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Abstract
Over the past few decades, several methods have been introduced for the recognition of machining features from design files. 
These methods entail considerable effort to infer the characteristics of machining features from the design and manufacturing 
information commonly expressed in different and incompatible formats on the geometry, topography, dimensions, tolerances, 
and surface finishes. The competence of these traditional methods in implementing their assignment is still challenging. The 
deep learning approach as an advanced facility in artificial intelligence is considered as a promising substitute. This approach 
has already been successfully and efficiently employed in different facets of social life. Its use in manufacturing engineering 
and industries is considered as a breakthrough, especially in some disciplines such as process planning, and machining feature 
recognition is in its embryonic phase. The input data in the present methods is the output information of a computer-aided 
design system. This is commonly faced with some limitations, the most serious ones of which are the loss of data from the 
design file occurring due to the geometric interference of features and slow extraction of features due to the extensive and 
excessive information existing in the design files. In the present study, a deep learning-based system named MFR-Net has 
been developed for the recognition of machining features from the images of workpieces. In addition to CAD systems, other 
tools such as the camera images of workpieces can also be employed to enter the input. The MFR-Net can also identify other 
relevant information needed for machining, including the position of the features, dimensions, and various symbols such as 
numbers, decimal points, and positive and negative signs employed in tolerances, parentheses, etc.

Keywords Computer-aided process planning · Machining feature · Deep learning · Artificial intelligence · Image 
processing

1 Introduction

The history of using computers in the machining industry 
dates back to the introduction and use of CNC machines in 
the late 1970s [1]. In workshops equipped with stand-alone 
CNC machines, the machining time comprises about 20% of 
the operating time, whereas, in automotive shops, this time 
reaches about 60% [2]. Big data is a characteristic feature 
of today’s technology. Artificial intelligence and machine 
learning are efficient tools for processing big data. They 

provide new opportunities for manufacturing industries to 
enhance their competence and efficiency [3].

The recognition of machining features is a key step in 
computer-aided process planning. There are different defini-
tions for machining features in the literature. According to 
Prabhakar and Henderson [4], a machining feature can be 
inferred as a mathematical representation of the topologi-
cal and/or geometrical data defining that feature. These data 
can be derived from the CAD model of the workpiece to be 
machined.

Each machining feature undergoes a specific machin-
ing operation by using specific cutting tools, and it can be 
said that machining features convert CAD output data into 
computer-aided manufacturing (CAM) input data. [5]. The 
machining features are recognized by using the geometric 
and topological information from design files represented 
in different CAD schemes. Several machining rules are then 
used to plan the sequences of machining operations [6]. The 
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geometric and topological information is then processed in 
specialized systems with the objective of automatic recogni-
tion of the machining features [7]. The CAD representation 
schemes include the wire frame model, surface representa-
tion model, and volumetric model. The traditional meth-
ods of machining feature recognition use one of these three 
representation models to identify the machining features 
[8]. The purpose of using a machining feature identification 
system is to convert the geometric and topological informa-
tion of a workpiece designed in the design system into a set 
of features that can be used in the computer-aided process 
planning stage [9]. The machining feature recognition meth-
ods can be broadly divided into three categories including 
conventional methods, methods based on artificial neural 
networks, and the recently developed deep learning sys-
tems. Artificial neural networks are feature-based machine 
learning methods. They are less accurate as compared with 
deep learning because the recognized features are limited to 
knowledge of the mathematics developed by humans. For 
instance, a scratch considered as a defect cannot be properly 
distinguished from a line that is intentionally drawn on the 
surface of a component [10].

Among the common methods of machining feature 
recognition are the graph-based [11], the hint-based [12], 
the rule-based [13], the volume decomposition [14], and 
the syntactic rules pattern methods [15]. Extracting the 
manufacturing information of machining features such as 
dimensional and geometric tolerances has been the subject 
of other research efforts [16]. Extracting the character-
istics of machining features from two-dimensional data 
with the help of programming languages such as Prolog 
is another field of research that has a long history [17]. 
The multilayer artificial neural network training for the 
identification of machining features began more than two 
decades ago [18] and had some successes in some areas, 
such as evaluating the machinability of freeform parts 
[19]. These methods based on artificial neural networks 
could alleviate some of the shortcomings of the conven-
tional methods, such as the inability to detect defective 
machining features and low execution speed [20]. The 
application of artificial intelligence techniques in some 
areas such as surface defect detection [21] or tool wear 
prediction [22] is considered as a breakthrough in intel-
ligent production, and in some disciplines such as pro-
cess planning, and machining feature recognition is in 
its embryonic phase [23]. Among the few research work 
conducted in this field can be named the work done by 
Zhang et al. [24], who proposed a system for identifying 
machining features using a deep learning method called 
FeatureNet, in which a three-dimensional deep learning 
network is used to recognize the machining features from 
the output data of a design file. Shi et al. [25] developed a 
deep learning network called MsvNet for identifying the 

machining features by using multiple cut-out views of the 
features. Peng et al. [26] used a deep learning network to 
analyze the diagnoses of faults in rotating machinery parts. 
Moreno-Garcia et al. [27] employed two-dimensional con-
volutional networks to identify electrical components in 
an engineering drawing image. A similar work was done 
by Zhao et al. [28] to identify building components from 
scanned drawings of a building structure. In this research, 
a deep learning network has been taught by using 1500 
scanned 2D building plans.

It should be noted that the development of a totally auto-
mated intelligent machining system, comparable with the 
decision-making faculty of expert operators, is a very dif-
ficult task [29]. It was tried in the present research to solve 
this difficulty by generating an intelligent system for the 
recognition of machining feature parameters existing in an 
image.

In the present work, a deep learning machining feature 
recognition network, named MFR-Net, has been developed 
by using the YOLO architecture [30]. This network has been 
trained to develop the required capability for the detection 
of machining features. MFR-Net can extract the machin-
ing features directly from the pictures taken from the work-
piece. In addition to distinguishing the machining features, 
MFR-Net can identify other relevant information needed for 
machining, including the position of the features, dimen-
sions, dimensional tolerances, and various symbols such as 
numbers, decimal points, and positive and negative signs 
employed in tolerances, parentheses, etc. in 34 identifiable 
classes. The introduced method could circumvent some of 
the limitations of the previous methods. The loss of some 
design data occurring due to the geometric interference of 
machining features and the dependence of identification 
capability on the design data formats are among these limi-
tations. In addition, the developed method can deal with a 
sketch of the workpiece whose design file is not available. 
An additional innovative feature of MFR-Net is its capabil-
ity to assign the dimensions and symbols recognized in an 
image to the relevant features.

In the previous methods for identifying machining fea-
tures, the input data is directly obtained from B_Rep CAD 
or obtained through transforming the data to mesh, voxel, 
or cloud points. In the present work, however, the image 
of a workpiece consisting of one or more machining fea-
tures is used as input to the feature recognition network. The 
image of a mechanical part can be created by different tools, 
including the imaging tool provided by the computer-aided 
design system. In previous methods, the design data can 
easily be lost due to the geometric interference of features 
or repeated conversion of data. In the present method, this 
problem has been avoided. The network developed by the 
authors is able to deal with the images of workpieces that 
are still in the initial steps of conceptual design.
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2  Machining feature recognition network: 
MFR‑Net

2.1  The architecture of MFR‑Net

The exhaustive identification of a machining feature (MF) 
entails the extraction of three levels of design and manu-
facturing characteristics including basic, intermediate, and 
primary characteristics. The basic characteristics (BCs) 
represent lines and edges with their specific attributes. The 
intermediate characteristics (ICs) represent faces, bends, cor-
ners, etc. Each IC may consist of several BCs. The primary 
characteristics (PCs) embody the topological and geometrical 
attributes, dimensions, position, and of MF. The basic, inter-
mediate, and primary characteristics are categorized into two 
groups. The first group is responsible for the recognition of 
some information such as the name of MFs and the location 
of specified dimensions in the MFs image. The second group 
includes the text, numbers, etc. Each of these characteristics 
in the two groups has its special relative impact coefficients 
that are used in the MFR-Net design and training phases. 
Twenty machining features introduced in STEP AP224 can 
be recognized as the basic machining features by MFR-Net. 
The composite machining features consisting of the basic 
features can also be identified. Four of these twenty machin-
ing features, including round edge, fillet, chamfer, and v-slot, 
were selected as pilots for designing the network.

The identification of MFs is carried out in three parts of 
MFR-Net, as three independent subnetworks. One subnet-
work is developed for the recognition of MFs’ shapes and 
the locations of dimensions. Another subnetwork is imple-
mented for the recognition of tolerances, symbols, and 
texts. The other subnetwork is developed as the inference 

module. The schematic architecture of MFR-Net consist-
ing of these three subnetworks is presented in Fig. 1. Each 
of these subnetworks is designed on the basis of YOLO 
v4 architecture. All BCs and ICs of machining features are 
extracted by the two first subnetworks. These two subnet-
works are known as CSPDarknet53 and are the backbone 
structure of YOLO v4 architecture. Each CSPDarknet53 
subnetwork consists of more than 17,800 convolutional 
filters and 2.76 million parameters. The 3rd subnetwork is 
the object detection block part of Yolo v4. In this subnet-
work, all ICs of the two prior subnetworks are integrated 
on the basis of their common labels.

In the first subnetwork, the characteristics of eighteen 
PCs, including four names of the four pilot features, four 
positions of the origins of these features, and ten dimen-
sions observed in the image, are extracted. In the second 
subnetwork, the characteristics of the next sixteen PCs 
(dimensions, texts, and symbols) are extracted. These 
include ten digits from zero to 9 and six symbols consist-
ing of parentheses, decimal points, positive and negative 
signs, the word feature, comma signs, and radii denoted 
by p, d, t, f, c, and r, respectively. It should be noted that 
in each of these two independent subnetworks of MFR-
Net, the BCs are first extracted from the input image data. 
The ICs are then identified by using the recognized BCs. 
Finally, 18 primary characteristics in the first subnetwork 
and 16 primary characteristics in the second subnetwork 
are identified. Each of these 34 PCs is called a class as 
an independent identifiable object. In the third part of 
MFR-Net, the two mentioned subnetworks are combined 
to conclude the complete specifications of machining fea-
tures. The output is presented in a table that can be used 
in other steps of the computer-aided process planning. 

Fig. 1  The schematic architec-
ture of MFR-Net
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The overall architecture of MFR-Net is schematically 
illustrated in Fig. 1.

For training MFR_Net, the shape and location of 18 
primary characteristics are first defined and labeled. For 
example, the location and shape of the fillet machining 
feature is labeled as “Fillet.” All information related to 
the fillet MF is specified by a name and a “_” sign below 
it. For example, fillet radius is labeled as r_fillet, and 
its location in the image is determined. While program-
ing MFR_Net, the input data to the 2nd subnetwork are 
just labels with the “_” sign, which states this region of 
the image contains some texts, numbers, and signs. For 
example, r_fillet and d_fillet denote the radius and depth 
of fillet MF.

2.2  Data preparation

2.2.1  Preparing a database of machining feature images

Data preparation is one of the main steps of developing deep 
learning networks. To prepare the required database in the 

present study, 50,000 images in wireframe, isometric, dia-
metric, and ordinary image formats (photos) of machining 
features and different combinations of them were prepared 
from different view angles and with different materials by 
SolidWorks software.

More than 1000 images of the database were selected for 
preparing the data required for training the subnetwork to 
identify 4 pilot MFs’ shapes and locations of their dimen-
sions. More than 1000 images of numbers, symbols, and 
letters were selected for teaching the second subnetwork 
(tolerances, symbols, and text recognition subnetwork). 
Figure 2 shows the images of the four pilot and two com-
posite machining features with different materials, which are 
represented in different formats.

Since the sizes of numbers, dimensions, and texts were 
very small compared to the sizes of the shapes of machin-
ing features, the development of two parallel subnetworks 
for simultaneous recognition of shapes, numbers, dimen-
sions, and texts in a single image encountered problems. 
A new technique has been used to solve this problem. In 
this technique, the regions of images that include numbers, 

steel Filletwood Chamferwireframe Round edgesolid V slot
(a)

combination of V slot and Round edgecombination of Fillet and Chamfer
(b)

Fig. 2  Machining features: a 4 pilot MFs and b combination features
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dimensions, and texts are first identified and then separated 
from the image. These regions are cropped, magnified, and 
labeled in the network’s database of numbers, letters, and 
symbols.

2.2.2  Labeling images of MFs

The images in the database were divided into two groups; 
80% of the images were used for network training and 20% 
for evaluating the accuracy of the network after training.

To train “MFR-Net,” the images of training available 
in the database should be converted into the information 
needed to train the network. For this purpose, the training 
images in the database including machining features, num-
bers, and symbols were labeled with the help of Python pro-
gramming language. In labeling, a predetermined rectangle 
enclosing a specific feature is first defined. All characteris-
tics that fall within this rectangle and are typically used for 
recognition of machining features are labeled as belonging 
to that rectangle and its enclosed machining feature. This is 
repeated separately for all features stored in the database. 
The properties of each machining feature are determined by 
using the pixels within the labeled box.

Since the complete identification of machining features 
is done by using two independent parallel subnetworks 
simultaneously, the required information of each of these 
two subnetworks has been prepared independently, so the 
dataset preparation network has been developed in two parts. 
In the first part, the machining feature, its dimensions, and 
positions are identified by using eighteen classes for four 
pilot MFs’ primary characteristics and labeled. Four of these 
eighteen primary characteristics are used for recognition of 
the feature type, four characteristics for identification of the 
position of each feature, and ten characteristics for identi-
fication of the symbols and locations of the dimensions of 
these features. The ten dimensions include three for cham-
fer’s slope’s angle, length, and depth; two for fillet’s depth 
and inner radius; two for round edge’s depth and radius; and 
three for v-slot’s angle, length, and depth. Figure 3 shows 
the labeling along with the identifying characteristics for 
four pilot MFs.

In the second part of MFR-Net’s database (for identifica-
tion of numbers, letters, and symbols), sixteen classes are 
employed including ten classes for recognition of numbers 
zero to 9 and six classes for recognition of prefix f, implying 
that the next figure is the feature’s number, decimal point, 
comma, ± sign, radius R, and parentheses, which are labeled 
by f, d, c, t, r, and p, respectively. Figure 4 shows examples 
of tagging the images of numbers and symbols.

In these images, the background color and image size of 
numbers and letters vary in the database.

All the images in the database were manually tagged 
with the mentioned formats and turned into information in 

a format that can be used by the deep learning network for 
network training. The 34 classes illustrated in Figs. 3 and 4 
are described in Table 1.

The format employed to describe the coordinates of the 
feature is fa (x, y, z). In this format, f is employed to indicate 
the direction and starting location of reading the digits and 
symbols. This letter is followed by the feature number, a. 
The coordinate of the feature is expressed by the distances 
of its starting point from the workpiece’s zero along X, Y, Z 
coordinates. The workpiece zero (0, 0, 0) is coincident with 
the reference point of the machine tool.

After labeling all the image data in the database, this 
labeled image data was converted to text data by the Labe-
limg software and a text file in xml format was prepared 
for each tagged image. Then all the text data of the data-
base were saved in two separate files in CSV format: one 
for the shape, format, and position of the dimensions of the 
machining features and the other for the dimensions, sizes, 
and signs in the supplementary data; data files related to 
each of the two networks used in the MFR-Net are presented.

In the last step of data preparation, each of the two men-
tioned CSV files is converted to a TF record file, which 
converts the database data into a binary format that can be 
understood by the computer.

2.3  MFR‑Net training

The main functions of network training are concentrated 
on updating the values of network weights. In MFR-Net, 
such as other deep learning networks, there are two kinds of 
unknown parameters: hyper parameters that are determined 
by the network designer in the design phase and parameters 
that are determined automatically by the network through 
network training. The hyper parameters include the number 
of network layers, learning rate coefficient, activation func-
tion, error function, and some other ones that are determined 
based on the problem. In the present study, these parameters 
are selected based on YOLO deep learning network [30] 
with some changes made, for instance, in the number of 
primary characteristics, dimension of the input image to the 
network, learning rate, and some other parameters. The other 
hyper parameters such as activation function, number and 
dimensions, and filter tensors were adopted in this research 
after examining them in the Google virtual laboratory or the 
virtual graphics card of the Google website called Google 
Collaboratory.

The most important parameters automatically decided 
by the network are the weight coefficients. In this research, 
Google Collaboratory has been used to perform the calcu-
lations of the network training stage. The initial values of 
MFR-Net’s weights have been adopted from the Image-Net 
deep learning network [31] as the default weights. Some 
data manipulation techniques such as image rotation and 
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random drawing of non-parallel lines were used to solve the 
challenging problems of network performance in recognition 
and increase its detection capability.

The dimensions of the PCs’ search areas in this research 
are determined by considering the labeled training images 
and the nearest neighbor algorithm. Based on the nearest 
neighbor algorithm, the dimensions of all images labeled 
in the database were first divided into nine clusters. Then, 
the average length and width of each cluster are selected as 
the length and width of one of the nine search boxes being 
employed to search for the presence of PCs in different areas 
of the image. Table 2 shows the dimensions obtained for the 
nine search boxes used in this research.

The optimal values of hyper parameters were determined 
by examining different functions and observing how to 
reduce the error and increase the accuracy of the model in 
identifying the machining features.

After examining some error/loss functions such as the 
square mean error function and the hinge loss function, the 
“cross entropy” loss function was selected as the most suit-
able one for the present research, as follows:

where E is the error/loss value, yi is the ith MF characteris-
tic value in the input image, ŷi is the ith MF characteristic 

(1)E = −

q
∑

i=1

yi log
(

ŷi
)

Fig. 3  Labeling of four pilot 
MFs and the identifying char-
acters d_Chamfer

a_Chamfer

R-Fillet

h_V slot

d_V slot

c_Round edge

r_Round edge

c_V slot

c_Chamfer
c_Fillett

l_Chamfer

Chamfer

Fillet

d_Fillet

d_Round edge
V slot

a_v slot

Fig. 4  Examples of labeling 
the numbers and symbols in the 
2nd part of MFR-Net’s dataset: 
a number 5 and letter R, b num-
bers 2, 4, 7, 9, and comma and 
parentheses, c numbers 1, 8, 3, 
dot, and ± sign, and d 6 and zero 
numbers

)d()c()b()a(
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value recognized by the network as the output result, and q 
is the number of defined machining feature characteristics 
(34 classes in this research).

The value of E is a network detection error and depends 
on yi and ŷi . It can have infinite positive values down to 
zero. The closer the detection error value is to zero, the more 
accurate the network detection. The precision of the detec-
tion procedure is measured as follows:

where TP and FP denote the number of correct and false 
recognition of each characteristic, respectively.

The average precision of the network is obtained as 
follows:

where 34 is the number of defined MF characteristics. Sev-
eral optimization functions were subsequently selected and 
examined to achieve the best results to train MFR_Net. 
Some of them are presented in this section. On the first try, 
the SGD optimization function was studied as follows:

where wnew is the new weights after each optimization itera-
tion; wold is the old weights before each optimization itera-
tion; w is weights; and � is the learning rate.

(2)Precision =
TP

TP + FP

(3)AP =
1

34

34
∑

i=1

(Precision)i

(4)wnew = wold − �
�E

�w

The change in the learning rate decay, Δ� , is constant in 
each iteration. The training curves, in this case, are illustrated 
in Fig. 5.

As can be seen in Fig. 5, the detection error has reached 0.95 
after 3000 iterations (Fig. 5b) by adopting the “SGD” optimizer 
function (Eq. (4)) with fixed training rate decay (Fig. 5a). Due to 
zero average precision (Fig. 5c), further training of the network 
would not lead to any degree of acceptable success in detection 
of machining feature and the related parameters.

The next optimization function examined in this study was 
the momentum optimizer with cosine decay of the learning 
rate in each iterative step, expressed as follows:

where � is a coefficient specifying the number of iterations in 
the previous gradients, varying from 0.5 to 0.9 in this research. 
Although this optimizer has had better results than before, but 
the results were not sufficiently satisfactory. Figure 6 shows 
the network training curves by adopting Eqs. (5) and (6).

It is evident from Fig. 6 that the results are not satisfac-
tory as far as the detection error and.

the network accuracy are concerned. The average detec-
tion accuracy has reached 0.12 (or 12%) after 3000 iterations 
that is not acceptable.

After examining some other optimizers, the best perfor-
mance was achieved by applying the Adam optimizer with 
exponential learning rate decay, expressed as follows:

(5)wnew = wold − (
�

1 − �
)
�E

�w

(6)Δ� = cos(No. of iterations)

Table 1  Specifications of the defined classes of MFR-Net

Image Machining feature classes Class label Image Machining feature classes Class label

Fillet (Fig. 3) Shape Fillet Round edge (Fig. 3) Shape Round edge
Radius r_Fillet Radius r_Round edge
Depth d_Fillet Depth d_Round edge
Coordinates c_Fillet Coordinates c_Round edge

Chamfer (Fig. 3) Shape Chamfer V-slot (Fig. 3) Shape V slot
Angle a_Chamfer Angle a_V slot
Length l_Chamfer Height h_V slot
Depth d_Chamfer Depth d_V slot
Coordinates c_Chamfer Coordinates c_V slot

Figure 4a Number 5 and letter R 5, r Figure 4c Numbers 1,8, 3, decimal 
point, and ± sign

1, 3, 8, t, d

Figure 4b Numbers 2, 4, 7, 9, and 
comma and parentheses sign

2,4,7,9, c, p Figure 4d 6 and zero numbers 6, 0

Table 2  Dimensions of the 
search boxes in pixels

1st box 2nd box 3rd box 4th box 5th box 6th box 7th box 8th box 9th box

[15 × 16] [18 × 32] [29 × 20] [46 × 29] [32 × 52] [88 × 21] [72 × 56] [136 × 149] [232 × 284]
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The learning rate curves for the final hyperparameters are 
shown in Fig. 7. The error decreased to 0.02 after 10,000 
iterations. The average precision has increased to about 85%. 
These are quite acceptable.

2.4  Some technical points in MFR‑Net

Some technics specific to MFR-Net have been devised to 
assist the network in order to better identify the MFs’ char-
acteristics with reduced error in recognizing machining 
features and reading the symbols and numbers. These are 
described as follows.

As already evidenced, the letter f is employed as an indi-
cator to assist the network in correctly reading the digits 
and identifying the symbols. It should be noted that read-
ing more than one digit is naturally done from left to right, 

(7)wnew = � wold + (1 − �)
�E

�w

(8)Δ� = exp(No. of iteration)

horizontally. However, a multi-digit number in an image 
may have been placed vertically. Therefore, to help the net-
work in recognizing multi-digit numbers, tolerances, and 
symbols, the letter f is designated to signify the direction 
and the starting location of the reading.

In some images, one dimension may be placed on top 
of another. In this case, it would be difficult for the net-
work to detect the right dimension. As the solution to this 
problem, the network keeps the dimension with a higher 
detection percentage and removes the second one when the 
overlap between the images of the two dimensions is more 
than 60%. In addition, when the number of dimensions 
specified in the image is more than the number of machin-
ing features in the image, the network decides to remove 
additional dimensions according to the type of machining 
feature. In case the number of dimensions of an MF is less 
than the required number, the network sends an inadequate-
dimension error message.

Another important problem is how to assign dimensions 
to the relevant machining feature when there are more than 
one machining feature in the image. Given that the network 

Fig. 5  Training curves in SGD optimizer for each iteration: a constant learning rate decay, b error value changes, and c average precision

Fig. 6  Training curves in momentum optimizer for each iteration: a cosine learning rate decay, b error value changes, and c average precision
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recognizes the shape and placement of dimensions as a 
separate subject (PC), it is a challenge for the network to 
determine which dimensions belong to each MF. The net-
work detects the locations of all dimensions and machining 
features in the image and assigns the nearest dimensions 
to each machining feature by using the nearest neighbor 
algorithm.

In some images, different multi-digit numbers may be 
close to each other. In these cases, the size of the digits 
is first identified, and by drawing a hypothetical line in 
the average dimensions of the digits of a number, if the 
center of the size of a digit is 75% farther from the line, 
that digit of the mentioned number is not considered in 
the set of digits. If in a picture the letter assigned to a 
machining feature (f) does not appear in front of the coor-
dinate parentheses, the network intelligently detects this 
and adds a letter f to the beginning of the parentheses. If 
two letters f are consecutively repeated, the extra letter 
f is deleted. When a parenthesis in the image is open, 
the network automatically closes the parenthesis in the 
output text.

3  Case study

The proposed method has been examined for quite a few 
cases including images with only one machining feature 
and complicated workpieces composed of several machin-
ing features in a single image. Some examples of these 
cases are presented in this section. The information in 
the images, based on the description in “Labeling images 
of MFs” (Figs. 3 and 4 and Table 1), includes such items 
as the type of machining feature, the dimensional and 
geometric information of each workpiece, and the loca-
tion of these information in the image. The four different 
cases examined by the developed network are illustrated 

in Fig. 8. In Fig. 8a,b, two single machining features (fil-
let and chamfer) with the relevant dimensions have been 
recognized. The workpiece shown in Fig.  8c consists 
of four machining features in 3D views. Another work-
piece examined by the network is illustrated in Fig. 8d 
that shows a 2D image of a workpiece consisting of five 
machining features. The MFR_Net could successfully 
recognize all the machining features and their relevant 
information. The feature information shown in Fig. 8 is 
summarized in Table 3.

4  Results and discussion

As shown in the case studies, MFR_Net was able to 
identify machining features with all the dimensions 
and sizes listed on the workpiece’s image. The method 
introduced in this research does not require repeated con-
version of design data, as is the case in the traditional 
methods. The specifications of machining features are 
directly extracted from the image of the workpiece. In 
the methods based on a deep learning approach such as 
FeatureNet and MSVnet, the input data is still in B-Rep 
format, as in the traditional methods. In these methods, 
in addition to converting design file data into B_Rep 
format, the database models are converted from B-rep to 
spatial occupancy enumeration, also known as voxels, 
which adds one more conversion of input data to the sys-
tem. The recognition process in these methods is, thus, 
more complicated. In previous methods including both 
the traditional methods and those based on deep learning 
approaches, some data can be lost due to the geometric 
interference of features. Whereas the method presented 
in this research is able to identify all features even with 
partial views of the feature’s image, in 3D or 2D repre-
sentation. This can be seen in Fig. 8c,d.

Fig. 7  Training curves in Adam optimizer for each iteration: a exponential learning rate decay, b error value changes, and c average precision
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As can be seen in the case studies, all information such 
as the types of machining features, their dimensions, coor-
dinate centers, and their locations in the images are recog-
nized by MFR_Net, whereas the previous methods such 
as FeatureNet and MSVnet, classified as deep learning 
networks, are just able to identify the types of machining 
features.

Although both FeatureNet and MSVnet are able to identify 
24 machining features, and the MFR_Net network is currently 
developed for the identification of 4 independent machining fea-
tures, the architecture of all three subnetworks is independent of 
the number of identifiable features. By increasing the number 
of samples in the databases and retraining them, it is possible to 
develop networks to identify any number of machining features.

Fig. 8  MFR_Net output images: a fillet, b chamfer, c 3D workpiece’s image with 4 MFs, and d 2D workpiece’s image with 5 MFs
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5  Conclusion

The deep learning network, MFR-Net, developed in the pre-
sent study for the identification of 4 pilot machining features 
including round edges, fillets, chamfers, and v-slots is not 
limited to the use of CAD output files but can extract the 
features directly from the images of workpieces. In addi-
tion, MFR-Net adopts CAD files in any format, even hand 
drawings.

Various characteristics of four pilot machining features 
including their names, dimensions, tolerances, and locations 
are identified. The four pilot machining features include 
round edges, fillets, chamfers, and v-slots. Workpieces with 
a single or double feature are dealt with in MFR-Net. A 
distinguishing characteristic of the developed network is 
its capability to distinguish the pertinence between the pri-
mary characteristics and the machining features based on 
the assignment of each primary characteristic to its nearest 
machining feature existing in the image.

The network developed in this study can process the 
design of workpieces even in their initial steps of conceptual 
design. This provides the designer with significant assistance 
to develop the concept and improve the design.

The network is under development to include twenty 
machining features and workpieces with more than two 
machining features.
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