed-depth of cut” plane. That is to say, the SDM need to 
calculate 200 × 200 × 40 matrix indices and 200 × 200 × 40 
state transition matrices. A large amount of computation 
would be very time-consuming. However, FDM and PCMs 
only depend on the spindle speed, so they merely need to 
calculate 200 matrix indices. On the other hand, the con-
struction number of the state transition matrix of FDM in 
the computing process is related to the discrete number m, 
whereas that of the PCMs have nothing to do with the dis-
crete number m. Obviously, the FDM need to calculate 200 
matrix indices and 200 × 200 × 40 state transition matrices, 
whereas the PCMs need calculate 200 matrix indices and 
200 × 200 state transition matrices. As above stated, the 

Table 1  Calculation parameters

ζ fn (Hz) mt (kg) Kt (N/m2) Kr(N/m2)

0.011 922 0.03993 6 ×  108 2 ×  108

Table 2  Milling parameters

No. Spindle speed Ω 
(rpm)

Axial depth of cut ap 
(mm)

Stability

1 7000 0.5 Yes
2 7000 0.8 Yes
3 7000 1.1 Yes
4 7000 1.4 No
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PCMs improve greatly faster calculation speed than the 
SDM and FDM.

Again, when the discrete number m is creased to improve 
the calculation accuracy, the calculation time of the PCMs 
will increase approximately linearly, while those of SDM 
and FDM will increase approximately exponentially. In other 
words, the larger the periodic discrete number m is, the more 
the calculation efficiency of the PCMs will be improved than 
the 1st-SDM and the 2nd-FDM.

4.2  Two‑DOF model

The workpiece is still supposed to be in down milling pro-
cess, as shown in Fig. 2. Here, the milling system is not 
only considered to have one degree of freedom along the 
feed direction, but also another degree of freedom along 
the workpiece thickness direction. This is the so-called two-
DOF milling dynamics model whose DDE [20–23] can be 
expressed as

Fig. 4  Convergence rate comparisons of the 1st-SDM, the 2nd-FDM and the PCMs. a ap = 0.5 mm and |μ0|= 0.8892 (stable). b ap = 0.8 mm and 
|μ0|= 0.9564 (stable). c ap = 1.1 mm and |μ0|= 0.9948 (stable). d ap = 1.4 mm and |μ0|= 1.0198 (unstable)

1943The International Journal of Advanced Manufacturing Technology (2022) 122:1933–1955



1 3

Table 3  One-DOF SLDs obtained by the discrete number m = 40
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Let �(t) =
[
x(t)

y(t)

]
 , 𝐩(t) = 𝐌�̇�(t) +

𝐂

2
𝐪(t) and �(t) =

[
�(t)

�(t)

]
 

in which M and C are defined as � =

[
mt 0

0 mt

]
 and 

� =

[
2mt��n 0

0 2mt��n

]
 . Thus, Eq. (41) can be further rede-

scribed as

(41)

[
mt 0

0 mt

][
ẍ(t)

ÿ(t)

]
+

[
2mt𝜁𝜔n 0

0 2mt𝜁𝜔n

][
ẋ(t)

ẏ(t)

]
+

[
mt𝜔

2
n

0

0 mt𝜔
2
n

][
x(t)

y(t)

]

= ap

[
−hxx(t) −hxy(t)

−hyx(t) −hyy(t)

]{[
x(t)

y(t)

]
−

[
x(t − T)

y(t − T)

]}

where

(42)�̇(t) = ��(t) + �(t)[�(t) − �(t − T)]

(43)� =

⎡⎢⎢⎢⎣

−��n 0 1
�
mt 0

0 −��n 0 1
�
mt

(�2 − 1)�2
n
mt 0 −��n 0

0 (�2 − 1)�2
n
mt 0 −��n

⎤⎥⎥⎥⎦

Fig. 5  Computing time com-
parisons of the 1st-SDM, the 
2nd-FDM, and the PCMs

Fig. 6  References obtained by 
the PCMs under m = 200. a 
a/D = 0.05. b a/D = 1
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It is worth mentioning that the milling parameters in 
Eqs. (41), (42) (43) and (44) are exactly the same defini-
tions and magnitudes as the above section. Likewise, the 
calculation parameters still use the data listed in Table 1.

According to the conclusion of the convergence anal-
ysis of Sec. 4.1, it can be seen that when the value of m 
is large enough, the convergence of the PCMs is better 
than that of other methods. This implies that the simu-
lated curve obtained by the PCMs is better closer to the 
theoretical curve. Therefore, the SLD calculated by the 
PCMs under m = 200 can be thought as the reference. 
Based on the obtained SLD reference, the calculation 
performance of the PCMs can be comparably analyzed 
with that of 1st-SDM and 2nd-FDM under a small radial 
depth of cut (a/D = 0.05) and large radial depth of cut 

(44)�(t) =

⎡⎢⎢⎢⎣

0 0 0 0

0 0 0 0

−aphxx(t) −aphxy(t) 0 0

−aphyx(t) −aphyy(t) 0 0

⎤⎥⎥⎥⎦

(a/D = 1), respectively. It is worth noting that, when 
the value of m is large enough, three curves obtained, 
respectively, by the AS-PCM, ABM-PCM, and AH-PCM 
have completely coincident with each other, as shown 
in Fig. 6.

The “spindle speed-depth of cut” plane still meshed as 
200 × 200 note points. Figures 7 and 10 are the calculation 
result when m = 8. Figures 8 and 11 are corresponding 
to the calculation result under m = 25. The condition of 
m = 60 can obtain the result in Figs. 9 and 12. Accord-
ingly, under the small radial depth of cut (a/D = 0.05), 
when the periodic discrete number is selected as the 
smaller value, for example, m = 8, although five SLDs 
have already begun to converge to the reference, the con-
vergence of the AS-PCM, AH-PCM, and ABM-PCM is 
slightly better than 1st-SDM and 2nd-FDM. With the 
increase of m value, five SLDs trend gradually to the ref-
erence. When m is 25, the five curves are basically close 
to the reference, but the PCMs are closer to the reference 
than 1st-SDM and 2nd-FDM. When m is 60, the curves 

Fig. 7  Calculation result under m = 8 and a/D = 0.05. a 1st-SDM. b 2nd-FDM. c AS-PCM. d AH-PCM. e ABM-PCM
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obtained by 1st-SDM and 2nd-FDM are still slightly dif-
ferent from the reference, whereas the curves obtained 
by the AS-PCM and ABM-PCM almost agree with the 
reference completely.

Under the large radial depth of cut (a/D = 1), however, 
the convergence rates of the five methods are basically the 
same as each other when m = 8. When m increases to 25, 
especially to 60, the curves obtained by five methods have 
almost coincided with the reference.

The above analysis shows that the presented PCMs 
can well predict the milling stability no matter under the 
small radial depth of cut or the large radial depth of cut. 
By comparing with 1st-SDM and 2nd-FDM, the PCMs 
achieve not only higher calculation efficiency, but also 
better calculation accuracy under the same calculation 
conditions.

5  Stability analysis with effects of helix 
angle and multiple modes

In the actual milling process, it is often necessary to con-
sider a more complex machining environment. The con-
sideration of the tool with a helical cutting edge and effect 
of multiple modes can reflect the actual machining state 
more accurately. The milling dynamics model shown in 
Fig. 2 will be changed to the typical dynamic milling sys-
tem of multiple DOFs shown in Fig. 13 if the multi-order 
modes along the feed and wall thickness directions are 
considered. The vibration differential equations of multi-
ple DOFs system [32, 33] is written as.

where,

(45)𝐌�̈�(t) + 𝐂�̇�(t) +𝐊𝐪(t) = 𝐅

Fig. 8  Calculation result under m = 25 and a/D = 0.05. a 1st-SDM. b 2nd-FDM. c AS-PCM. d AH-PCM. e ABM-PCM
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If the effect of helix angle is considered, the cutting 
force direction coefficients hxx, hxy, hyx, hyy in Eq. (47) are 
detailedly expressed as Eq. (48) whose derivation process 
can be found in Ref. [33].

(46)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

� = diag(mx,1,mx,2,⋯ ,mx,n,my,1,my,2,⋯ ,my,n)

� = diag(2mx,1�x,1�x,1, 2mx,2�x,2�x,2,⋯ , 2mx,n�x,n�x,n

2my,1�y,1�y,1, 2my,2�y,2�y,2,⋯ , 2my,n�y,n�y,n)

� = diag(mx,1�
2

x,1
,mx,2�

2

x,2
,⋯ ,mx,n�

2
x,n
,my,1�

2

y,1
,my,2�

2

y,2
,⋯ ,my,n�

2
x,n
)

�(t) = [x1(t), x2(t),⋯ , xn(t), y1(t), y2(t),⋯ , yn(t)]
T

� = [Fx,Fx,⋯ ,Fx
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

n

,Fy,Fy,⋯ ,Fy

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
n

]T

(47)

[
Fx

Fy

]
=

[
−hxx −hxy
−hyx −hyy

][
x(t)

y(t)

]
−

[
−hxx −hxy
−hyx −hyy

][
x(t − T)

y(t − T)

]

(48)

⎧
⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

hxx(t) =

H�
l=1

N�
j=1

g(�j(t)) sin(�j(t))
�
Kt cos(�j(t)) + Kr sin(�j(t))

�
dz
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H�
l=1

N�
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g(�j(t))cos(�j(t))
�
Kt cos(�j(t)) + Kr sin(�j(t))

�
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H�
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g(�j(t)) sin(�j(t))
�
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�
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�
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�
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Fig. 9  Calculation result under m = 60 and a/D = 0.05. a 1st-SDM. b 2nd-FDM. c AS-PCM. d AH-PCM. e ABM-PCM

1948 The International Journal of Advanced Manufacturing Technology (2022) 122:1933–1955



1 3

where H is the number of layers divided by the tool along 
the axial direction and dz is the thickness of each layer of 
microelements.

Similarly, let 𝐩(t) = 𝐌�̇�(t) +
𝐂

2
𝐪(t) and �(t) =

[
�(t)

�(t)

]
 , 

Eq. (45) can be further redescribed as

where

where

(49)�̇(t) = ��(t) + �(t)[�(t) − �(t − T)]

(50)� =

[
−�−1�∕2 �−1

��−1�∕4 −� −��−1∕2

]

(51)�(t) =

[
� �

−� �

]

In addition to the derivation of the stability predic-
tion method in Sec. 3, the numerical comparison analysis 
in Sec. 4 shows that the computational performance of 
AS-PCM is the basic same as ABM-PCM and AH-PCM. 
Therefore, only the AS-PCM is applied to analyze the 
influence of the helix angle and multiple modes on mill-
ing stability.

(52)� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

hxx hxx ⋯ hxx hxy hxy ⋯ hxy
hxx hxx ⋯ hxx hxy hxy ⋯ hxy
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮

hxx hxx ⋯ hxx hxy hxy ⋯ hxy
hyx hyx ⋯ hyx hyy hyy ⋯ hyy
hyx hyx ⋯ hyx hyy hyy ⋯ hyy
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮

hyx hyx ⋯ hyx hyy hyy ⋯ hyy

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 10  Calculation result under m = 8 and a/D = 1. a 1st-SDM. b 2nd-FDM. c AS-PCM. d AH-PCM. e ABM-PCM
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5.1  Effect of helix angle

It is generally believed that the non-zero helix angle of the 
tool will cause the SLD to appear the phenomenon of period-
doubling bifurcation instability island under the small radial 
depth of cut [48]. Here, the influence of the helix angle effect 
on SLD under different radial depths of cut will be further 
revealed by using AS-PCM.

In the up milling process, the used milling tool with the 
teeth number N = 1 has a diameter of D = 12.75 mm. The cut-
ting force coefficients are Kt = 536 N/mm2 and Kr = 187 N/
mm2. Other parameters [49] are listed in Table 4. Here, six 
kinds of the radial immersion ratio a/D are considered, i.e., 
0.05, 0.1, 0.2, 0.5, 0.7, and 1. Moreover, four kinds of helix 
angle β are considered, i.e., 0°, 20°, 30°, and 45°.

If only the first mode in Table 4 is considered, the SLDs 
are obtained for different radial immersion ratios by AS-
PCM under the periodic discrete number m = 40, as shown 
in Fig. 14. For small radial depth of cut, unstable islands 
gradually appeared on the right of the first lobe with the 
increase of helix angle. With the increase of helix angle, the 
unstable island decreases gradually, while the stable region 
increases. A proper helix angle can weaken the influence 

of milling interruption on milling vibration to separate the 
stability lobe and improves the stability of milling process 
evidently. But with the increases of the radial immersion 
ratio, the effect of helix angle on the lobe diagrams decreases 
until the stability curves gradually coincide with each other 
at a/D = 0.2. If the first two modes in Table 4 are considered, 
3D SLD under the condition of β = 30° can be obtained in 
the coordinate system of spindle speed-axial depth of cut-
radial immersion ratio, as shown in Fig. 15. It is evident 
that whether only the first mode or the first two modes are 
considered, the stability region decreases gradually with the 
increase of radial immersion ratio.

5.2  Stability verification

An experiment is carried out to mill the 7075-T6 alu-
minum alloy block on a precise vertical machining center 
[33]. The down milling with half radial immersion ratio is 
adopted with the cutting parameters of Kt = 796.1 MPa and 
Kr = 168.8 MPa. The milling tool is the diameter of 8 mm, 
the teeth number of 3, and the helix angle of 45°, respec-
tively. The dominant mode is the first two orders, and the 
corresponding modal parameters are listed in Table 5.

Fig. 11  Calculation result under m = 25 and a/D = 1. a 1st-SDM. b 2nd-FDM. c AS-PCM. d AH-PCM. e ABM-PCM
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Fig. 12  Calculation result under m = 60 and a/D = 1. a 1st-SDM. b 2nd-FDM. c AS-PCM. d AH-PCM. e ABM-PCM

Fig. 13  Typical dynamic mill-
ing system of multiple DOFs
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Thus, the stability lobe can be plotted in consideration 
with the first two modes, as shown in Fig. 16. The red solid 
line is obtained by applying AS-PCM, whereas the blue 

dotted line is calculated by 4th-FDM taking from Ref. [33]. 
It can be seen that two stability lobes are basically consist-
ent with each other. Moreover, 30 sets of milling experi-
ments were done to verify the prediction accuracy of SLD. 
It is observed that the predicted stability boundaries are in 
good agreement with the experiment results except for very 
few parameter points. The misjudgment of milling states at 
these points could be caused by the measurement error or 
other random factors in the actual milling process. Accord-
ingly, the proposed method can predict the stability bound-
ary with excellent accuracy in the case of multiple mode 
milling operation.

Table 4  Modal parameters

Mode Direction Modal mass
(kg)

Modal damping
(Ns/m)

Modal stiffness 
(×  105 N/m)

1 X 0.23 15.73 8.4
Y 0.23 15.73 8.4

2 X 0.192 25.17 13.4
Y 0.192 25.17 13.4

Fig. 14  The effect of helix angle on the stability region: a a/D = 0.05; b a/D = 0.1; c a/D = 0.2; d a/D = 0.5; e a/D = 0.7; f a/D = 1
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6  Conclusions

After a mathematical skill is adopted to convert the second-
order DDE describing the dynamic milling process into the 
form of state space, the linear multi-step “predictor–corrector” 
method is for the first time suggested to conclude the state 
transition matrix. Subsequently, the Floquet theory is relied on 

to establish the judgment criterion of the milling stability. The 
proposed PCMs can greatly improve the calculation accuracy 
as well as the calculation efficiency.

In the calculating process of the state transition matrix 
for a one-DOF milling system, the results of the local 
truncation error and computational efficiency show that 
the proposed PCMs have a faster convergence speed than 
1st-SDM and 2nd-FDM at arbitrary discrete number. This 
means that the calculation result of the PCMs is closer 
to the theoretical value under the same periodic discrete 
number. In addition, the PCMs can reduce more calcula-
tion time than 1st-SDM and 2nd-FDM. When m is 40, it 
is decreased by about 76% and 48% over 1st-SDM and 
2nd-FDM, respectively. Moreover, with the increase of 
discrete number m, the calculation efficiency will be fur-
ther improved.

By calculating the SLD of a two-DOF milling model, 
the conclusions can be achieved that the PCMs can better 
predict the milling stability whether it is under a small or a 
large radial depth of cut. In the whole calculating process, 
the calculation efficiency of the PCMs is far higher than that 
of 1st-SDM and 2nd-FDM. Therefore, under the conditions 
of multiple DOFs and larger discrete number, the calcula-
tion efficiency of the PCMs will have more advantages in 
practical applications.

By considering the practical multiple mode milling 
environment, the influence of the helix angle on the stable 
region is investigated for different radial immersion ratios 
by using the AS-PCM. The results show that the effect of 
the helix angle on the stability lobe is obvious under the 
condition of a small radial depth of cut. With the gradual 
increase of the radial immersion ratio, the helix angle 
effect is also weaker and weaker. The milling experiment 

Fig. 15  3D stability lobe 
diagram considering the two 
modes with β = 30°

Table 5  Modal parameters at the tool point

Mode Natural frequency 
(Hz)

Damping ratio 
(%)

Modal mass (kg)

1 701 3.41 1.0992
2 1287 2.08 0.4077

Fig. 16  Comparison and verification for stability lobe with two order 
modes
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on multiple modes verifies the proposed PCM is of excel-
lent stability prediction accuracy.
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