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Abstract
Chatter is an uncontrollable and unattenuated vibration that results in large oscillations between the workpiece and the 
cutting tool and has a detrimental effect on the surface quality, the tool life and the health of the machine tool components. 
As a result, it is one of the key limitations that hinders the productivity and quality of the milling process and is a key bar-
rier for the autonomous operation of milling machine tools. Therefore, systems that can detect chatter, based on process-
generated signals, are of utmost importance for the formation of a closed-loop control system that can suppress chatter 
during the process. Most existing approaches lack adaptability to different machining scenarios, since they use manually 
defined thresholds for the decision-making between chatter and stable machining, while being validated in a limited set of 
machining operations, running the risk of overfitting. This work proposes a method for chatter detection based on vibration 
signals in milling. An optimized version of variational mode decomposition (VMD) is used, where its hyperparameters can 
be selected automatically online, making it fully adaptable to different machining scenarios. Through VMD, the vibration 
signals are decomposed, and the modes with chatter rich information are selected for further analysis. Features are extracted 
from these modes in the time and frequency domains and are used to train a support vector machine classifier to predict the 
stability status of the process. The proposed approach presents a high classification performance (93% accuracy) and rapid 
detection speed (26.1 ms), which makes it a promising solution for real-time implementation.

Keywords  Chatter detection · Milling · Monitoring · Artificial intelligence · Support vector machine · Variational mode 
decomposition

1  Introduction

During the design and operation of manufacturing systems, 
there are four key attributes, which should be optimized by 
engineers to maximize the performance of the manufactur-
ing system, namely time, cost, flexibility and quality [1]. 
However, since these are conflicting attributes, in the sense 
that the effort towards optimization of the one might impact 
the others negatively, the optimal compromise among those 
should always be searched for [2]. Modern machinery has 
employed the latest technological advances to deliver high-
performance processing capabilities [3]. As a result, manufac-
turing engineers should aim to optimize the operation of 

manufacturing system through research on process planning 
[4], monitoring [5] and real-time control [6]. Especially in 
the current era, where digitalization of manufacturing pro-
cesses is highly pursued [7], technologies that enable safe 
and productive autonomous operation of machinery are of 
utmost importance [8].

Regarding the milling process, one of the key limita-
tions that hinders the productivity of the process and is a 
key barrier for autonomous operation of the machine tools 
is chatter [9]. When the milling process is stable, forced 
vibrations are exhibited at the cutting tool, as a result of 
the harmonic nature of the cutting loads, which rise and 
drop down to zero as the cutting edge enters and exits the 
cut at each rotation of the tool. These vibrations are harm-
less to the process, workpiece and cutting tool and any 
local instabilities that might lead to an instantaneous dis-
turbance are suppressed by the process itself. On the other 
hand, when the system is unstable, chatter occurs. Chatter 
is a form of self-excited vibration that is introduced during 
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the machining process, due to the dynamic characteristics 
(stiffness and damping) of the machining system (machine 
tool, workpiece, cutting tool). Chatter is an uncontrollable 
and unattenuated vibration that results in large oscillations 
between the workpiece and the cutting tool and has a det-
rimental effect on the surface quality, the tool life and the 
health of the machine tool components. Moreover, chatter 
is also a regenerative phenomenon, which means that the 
marks left on the workpiece surface, due to the oscillation 
of the tool, create a varying chip load that further excites 
this uncontrollable vibration.

Chatter has been a challenge for researchers in machining 
science for over a century. Even from 1907, F. W. Taylor, 
who was a pioneer of the science of metal cutting, has stated 
that “Chatter is the most obscure and delicate of all prob-
lems facing the machinist –probably no rules or formulae 
can be devised which will accurately guide the machinist 
in taking maximum cuts and speeds possible without pro-
ducing chatter” [10]. The first part of this statement is still 
valid. Indeed, chatter is the most complex and challenging 
phenomenon that machinists, process planners and manu-
facturing engineers have to tackle during milling. However, 
there have been a number of excellent works in literature 
that have facilitated the understanding and prediction of 
the phenomenon. Tlusty and Polacek [11] and Tobias and 
Fischwick [12] have presented the first pioneering works, 
where the phenomenon of regenerative chatter has been 
analysed and the chatter behaviour of the process has been 
formulated mathematically. Later on, Altintas and Budak 
[13] have developed an analytical solution for the evaluation 
of the stability status of the machine, without the need for 
a time domain simulation. After these fundamental works, 
the research regarding chatter has been extended in several 
milling operations, such as 5-axis milling [14, 15], milling 
of flexible workpieces [16], micromilling [17] and robotic 
milling [18], among others. Combination of artificial intelli-
gence with physics-based modelling has also been proposed 
to increase the accuracy of chatter prediction [19]

Through the numerous approaches that have been pro-
posed in literature so far, it is now possible to predict the 
occurrence of chatter during the process planning stage and 
select the appropriate process parameters to ensure chatter 
free machining with a high level of accuracy. However, this 
accuracy level is highly dependent on the quality of meas-
urements of the dynamic response of the structure, which 
are often required to be repeated when components of the 
machine tool-tool holder-cutting tool system are exchanged. 
Especially when machining close to the stability limit, the 
analytical predictions can often lead to errors. Therefore, it is 
necessary to implement monitoring systems that can evalu-
ate the status of the process in real-time and provide feed-
back to control algorithms that can act upon the process, in 
order to facilitate a truly autonomous milling operation [20].

For the development of the sensing layer that will be used 
to capture the process-generated signals, the most common 
approaches include the use of accelerometers, piezoelectric 
force sensors, microphones, acoustic emission sensors or 
their combinations [21]. Additionally, use of internal sensors 
of the machine tool [22] or sensor-integrated tooling [23] 
has been proposed, in order to provide a more industrialized 
solution. Analysis of the milling signals in the frequency 
domain is one of the most effective and commonly utilized 
methods for identification of chatter, since it enables the 
separation of the portion of the signal related to the tooth 
passing frequency and its harmonics, from the portion of 
the signal related to chatter [24]. Advanced signal process-
ing methods can support this aim even for very complex 
operations, such as thin-walled milling [25]. However, this 
approach requires prior knowledge of the machine tool 
dynamic behaviour, in order to have a first estimation of the 
potential chatter frequencies that are going to be excited dur-
ing a milling operation. Such knowledge stems from com-
plex experiments, such as the impact testing of the machine 
tool [26], requiring expensive equipment and rendering this 
approach unsuitable for some use-cases.

Additionally, several features can be extracted from the 
signal, either in the time or in the frequency domain, in order 
to be used as chatter indicators. The drawback of such meth-
ods is that new thresholds for chatter occurrence might need 
to be set among different milling operations, thus reducing 
their adaptability [27]. Instead, artificial intelligence (AI) 
can be employed as a tool to build a chatter detection sys-
tem, as it can automate the process of evaluating the chatter 
status, through the use of a series of chatter indicators, based 
on a training dataset [28]. The main drawback of AI-based 
approaches is that their performance is heavily dictated by 
the nature of the dataset that is used during the training pro-
cess. In processes such as milling, where a diverse set of 
materials, machine tools, cutting tools etc. is used, AI-based 
approaches might be overfitted for a specific milling appli-
cation, leading to a need for retraining, in order to transfer 
them to another machine tool, workpiece material etc. [29].

Since chatter is a phenomenon of high interest in machin-
ing science, there have been a wide range of publications in 
available literature that investigate the detection of chatter 
from process-generated signals. Several different approaches 
have been utilized to identify the presence of chatter, ranging 
from model-based to purely statistical, and an amplitude of 
sensing elements have been integrated in machine tools to 
provide the required data sources. Since the phenomenon 
of chatter exhibits itself both on the time-domain evolution 
of the signal, as well as the frequency domain, where the 
signal energy is shifted from the tooth passing frequency and 
its harmonics towards the chatter frequencies, the respec-
tive analyses have been performed in the time, frequency or 
time–frequency domains [21]. Recently, a lot of effort has 
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been put by researchers to employ advanced signal process-
ing algorithms, in order to decouple the part of the signal 
that is related to chatter from the part that is related to the 
forced vibrations due to the cutting action, while artificial 
intelligence has been widely employed to evaluate the stabil-
ity of the process.

Liu et al. [30] have utilized a piezoelectric dynamom-
eter to measure the cutting force signals. The signals were 
decomposed with variational mode decomposition (VMD), 
and the evolution of the energy entropy on the modes close 
to the chatter frequencies were investigated. Based on the 
energy transfer from the forced vibration modes to the chat-
ter modes, they were able to identify stable and chatter-
related signals. In another work, Liu et al. [31] have also 
investigated using VMD to decompose the signal and mul-
tiscale permutation entropy as a chatter indicator. However, 
further work on improving the computational efficiency of 
their approach and validating it in real milling scenarios was 
required. Yang et al. [32] have also used an optimized VMD 
on force signals to evaluate the process stability, by examin-
ing the evolution of approximate entropy and sample entropy 
on the decomposed modes and identify chatter at its onset. 
VMD was also coupled with wavelet packet decomposition 
by Zhang et al. [33], and the energy entropy of the signals 
was used as an indicator of the existence of chatter. Although 
the method was able to identify chatter effectively, its per-
formance was heavily relying on the selection of VMD and 
WPD parameters that requires significant experience from 
the user. In an effort to remove the signal component that is 
related to the tooth passing frequency and its harmonics, Li 
et al. [34] have used angular synchronous averaging (ASA). 
Then, they calculated the multiscale permutation entropy 
(MPE) and the multiscale power spectral entropy (MPSE) 
of the residual signal and fed these values to a gradient tree 
boosting classifier. Their approach has been implemented 
online with a high accuracy level.

Apart from cutting force signals, chatter detection 
approaches from vibration measurements have also been 
widely reported in the available literature. Perez-Canales 
et al. [35] have analysed the randomness index of the 
approximate entropy of vibration signals during machin-
ing, in order to set the threshold upon which chatter 
occurred. A very popular decomposition algorithm that 
has been very often utilized by researchers is ensemble 
empirical mode decomposition (EEMD). Chen et al. [36] 
have decomposed the vibration signals measured during 
the process with EEMD and used a wide range of statis-
tical features, calculated from the decomposed modes, 
to train a support vector machine (SVM) classifier that 
was able to detect the existence of chatter. EEMD was 
also used by Ji et al. [37], who have removed the portion 
of the signal related to the forced vibration due to the 
cutting action and reconstructed the residual signal. The 

residual signal was then divided in segments and fractal 
dimensions and power spectral entropy (PSE) were used 
as metrics for chatter presence. Fu et al. [38] used EEMD 
and identified the chatter-related modes through their 
principal energy, while a Gaussian mixture model (GMM) 
was used to classify the process between stable and unsta-
ble. Cao et al. [39] used EEMD to decompose vibration 
signals and applied the C0 complexity and power spectral 
entropy of the chatter-related modes as chatter indica-
tors. Other decomposition techniques have been applied 
in vibration signals as well. Cao et al. [40] have used 
wavelet packet transformation to extract the information 
of the vibration signal that was related to chatter and then 
reconstructed the selected, chatter-rich wavelet packets. 
Hilbert-Huang transform (HTT) was applied on the recon-
structed signal, and the mean value and standard devia-
tion of the Hilbert-Huang spectrum were used as chatter 
indicators. Vibration signals were also evaluated without 
decomposition. An interesting approach was proposed by 
Chen et al. [41]. They have calculated the spectrograms of 
the vibration signals and processed them as image data. 
Then, by calculating image-related features, they were 
able to identify chatter presence, through a support vector 
machine classifier.

Often, a single sensor approach cannot provide an ade-
quate accuracy level for a given application, so researchers 
have proposed sensor fusion approaches, regarding the data 
source. Kuljanic et al. [42] have combined cutting force and 
vibration signals in their analysis and decomposed them 
with wavelet decomposition. They have calculated statis-
tical features (mean, standard deviation, skewness) of the 
signals and trained a neural network to evaluate the process 
stability. Fusion of cutting force and vibration signals was 
also proposed by Sun et al. [43], who developed an online 
chatter detection and control system. Improved local mean 
decomposition was used to decompose the signal and pre-
serve only the chatter-rich information, while features that 
were sensitive to chatter were calculated. Then, a Hidden-
Markov model was trained to effectively capture chatter 
evolution on-line.

Besides the aforementioned approaches, other non- 
conventional sensing layers were proposed.  Aslan and Altin-
tas [22] have measured the current that was drawn from the  
spindle motor. Using a comb filter to remove the signal com-
ponents related to the tooth passing frequency and apply-
ing the direct Fourier transform on the residual signal, they 
were able to evaluate chatter presence from its magnitude, 
through a pre-defined threshold. Cao et al. [44] have set up a 
monitoring system based on a microphone that recorded the 
sound produced during the process. Through synchrosqueez-
ing transform of the signals, they were able to remove the 
portion related to the tooth passing frequency and its har-
monics. By conducting singular value decomposition on the 
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time–frequency domain representation of the residual sig-
nals and setting up a threshold-based algorithm they were 
able to detect the presence of chatter.

Existing approaches in the available literature have inves-
tigated the use of advanced signal processing algorithms and 
several features as potential chatter indicators. However, most 
approaches lack adaptability to different machining scenar-
ios, since they use manual thresholds for the decision-making 
between chatter and stable machining, while being validated 
in a limited set of machining operations, running the risk 
of overfitting. This issue significantly limits their industrial 
practicality and their potential to be utilized in real industrial 
scenarios. To this end, this work presents the development of 
a chatter detection algorithm, based on signals from a vibra-
tion sensor and decomposition of the signal with variational 
mode decomposition (VMD). In order to enable VMD to be 
used in different kinds of milling scenarios (machines, cut-
ting tools and milling operations), a novel, adaptive version 
of VMD is proposed for online automated selection of its 
hyperparameters. Through the selection of the signal features 
that hold chatter-rich information and have potential to be 
used as chatter indicators, artificial intelligence is utilize to 
handle the process of decision-making between chatter and 
stable machining, thus eliminating the need to set manual 
thresholds, which is the most common practice in literature. 
Specifically, a support vector machine (SVM) classifier is 
utilized for the evaluation of the stability of the process. To 
prove the adaptability of the proposed approach, a diverse set 
of experiments is conducted, using different stock materials, 
cutting tools, monitoring setups and process parameters.

The paper is organized as follows. First of all, the meth-
odology that was followed for the development of the chatter 
detection algorithm is analysed. Moreover, the case study 
and the experimental campaign that was employed to train, 
test and validate the algorithm are presented, as well as the 

results that have been achieved. Finally, the concluding 
remarks and the potential for future work are outlined.

2 � Materials and methods

2.1 � Variational mode decomposition

Variational mode decomposition (VMD) has been proposed 
by Dragomiretskiy and Zosso in 2014, as an algorithm for 
the decomposition of a signal into its principal modes [45]. 

VMD aims to decompose the real-valued input signal into 
a discrete number of sub-signals (modes), which are com-
pacted around a centre frequency and have specific sparsity 
properties with the aim to reproduce the signal through their 
superimposition. The sparsity prior of each mode is its band-
width in the spectral domain.

In order to assess the bandwidth of each mode ( uk) , the 
algorithm of VMD starts with computing the associated ana-
lytic signal through the Hilbert transform, in order to obtain 
a unilateral frequency spectrum. The frequency spectrum of 
each mode is shifted by mixing it with an exponential tuned 
to the respective estimated centre frequency. The bandwidth 
of each mode can be estimated through the H1 Gaussian 
smoothness of the demodulated signal.

The decomposition of the original signal ( s(t) ) into a set 
of K modes becomes a constrained variational optimization 
problem as follows:

where {uk} ∶=
{
u1,… , uK

}
 and {�k} ∶=

{
�1,… ,�K

}
 are 

the sets of all modes and their centre frequencies, respec-
tively, while � represents the Dirac distribution and ∗ denotes 
convolution.

In order to address the constraint of accurate recon-
struction, VMD introduces the quadratic penalty term, 
called alpha (α), and the Lagrangian multipliers, λ, thus 
rendering the problem unconstrained. The quadratic pen-
alty term encourages reconstruction fidelity, typically in 
the presence of noise, and the Lagrangian multipliers are 
a common way of enforcing constraints strictly. Then, the 
constrained problem presented in Eq. (1) can be formu-
lated as follows.

The solution of this optimization problem as it regards can 
be achieved through a sequence of iterative sub-optimizations 
called alternate direction method of multipliers (ADMM) and 
the formulation of each mode is the following.

where the ^ superscript indicates the Fourier transform of 
the signal. Similarly, the optimization of each centre fre-
quency can be solved as follows.
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The algorithm uses two key hyperparameters, which 
are the number of modes that the signal should be decom-
posed into (K) and the quadratic penalty term (α). Indeed, 
these two key parameters have a tremendous impact on 
the quality of decomposition. Wrong choice of these 
parameters can lead to several issues (mode mixing, 
information loss during decomposition, mode duplica-
tion etc.), as it has been explained in detail by the devel-
opers of the algorithm [45], as well as other researchers 
that have employed VMD for various applications [46, 
47]. This means that the two hyperparameters should be 
known before hand, in order to achieve proper decomposi-
tion of the signal.

However, in the case of machining processes, knowl-
edge of the correct values that should be selected, espe-
cially as it regards the number of modes, requires a lot of  
experimental testing (e.g. identification of the structural 
modes of the machine tool-workpiece-cutting tool system) 
and simulation of the process [48]. This hinders tremen-
dously the adaptability and robustness of VMD for the  
decomposition of machining signals. Hence, it is neces-
sary to develop a methodology that can determine the 
optimal values for K and α, during the real-time operation 
of the machine.

As mentioned previously, there are three key problems 
that arise when wrong hyperparameter values are selected, 
namely loss of information from the signal, mode mixing 
and mode duplication. So, in this work, two metrics are uti-
lized to assess the decomposition quality, thus creating an 
adaptive VMD algorithm that can calibrate itself as soon 
as the milling process starts. The first metric considers the 
aspect of information loss during decomposition, and it is 
the root mean square error (RMSE). The signal (s) is recon-
structed after decomposition, through the superimposition of 
the decomposed modes and the RMSE between the original 
and reconstructed signal is calculated.

The next aspects to be addressed are mode mixing, 
where a mode (uk) is shared by its two neighbouring 
modes, and mode duplication, where two modes are gen-
erated around the same centre frequency. In both cases, the 
neighbouring modes will have some correlation. In order 
to examine the existence of such a correlation, the Pearson 
correlation coefficient (r) is calculated for every pair of 
neighbouring modes, where the − superscript, indicates the 
mean value of a mode.

(4)�
n+1
k

=
∫ ∞

0
�||ûk(�)||

2
d�

∫ ∞

0
||ûk(�)||

2
d�
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N
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2

Then, the following synthetic index is used to quantify 
the decomposition quality for each pair of K and α, which 
should be minimized for optimal decomposition.

2.2 � Feature extraction

The extraction of features from the signal that withholds 
chatter-related information can increase the prediction per-
formance of the algorithm and reduce the computational 
time, since few numerical values are evaluated instead of the 
whole signal. As a first step for the analysis of the vibration 
signals that are generated from the process, it is necessary to 
identify the mode that is related to the existence of chatter. 
Extracting chatter-related features from each and every mode 
would increase computational time and undermine the value 
that is provided by the decomposition process.

The metric that is used to identify the mode that is highly 
related to chatter is the kurtosis. Kurtosis is the fourth sta-
tistical moment of a signal and describes the “tailedness” of 
its probability distribution. The magnitude of the kurtosis is 
related to the magnitude of excess or outlier values existing in 
a signal. Moreover, the kurtosis is a metric of the transient phe-
nomena existing in a signal. For example, a negative kurtosis 
indicates that a signal is stationary, whereas a pure sine wave 
has a kurtosis of 1.5. Figure 1 shows the evolution of the value 
of kurtosis of the vibration signal of the x-axis during stable 
machining and machining with chatter. Window sampling is 
performed on the signal, with a window length of 500 sam-
ples, and the kurtosis is calculated for each window. We can 
observe that for stable machining the kurtosis remains nega-
tive, whereas when chatter occurs, the kurtosis becomes posi-
tive, and its magnitude is following the magnitude of chatter.

After the best mode is selected, based on the kurtosis crite-
rion, the rest of the features that will be used to feed the chatter 
detection algorithm can be selected. Apart from kurtosis, two 
other features will be calculated. The other statistical feature 
that will be considered is the standard deviation of the signal, 
since it can describe the sparsity of the data points that are 
sampled. When chatter occurs, standard deviation will increase 
due to the irregularity of the vibrations of the system [49].

The final feature that is considered is based on the analysis 
of the signal on the frequency domain. As mentioned previ-
ously, during stable machining, the energy of the signal is con-
centrated around the tooth passing frequency and its harmon-
ics. On the other hand, during chatter occurrence, the energy of 
the chatter frequency rises. This is also a feature of the signal 
that can be utilized as a piece of information regarding the 
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existence of chatter. To this end, a new feature is developed, 
namely the energy ratio. The energy ratio is the ratio between 
the energy of the chatter-related mode, which is selected based 
on the kurtosis criterion, and the energy of the whole signal 
and is formulated as follows.

The energy (E) of a continuous signal s(t) is calculated as 
follows:

and for a discrete signal with n samples (sampled in the time 
domain):

Then, the energy ratio of the k-th mode will be:

where E is the energy of the whole signal.
Those features are calculated from the decomposed vibra-

tion signals of both the x-axis and y-axis, leading to a total of 

(8)Econtinuous = ∫
∞

−∞

|s(t)|2dt

(9)Ediscrete =

n∑

i=1

|si|2

(10)Energy Ratio =
Ek

E

six features that will be used as an input for the classification 
algorithm.

2.3 � Support vector machines

Support vector machines (SVM) are very popular classifica-
tion algorithms and have been chosen in this work to per-
form the chatter detection, based on the features calculated 
from the decomposed signals. The main working principle 
of the SVM algorithm is that it tries to construct a hyper-
plane that separates the classes of the training dataset with 
the maximum margin. The hyperplane has a dimension of 
n-1, where n is the dimension of the dataset, i.e. the number 
of input features. Figure 2 outlines the way that different 
hyperplanes can be constructed with the aim to minimize 
the margin between the two classes.

The three key parameters that should be optimized dur-
ing the design of a classifier based on SVM are the kernel 
function, the magnitude of slack variable (C) and the param-
eter gamma (γ). The kernel function is used to manipulate 
the data points and explore their relationships in higher 
dimensions, in order to construct the hyperplane (Fig. 3). 
Hence, kernel functions provide the possibility for the SVM 

Fig. 2   Possibility of different 
hyperplanes for separation of 
the dataset

Fig. 1   Evolution of kurtosis of 
the vibration signal for stable 
machining (left) and machining 
with chatter (right)
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algorithm to handle a non-linear dataset effectively. Thus, 
the appropriate selection of the kernel function is of utmost 
importance on the performance of the algorithm.

The slack variable allows for some misclassification dur-
ing the training phase, with the aim of tackling the effect of 
outliers in the construction of the hyperplane. By allowing 
for some misclassifications during training, it is possible to 
maximize the margin between the hyperplane and the data 
points of the two classes, thereby increasing the classifica-
tion performance in the testing phase. The slack variable 
indicates how far from the hyperplane can a datapoint, which 
is misclassified, lie. Finally, the gamma parameter defines 
the maximum distance that a data point can have, in order 
to influence the calculations that determine the location and 
orientation of the hyperplane. In order to select the optimal 
values for each of the three parameters, an initial investiga-
tion on the classification performance of each kernel func-
tion is performed. When the best kernel function is selected, 
an exhaustive grid search is performed to find the optimal 
pair for C and γ. A fivefold cross-validation scheme has 
been employed. For each of the two hyperparameters, 1,000 
different values have been tested, which have been evenly 
spaced in a logarithmic scale. The range for C was [0.01, 
100000] and for γ the range was [0.00000001, 100]. The 
results of this process are presented in Sect. 3.

The implementation of the SVM algorithm was per-
formed in Python, using the scikit-learn package [50], which 
is a very popular package for implementation of various 
machine learning algorithms.

2.4 � Framework of the proposed methodology

The proposed methodology has been conceived with the aim 
of being implemented online as part of a chatter detection 
and suppression system. In a real production scenario, when 
the machining process would start, the VMD parameters 
would need a re-calibration, since for each new cutting tool, 
workpiece or set of process parameters, the optimal values 

of K and α would change. Therefore, the initialization phase 
would receive a first vibration signal, set a grid of [K, α] 
pairs based on some predefined limits for their values and 
perform an exhaustive grid search to find the optimal com-
bination of the hyperparameters of VMD, based on the syn-
thetic index, as described in Sect. 3.1. After the initialization 
phase, the system could run with the optimal K and α values. 
Figure 4 summarizes the overall concept of the methodol-
ogy, as well as the way that it is envisaged to be implemented 
in an on-line chatter detection scenario, during the actual 
milling process.

2.5 � Case study

The methodology of the proposed work is targeted for 
chatter detection in milling processes. However, milling 
processes are very diverse in nature and can differ in sev-
eral attributes, such as degrees of freedom (e.g. 3-axis and 
5-axis), milling operation types (e.g. side milling, pock-
eting and slotting) and harshness of the operation (e.g. 
roughing or finishing). As a result, it is necessary to focus 
on a limited case study to show the applicability of the 
algorithm for chatter detection in milling processes. Nev-
ertheless, the generation of a diverse dataset (to the extent 
that this was possible under the scope of this work) was 
pursued. In order to generate a diverse dataset for train-
ing and testing of the chatter detection algorithm and also 
evaluate the potential of the proposed methodology to be 
generalized in a wide range of machining operations, two 
different machining operations were used. A wide range of 
experiments has been performed on an Aluminium work-
piece (7075-T6 alloy) and on a carbon steel workpiece 
(1.0037 material number). The hardness of these work-
piece materials was measured with a Rockwell hardness 
tester at 85 HRB for Aluminium and 120 HRB for the 
carbon steel. The detailed composition of each material is 
provided in Tables 1 and 2. A diverse set of process param-
eter combinations was used, in order to collect data for 
chatter and stable processes. During the experiments, the 

Fig. 3   Use of kernel func-
tions to map data into a higher 
dimensional space
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feed axis has been varying between the x-axis and y-axis 
of the machine, in order to introduce an additional vary-
ing parameter in the process-generated data. The milling 
process employed was side milling with half immersion for 
aluminium and slot milling for steel. For both machining 
operations, climb cutting strategy was employed and the 
samples were machined dry. Table 3 presents the process 
parameters that were employed for steel and aluminium 
machining. A different set of cutting speeds, radial depths 
of cut and feed per tooth were examined in a full facto-
rial plan (all possible combinations were examined). For 
each cutting speed, radial depth of cut and feed per tooth 
combination, the axial depth of cut was increased until 
chatter was reached. Then, an additional increase on the 
axial depth of cut was performed to record data from a 
process with intense chatter, and the next combination of 
cutting speed, radial depth of cut and feed per tooth was 
examined in a similar fashion.

Apart for the experiments that were used to source 
datasets for the development of the algorithm, a set of 
additional validation experiments have been performed. 

A staircase geometry has been machined (Fig. 5), so that 
side milling passes could be performed with increasing 
axial depth of cut.

This way, it is possible to evaluate if the proposed meth-
odology can capture chatter at its onset. The materials 
used for the staircase experiments were aluminium 7075-
T6 and 1.7227 low alloy steel (Table 4 presents its chemi-
cal composition). Hardness was measured for the low alloy 
steel with a Rockwell hardness tester at 370HRB. Table 5 
presents the detailed process parameters used for the stair-
case experiments.

2.6 � Experimental setup

The machine that was used for the training, testing and vali-
dation experiments is an XYZ SMX SLV vertical CNC mill-
ing machine, equipped with a Prototrak SMX controller. The 
technical specifications of the milling machine are presented 
in Table 6, and the experimental setup is depicted in Fig. 6.

For the collection of the data from the process, a tri-axial 
accelerometer was mounted on the spindle head of the mill-
ing machine. Mounting of the sensor was achieved through 

Fig. 4   Overall concept of the proposed methodology

Table 1   Aluminium 7075-T6 chemical composition

Alloying 
element

Al Cr Cu Fe Mg Mn Si Ti Zn

Wt. % 87.1 0.18 1.2 0.5 2.1 0.3 0.4 0.2 5.1

Table 2   1.0037 carbon steel chemical composition

Alloying element C Mn P S N

Wt. % 0.21 1.5 0.055 0.055 0.011
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a M6 mounting stud. The accelerometer was a Kistler 
8762A10 ceramic shear accelerometer and its specifications 
are presented in Table 7.

The accelerometer was connected to a National Instru-
ments PXI-4472 sound and vibration module for data acqui-
sition. Each accelerometer channel, corresponding to a dif-
ferent axis, was recorded separately. Labview was utilized 
for collecting and storing the data in a separate file, for fur-
ther offline analysis.

The cutting tool that was used for the training and testing 
experiments was a Sandvik R390-016A16-11L indexable 
milling cutter (tool #1), and the cutting inserts were Sandvik 
R390-11 T3 04E-NL H13A for aluminium machining and 
Sandvik R390-11 T3 02E-PM 4340 for steel machining. The 
specifications of the cutting tools are presented in Table 8. 
Additionally, for the staircase experiments a second tool was 
used (tool #2), in order to test the performance of the pro-
posed approach, when different tool dynamics are consid-
ered. This tool was a Sandvik R390-010A10-07L indexable 
end mill with Sandvik 390R-070202 M-PM 4340 inserts. 
The milling tool overhang was 60 mm for tool #1 and 35 mm 
for tool #2. The tools were mounted in the milling machine 
through a BT40 tool holder and ER32 collets. Tool run-out 

was measured at 0.01 mm at the cutting tools, using dial 
indicator. This information has been included in the text.

A total of 40 experiments with different process param-
eters have been performed with tool #1. The sampling rate 
for the signals that were generated by the accelerometer was 
1 kHz, and a total of 7,000 samples was recorded for each 
machining experiment, which translates to 7 s of machining 
for each experiment. This led to a total of 280 × 103 samples 
that could be utilized for the analysis, separated in 40 differ-
ent time-series datasets. For each experiment, the presence 
of chatter has been identified manually through the distinct 
sound that it produces during the process. Also, the resulting 
surface was evaluated, in cases that chatter was not severe 
and characterization by ear was difficult. In such cases, the 
chatter marks that were left behind in the workpiece were 
evaluated to characterize the dataset. The visual and audible 
observations have been confirmed by analysing the signals in 
their frequency spectrums and identifying the tooth passing 
frequencies and chatter frequencies.

In order to further validate the generalizability of the 
proposed methodology and ensure that it could be appli-
cable in different machining scenarios, the sensing setup 
has been completely changed for the staircase valida-
tion experiments. Specifically, a Micromega Dynamics 
IAC-CM-U-03 tri-axial accelerometer has been utilized, 
which has been integrated on the machining vice, where 
the workpieces were clamped. The data were recorded 
via a Labjack T7-Pro Data Acquisition device at a 5 kHz 
sampling rate and stored for offline analysis, through the 
proprietary software of LabJack, used to drive the DAQ 
(LJStreamM). Table 9 outlines the technical specifications 
of the Micromega accelerometer, while Fig. 7 depicts the 
sensing setup.

3 � Results and discussion

3.1 � Decomposition of the signal with adaptive VMD

The adaptive VMD has been applied separately to x-axis 
and y-axis vibration signals. Since the structural dynamics 
of the machine are not the same in these two dimensions, 
one can expect that the vibration modes might be different 
both in quantity and in value of their centre frequency. An 
exhaustive grid search has been performed to optimize the 
hyperparameters of VMD for the x-axis and y-axis vibration 

Table 3   Table of experiments

Process parameter Value
(aluminium)

Value
(steel)

Spindle speed [RPM] 1200, 2780, 3000, 
3600

2200, 2560 3380

Cutting speed [m/min] 60, 100, 140, 180 110, 128, 170
Radial depth of cut 

[mm]
8 16

Axial depth of cut 
[mm]

0.5–4.5 0.5–5

Feed per tooth [mm] 0.06, 0.14, 0.28, 0.42 0.07, 0.09,0.12, 0.14

Fig. 5   Geometry of staircase workpiece

Table 4   1.7227 low alloy steel chemical composition

Alloying 
element

C Cr Mo Mn P Si S

Wt. % 0.38 0.8 0.15 0.75 0.035 0.15 0.04
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signals. The values that have been examined for each hyper-
parameter are the following:

•	 For the number of modes (K), the range was from 2 to 10 
with a step of 1.

•	 For the quadratic penalty (α), the range was from 100 to 
10,000 with a step of 200.

The results of this process are presented in Figs 8 and  
9.

By observing the Figs. 8 and 9, there are some conclu-
sions regarding the decomposition quality that can be drawn. 
As the value of K rises, the RMSE of the decomposition 
is diminished. On the other hand, as the value of α rises, 
the correlation follows the same trend. However, this does 
not imply that one should just select a high K and low α. 
Indeed, for low K values, the decomposition results to loss 
of information. However, when K is larger than the optimal, 
the only information that is lost is related to noise but, in 
the end, contributes to the RMSE of the decomposition. So, 
when the RMSE is coupled with the Pearson’s correlation 
coefficient, the optimal values can be identified. The value of 
the correlation rises in general with the increase of K, since 
mode duplication occurs, especially for low values of α that 
allow wideband modes to be formed.

Based on the exhaustive grid search, it has been con-
cluded that the optimal VMD hyperparameters are K = 6 
and α = 10,000, for both x-axis and y-axis vibration signals. 
Utilizing these two optimal values, the decomposition of the 
signals is performed. The results are presented in Figs. 10 
and 11. Both signals correspond to aluminium milling, with 
a spindle speed of 3600 RPM. For the cutter used in this 
work that has two cutting edges, the tooth passing frequency 
corresponds to 120 Hz. Additionally, the feed per tooth was 

0.06 mm for the stable case and 0.05 mm for the chatter case. 
Finally, the axial depth of cut was 0.5 mm for the stable case 
and 1 mm for the chatter case. In the FFT plots of the origi-
nal signals, the tooth passing frequency and its harmonics 
can be observed, as well as the way that VMD decomposes 
the signal in its principal modes, which are centred around 
the tooth passing frequency and its harmonics. By compar-
ing Figs. 10 and 11, the energy shift that takes place during 
chatter is evident. When chatter occurs, a significant portion 
of the signal energy is centred around the chatter frequency 
of 300 Hz, whereas in the stable case, the energy at this fre-
quency is negligible. Once more, VMD is able to decompose 
the original signal into is principal modes, so that the iden-
tification of the chatter-related mode and the feature extrac-
tion can be performed, according to the follow-up steps of 
the methodology. Additionally, the quality of decomposition 
with VMD is validated, since there is no mode mixing or 
mode duplication, and the decomposed modes match the 
modes that were expected to be found, by observing the FFT 
plots of the original signals.

3.2 � Feature extraction

After the determination of the optimal parameters for VMD, 
the decomposition of the signals and the extraction of the 
chatter-related features can be performed. The following pro-
cedure has been applied to the vibration signals that have 
been recorded in each of the 40 machining experiments:

•	 Window sampling has been performed on each x-axis 
and y-axis signal of each experiment with a rectangular 
window with a length of 500 samples.

•	 For each window, the x-axis and y-axis signals were 
decomposed with VMD by using the optimal hyperpa-
rameters that have been calculated previously.

•	 The best mode is selected for x-axis and y-axis vibration 
signals according to the maximum kurtosis criterion.

•	 For the best mode of x-axis and y-axis signals the kurto-
sis, standard deviation and energy ratio are calculated.

A total of 347 data points was collected with each data-
point having 6 features (kurtosis, standard deviation and 

Table 5   Experimental plan 
for the staircase validation 
experiments

Experiment ID S1 S2 S3

Spindle speed [RPM] 2000 3100 2560
Cutting speed [m/min] 100 155 80
Radial depth of cut [mm] 10 10 6
Axial depth of cut [mm] 1–5 (1 mm step) 2.5–6.5 (1 mm step) 1.5–4 (0.5 mm step)
Feed per tooth [mm] 0.29 0.18 0.10
Workpiece material Aluminium 7075-T6 Aluminium 7075-T6 1.7227 low alloy steel
Cutting tool used Tool #1 Tool #1 Tool #2

Table 6   Technical specifications of CNC milling machine

Parameter Value

Spindle power [kW] 3.8
Spindle speed range [RPM] 200–3600
Maximum feed rate [mm/min] 3600
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energy ratio for x-axis and y-axis chatter-related IMF) and 
the class that they belonged in (stable or chatter). In order to 
showcase the suitability of the selected features to be used as 
indicators for the presence of chatter, Fig. 12 shows a scat-
ter plot of the three features that have been calculated from 
the vibration signals in the x-axis. It is evident that there is 
already very good separation between the data points cor-
responding to stable and chatter machining. Therefore, this 
can facilitate the accuracy of the classifier.

3.3 � Classification performance

The SVM classifier has been set-up with the scikit-learn 
package and the dataset has been split with a 70% of the data 
points (243) being dedicated for the training phase and 30% 
of the data points (104) being used for testing.

For the selection of the kernel function, the four available 
kernel functions of the package have been tested, namely 
radial basis function (RBF), sigmoid, polynomial and linear. 
In order to select the appropriate kernel function, an initial 
comparison among those has been performed, by evaluating 
the precision, recall and f1-score for each one. The results  
are presented in Tables  10, 11, 12, 13, 14, 15,  
16 and 17.

The best classification performance is achieved by the 
RBF, linear and polynomial kernels, with RBF having a 

slight advantage, whereas the sigmoid kernel performs 
poorly. Based on that, the RBF kernel is selected for the 
next stage of the exhaustive grid search. The metric that 
has been employed for the evaluation of each pair of C and 
γ during the exhaustive grid search is the area under the 
ROC (receiver operating characteristic) curve, also known 
as AUC. The ROC plots the true positive rate (TPR) against 
the false positive rate (FPR) and is able to provide an over-
view of the true performance of the classifier, as opposed 
to accuracy, which can lead to misleading results. The ROC 
depicts the trade-off that is required on the FPR to increase 
the TPR. Ultimately, the perfect classifier will have an AUC 
score of 1.0. Based on the exhaustive grid search, the best 
hyperparameters for the classifier have been identified as

•	 C = 10
•	 gamma = 0.02732

The performance of the classifier is presented in 
Tables 18 and 19 and Fig. 13.

Based on the results that were presented above, it can 
be concluded that the optimization was successful, since 
the performance of the classifier has been significantly 
increased. Overall, the classifier has a very good AUC 
score (93%), which indicates that is has been successfully 
designed.

Fig. 6   Experimental setup

Table 7   Technical specifications of the Kistler accelerometer

Parameter Value

Acceleration range [g]  ± 10
Acceleration limit [g]  ± 16
Sensitivity, ± 5% [mV/g] 500
Resonant frequency [kHz] 30
Frequency Response, ± 5% [kHz] 0.5 … 6000
Amplitude non-linearity [%FSO]  ± 1
Time constant [s] 1

Table 8   Cutting tools specifications

Parameter Value (tool #1) Value (tool #2)

Cutting diameter [mm] 16 10
Depth of cut maximum [mm] 10 5.8
Cutting edge angle [°] 90 90
Helix angle [°] 0 0
Radial rake angle [°]  − 10.596 20
Cutting edges number 2 2
Insert material Tungsten carbide Tungsten carbide
Insert corner radius [mm] 0.4 0.2
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The final aspect that needs to be considered is the com-
putational efficiency of the proposed methodology. Since 
it has been conceptualized with the aim to be implemented 
online, it should provide rapid chatter detection capabili-
ties that could act as a feedback for a control system. In 
order to identify the detection speed, the system has been 
put to test, where it was asked to perform the complete 
workflow. Specifically, the workflow consisted of the fol-
lowing tasks:

•	 A.csv file containing a data packet that will be received 
in the real-time operation was opened, containing 500 
samples of time, x-axis acceleration and y-axis accelera-
tion data.

•	 The x-axis and y-axis acceleration signals were read.
•	 The x-axis and y-axis signals were decomposed with 

VMD, by using the optimal K and α values for the 
specific operation.

•	 The best modes were identified and the signal features 
(kurtosis, standard deviation, energy ratio) were cal-
culated.

•	 The classifier was called to predict the chatter status.
•	 The chatter status was printed.

This workflow was wrapped in a Python function 
and the timeit module was used, which is a built-in 
python module that can measure the execution time of 
code blocks. The function was executed multiple times 
and is average value, and standard deviation was cal-
culated. The execution time was 26.1 ms ± 157 μs in a 
Dell Latitude 5501 laptop with the following technical 
specifications:

•	 CPU: Intel Core i7-9850H with 2.6 GHz clock speed, 
6 Cores and 12 Logical Processors

•	 RAM: 16 GB
•	 Operating System: Windows 10 Pro
•	 Hard Drive: Western Digital SN730 NVMe Solid-State 

Drive

It can be observed from the speed test results that the 
system shows a very good detection speed, which enables 
it to be used in the context of real-time control.

3.4 � Staircase validation experiments

In this section, the results of the staircase validation experi-
ments are presented. Experiment S1 was characterized by a 
stable start leading to chatter after a few steps. Experiment 
S2 was characterized by chatter from the very start of the 
machining pass, while experiment S3 was characterized by 
a mostly stable cut that transitioned to chatter towards the 
end of the machining pass.

In order to facilitate the assessment of the chatter status 
of the machining process, the machined surfaces have been 
captured using an Insize ISM-DL301 optical microscope. 
The following sections present the evolution of the machined 
surfaces, chatter features and SVM prediction, as well as 
the vibration signal and its spectrogram along the whole 
toolpath.

3.4.1 � Experiment S1

Figure 14 presents the evolution of the machined surface 
along the toolpath length. We can observe the onset of chat-
ter towards the end of the second step of the staircase, i.e. 
at a machined length of 28 mm. The axial depth of cut that 
initiated the chatter was 2 mm.

Figure 15 presents the vibration signals in x-axis and 
y-axis, as well as their spectrograms versus the machin-
ing length, while Fig. 16 depicts the evolution of chatter 
features and the prediction of the SVM algorithm over the 
machining length. By comparing Fig. 16 with Fig. 14, it 
is evident that the proposed algorithm can capture chatter 
at its onset. Overall, a very good detection performance 

Table 9   Technical specifications of the Micromega accelerometer

Parameter Value

Acceleration range [g]  ± 25
Acceleration limit [g]  ± 1000
Sensitivity, ± 2…5% [mV/g] 80
Frequency response, ± 5% [kHz] 0.5 … 10,000
Amplitude non-linearity [%FS]  ± 0.5…1.5
Sensing element MEMS

Fig. 7   Sensing setup used in the staircase validation experiments
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is observed, except for a misclassification at the 50 mm 
mark. Nevertheless, considering the cycle time of the 
whole chatter detection procedure (26.1 ms), such a mis-
classification would not be detrimental in a real machin-
ing scenario, since the phenomenon would be detected in 
the next cycle and a control system could be activated to 
suppress chatter.

3.4.2 � Experiment S2

Experiment S2 was characterized by a case of severe 
chatter from the very beginning of the cut. The machin-
ing induced damage and the compromised surface 
integrity is evident from Fig. 17. Figure 18 presents the 
vibration signals in x-axis and y-axis, as well as their 
spectrograms versus the machining length, while Fig. 19 
depicts the evolution of chatter features and the predic-
tion of the SVM algorithm over the machining length. 
It can be observed that for this case of severe chatter, 
the chatter detection algorithm has a 100% classifica-
tion accuracy, predicting the chatter status throughout 
the whole machining length.

3.4.3 � Experiment S3

Experiment S3 was characterized by a stable cut for the larg-
est portion of the toolpath. However, at the 3.5 mm axial 
depth of cut, the process started to chatter, as it can be 
observed in Fig. 20. Figure 21 presents the vibration signals 
in x-axis and y-axis, as well as their spectrograms versus 
the machining length, while Fig. 22 depicts the evolution of 
chatter features and the prediction of the SVM algorithm over 
the machining length. Also in this case, the chatter detec-
tion algorithm predicts the chatter at its onset. By comparing 
Figs. 20 and 22, one can observe that the chatter prediction 
is earlier in the toolpath than the area where the actual chat-
ter marks can be observed. This could be attributed to the 
window sampling that has been performed in the signal of 
these experiments. Specifically, each window corresponded 
to 0.2 s or 1.6 mm of machining for the specific combinations 
of sampling rate (5,000 Hz), window length (1,000 samples) 
and feed rate (500 mm/min). This means that each portion 
of the segment that is equal to 1.6 mm of length receives a 
single characterization (chatter or stable), even if the process 
started to chatter at the very end of this segment.

Fig. 8   Results of VMD optimization for x-axis vibrations

Fig. 9   Results of VMD optimization for y-axis vibrations
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Fig. 10   Decomposition of the vibration signal with optimal VMD hyperparameters for stable machining

Fig. 11   Decomposition of the vibration signal with optimal VMD hyperparameters during machining with chatter
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Fig. 12   Plot of the features calculated from the dataset for vibrations 
in the x-axis

Table 10   Classification performance for RBF kernel

Class Precision Recall f1-score

Stable 89% 95% 92%
Chatter 93% 85% 89%

Classifier accuracy 90%

Table 11   Confusion matrix of RBF kernel

True label Predicted label

Stable Chatter

Stable True negative = 54 False positive = 3
Chatter False negative = 7 True positive = 40

Table 12   Classification performance for polynomial kernel

Class Precision Recall f1-score

Stable 80% 98% 88%
Chatter 97% 70% 81%

Classifier accuracy 86%

Table 13   Confusion matrix of polynomial kernel

True label Predicted label

Stable Chatter

Stable True negative = 56 False positive = 1
Chatter False negative = 14 True positive = 33

Table 14   Classification performance for sigmoid kernel

Class Precision Recall f1-score

Stable 62% 61% 62%
Chatter 54% 55% 55%

Classifier accuracy 59%

Table 15   Confusion matrix of sigmoid kernel

True label Predicted label

Stable Chatter

Stable True negative = 35 False positive = 22
Chatter False negative = 21 True positive = 26

Table 16   Classification performance for linear kernel

Class Precision Recall f1-score

Stable 87% 91% 89%
Chatter 89% 83% 86%

Classifier accuracy 88%

Table 17   Confusion matrix of linear kernel

True label Predicted label

Stable Chatter

Stable True negative = 52 False positive = 5
Chatter False negative = 8 True positive = 39

Table 18   Classification performance for optimal classifier

Class Precision Recall f1-score

Stable 90% 98% 94%
Chatter 98% 87% 92%

Classifier accuracy 93%

Table 19   Confusion matrix of optimal classifier

True label Predicted label

Stable Chatter

Stable True negative = 56 False positive = 1
Chatter False negative = 6 True positive = 41
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Fig. 13   ROC curve for optimal 
classifier

CoDmm12mmDoC3mmDoC4mmDoC5mmDoC

Chatter Onset

Machining 
Length [mm] 60 45 30 15 0

Fig. 14   Evolution of machined surface over the toolpath length for experiment S1

Fig. 15   Vibration signal (a) and 
spectrogram (b) of the x-axis 
and y-axis (c and d) over the 
machining length for experi-
ment S1
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Fig. 16   Evolution of chatter features and SVM prediction over machining length for experiment S1

Fig. 17   Evolution of machined surface over the toolpath length for experiment S2

Fig. 18   Vibration signal (a) and 
spectrogram (b) of the x-axis 
and y-axis (c and d) over the 
machining length for experi-
ment S2
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Fig. 19   Evolution of chatter features and SVM prediction over machining length for experiment S2

1.5mm DoC2mm DoC2.5mm DoC3mm DoC3.5mm DoC

Chatter Onset

Machining 
Length [mm] 48 36 24 12 06072

4mm DoC

Fig. 20   Evolution of machined surface over the toolpath length for experiment S3
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4 � Conclusions

This work proposes a methodology for chatter detection in 
milling, based on variational mode decomposition, chatter 
sensitive feature extraction and support vector machines. 
Based on the investigations that have been performed within 
this work, as well as the obtained results, the following con-
clusions can be drawn:

•	 VMD can effectively be used to decompose the milling 
vibration signal into its principal modes, which has been 
evident by comparing the frequency spectrum of the 
original signal with the centre frequencies of the obtained 
IMFs

•	 The use of RMSE and Pearson’s correlation as metrics to 
evaluate the decomposition quality in real-time operation 
of the system and find the optimal VMD hyperparam-

Fig. 21   Vibration signal (a) and 
spectrogram (b) of the X-axis 
and Y-axis (c and d) over the 
machining length for experi-
ment S3

Fig. 22   Evolution of chatter 
features and SVM prediction 
over machining length for 
experiment S3
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eters can successfully enable the automated selection of 
the appropriate VMD hyperparameters. This can address 
the key limitation for the application of VMD in signals 
generated from machining operations.

•	 The transient characteristics of the phenomenon (kur-
tosis, standard deviation) compared to stable cutting, as 
well as the energy shift (energy ratio) that takes place in 
the frequency spectrum from the tooth passing frequen-
cies to the structural modes of the machine, have been 
proven to be chatter sensitive features. As such, they have 
enabled the development of an accurate chatter detection 
algorithm.

•	 The use of a support vector machine classifier enabled a 
very good classification accuracy (93% AUC score), as 
well as an excellent classification speed (26.1 ms), which 
will enable this system to be implemented in a real-time 
monitoring and control system.

•	 The proposed methodology can successfully identify 
chatter at its onset, as it has been proven through the 
staircase validation experiments.

•	 The ability of the proposed methodology to be used for 
different workpiece and cutting tool materials, as well as 
different tool dynamics, showcases that it can be a prom-
ising solution to address the generalizability constraints 
of most AI-based approaches that are used for chatter 
detection in milling.

The most important step that should be taken towards 
future work is to close the loop with the machine and 
develop a real-time chatter suppression system, based on the 
feedback generated by the proposed methodology. Moreo-
ver, the proposed system should be trained and validated 
with additional datasets coming from a diverse set of mill-
ing operations, utilizing different process parameters, cutting 
tool and workpiece materials and machine tools. Finally, the 
system could be potentially tested in other machining opera-
tions, such as turning or grinding.
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