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Abstract
With the rapid development of the manufacturing industry, the demand for autonomy of welding robots is also improving. To 
improve the autonomy of welding robots, the first problem to be solved is the identification and positioning of the weld seam. 
In general, it is a challenge to extract narrow weld seams in workpieces with characteristics such as no texture, smoothness, 
and strong reflection using passive vision sensors. In this paper, we propose a vision-based method for the 2-dimensional (2D) 
and 3-dimensional (3D) detection and localization of narrow weld seams to improve the sensing capability and automation of 
welding robot systems. The method enhances narrow weld seam features by adjusting the image grayscale expectation at the 
time of shooting to achieve weld seam recognition within the field of view. Then, the point cloud of the weld area is obtained 
using the triangulation technique of stereo vision to realize weld seam localization. Finally, the calculated weld trajectory is 
matched with the trajectory extracted from the workpiece model to realize recognition of welding tasks. Experiments were 
conducted on ferrous and galvanized workpieces, and the final experimental results demonstrate the effectiveness of the 
proposed method.

Keywords Narrow weld seam · Stereo vision · Welding robot · Point cloud · Trajectory matching

1 Introduction

With the rapid growth of manufacturing in the automo-
tive, shipbuilding, and aerospace industries, welding plays 
an indispensable role in joining metals in manufacturing. 
Due to the harsh working environment, increased costs, and 
lower quality of manual welding, welding robots are being 
used more and more in the industry. Compared to humans, 
welding robots offer advantages such as accuracy, stability, 
consistency, and adaptability. However, it is still difficult 

for welding robots to perform welding tasks automatically 
without human assistance. Robotic welding tasks are imple-
mented mainly through online programming and offline pro-
gramming. Online programming is typically realized using a 
teaching programming method and offline programming is 
automatic programming generation based on design files of 
workpiece [1]. Compared with the online program, offline 
programming decreases the downtime required for system 
programming and resulting in enormous savings in labor 
costs. The offline programming technique is to manually 
plan the trajectory to the virtual model; thus in practice, it 
is necessary to obtain the relative positions of the workpiece 
and the robot. High-precision clamping and positioning or 
writing a program to detect the positioning is generally used. 
As a result, the entire welding cycle becomes longer and 
the efficient advantages of the welding robot cannot be real-
ized. Therefore, the detection and location of the weld seam 
through sensor technology are conducive to improving the 
autonomy of the welding robot.

To identify and extract weld seam, a wide range of sensors 
are used in welding robots to make the welding robots more 
autonomous and intelligent, such as visual sensing, acoustic 
sensing, ultrasonic sensing, and arc sensing [2–4]. Compared 
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with other sensors, the visual sensor has the advantage of 
non-contact characteristics, high precision, fast detection, and 
strong adaptability [5]. Chen et al. [6] proposed a single-
camera stereo vision system to acquire the depth information 
of spatially curved weld seams. However, the results showed 
that the welding accuracy was not adequate in the experiment  
with a low-resolution camera. Dinham and Fang [7] pro-
posed an improved ROI-based method for narrow welds and 
obtained the 3D Cartesian coordinates of the weld based on 
stereo vision, but this method was only available for welds on  
a single plane. Yang [8] proposed a seam extraction and 
identification algorithm to extract and identify weld seams 
of various shapes and sizes without any prior knowledge of 
the geometry of the workpiece by passive vision sensors. 
However, this method cannot achieve 3D positioning of the 
weld seam by the welding robot.

Compared with passive vision sensors, active vision sen-
sors can acquire high-precision depth information. The laser 
sensor is a typical active vision sensor with desired detection 
accuracy and reliability, mostly used in the weld seam track-
ing stage. In some studies, laser sensors can also be used 
for the starting point detection of narrow weld seams with 
high accuracy. Liu et al. [9] proposed a method to precisely 
identify the initial weld position by employing an automatic 
dynamic programming-based laser light inflection point 
extraction algorithm. However, the trajectory information 
sensed by the laser sensor is relatively least, and it provides 
the least sensing information for the welding robot, which 
is more suitable for precise welding applications. In recent 
years, a new coded structured light sensor with better per-
formance in 3D reconstruction has attracted the attention of 
many scholars [10, 11]. Xiao et al. [12] proposed a new 3D 
sensing and point cloud modeling approach to realize the 
accurate extraction of weld seams. Patil et al. [13] proposed 
a novel algorithm to classify and extract weld seams from 3D 
point clouds, which is independent of the shape of the work-
piece. Yang et al. [14] proposed a novel weld seam extraction 
system with a structured light sensor, which can be applied to 
many types of weld seam detection and has good robustness 
to complex welding environments. However, this sensor is 
difficult to be applied in the detection of narrow butt welds.

Although the current laser sensor can identify the ini-
tial position with high accuracy, it is difficult to identify 
the entire trajectory of the weld due to its small amount 
of sensed information. When the weld trajectory informa-
tion of multiple workpieces is known, it is difficult for laser 
sensors to achieve autonomous welding by welding robots 
through trajectory recognition. Traditional passive vision is 
mostly used for 2D identification of flat welds, while the new 
encoded structured light camera has difficulty in identifying 
narrow butt joints. Therefore, we propose a method for nar-
row weld seam detection and localization based on binocular 
stereo vision in this paper to improve the perception and 

autonomy of the welding robot system. The method iden-
tifies narrow weld seams and reconstructs the weld seam 
point cloud using stereo vision techniques. Then, the point 
cloud information is matched with the known weld trajec-
tory to achieve recognition of the 3D trajectory of the weld. 
In addition, the trajectory matching process can realize the 
localization of the entire weld seam, which in turn guides 
the welding robot to complete the welding task. The final 
experimental results show the effectiveness of the proposed 
method.

This paper is organized as follows: In Sect. 2, the system 
description and architecture are introduced. The details of 
the weld seam extraction and trajectory planning of the pro-
posed method are presented in Sect. 3. The corresponding 
experimental results and discussion are given in Sect. 4. The 
conclusions are given in Sect. 5.

2  System description and architecture

To achieve the goal of narrow weld detection and localiza-
tion, the schematic diagram of the experimental system is 
shown in Fig. 1, which consists of a binocular camera, a 
welding robot, and an industrial computer. The binocular 
camera is mounted on the robot and the workpiece is placed 
on the workbench. The computer-aided design (CAD) file 
containing the 3D model of the workpiece is applied to gen-
erate the robot’s welding trajectory. Stereo vision technology 
is applied to obtain 3D information about the weld seam.

The block diagram of the proposed method is shown 
in Fig. 2, and the whole process can be divided into five 
steps: image capture and preprocessing, edge chain detec-
tion, 3D reconstruction of the weld seam, curve fitting, 

Fig. 1  The schematic diagram of the experimental system
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and trajectory matching. In the image capture, through the 
optical analysis of weld features, we propose adjusting 
the image grayscale expectation value to enhance narrow 
weld features. At this stage, the workpiece is captured 
twice at a fixed position, the first time for a normal cap-
ture and the second time for a high grayscale expecta-
tion capture. The image pre-processing is divided into 
two parts. The first is the extraction of the weld seam 
region in the high gray value image, and then the stereo 
rectification of the binocular image is completed. Edge 
chain detection mainly completes the detection of the 
weld seam in the image and realizes the extraction of the 
weld seam combined with the weld seam area obtained 
in the preprocessing stage. The third step is the sparse 
reconstruction of the extracted weld edge chains to get a 
3D point cloud of the weld area. At this stage, the filter-
ing of the initial point cloud is also completed. The fourth 
step is to fit the weld trajectory based on the weld point 
cloud. Finally, the fitted weld trajectory is matched with 
the weld trajectory obtained from the 3D model of the 
workpiece. The weld trajectory is updated according to 
the transformation matrix acquired during the matching 
process. By transforming the camera coordinate system 
and the robot coordinate system, the weld trajectory plan-
ning of the welding robot can be realized.

3  The proposed method

3.1  Image acquisition and preprocessing

In the field of image processing, researchers have been 
troubled by the problems caused by reflections on smooth 
surfaces. The surface of metal objects is particularly 
reflective, and metal usually has no texture, which has 
always been a difficult point in image processing. When 
the photographed object is a weld, its typical feature is 
that its grayscale difference changes drastically, which is 
also the detection method that researchers have been using. 
However, the illumination changes in the welding environ-
ment are large, and it is generally difficult to completely 
extract the welding seam.

3.1.1  Image acquisition

To enhance the weld seam features, we analyze the cam-
era sensor shooting concept. When we increase the camera 
exposure time, the diffuse reflected light from the object 
surface is fully received by the camera and tends to saturate, 
which is especially obvious on smooth surfaces. As shown 
in Fig. 3, the weld area diffuse reflection diagram, when the 
camera is located above the seam, the seam area reflects 
the least amount of light. As the exposure time increases, 
the grayscale value of the object surface in the image will 
gradually saturate while the grayscale value of the seam 
area is steady and low. As shown in Fig. 4, the image of the 
workpiece at various grayscale expectation values, when 
the grayscale expectation value is adjusted to the maximum 
value, the features of the weld seam area are still obvious. 
Therefore, the binocular vision system takes two frames 
in the same pose to obtain stable weld seam features. The 
grayscale expectation value is set to 120–180 for the first 
acquisition and 250 for the second acquisition, where only 
the left image is retained for the second acquisition.

3.1.2  Region of interest

To extract the weld region better, we set a grayscale threshold 
� . Under the condition of different grayscale expectation val-
ues, the grayscale value of the seam region changes relatively 
stable and below the threshold � . As shown in Fig. 5, the image 
with a grayscale expectation value of 250 is binarized, where 
the threshold � is set to 80. To avoid noise and reduce the data 
to be processed, the region of interest (ROI) method [15, 16] 
is applied. Since a binocular vision system is used, the ROI 
is set within the best field of view of the left view. Here, we 
set the right half of the left image as the ROI. The connected 
part spanning the longest distance within the ROI region is 
considered to be the region where the welding seam is located.

Fig. 2  The block diagram of the proposed method

Fig. 3  The schematic diagram of diffuse reflection in the seam area
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3.1.3  Stereo rectification

The ideal configuration of the stereo vision system is shown 
in Fig. 6. Cl and Cr are the projection centers of the left 
and right cameras, respectively. A point P in the 3D world 
is projected onto the left and right images. Pl and Pr are 
the projections of P in left and right images, respectively. 
The plane formed by the projection center of stereo cameras 

with the point P is known as the epipolar plane. The epipo-
lar line is the intersection of the epipolar plane and image 
plane of stereo cameras. However, it is almost impossible to 
guarantee that the optical axes of the left and right cameras 
are parallel and the imaging planes are co-planar in practi-
cal applications. A small amount of rotation and translation 
between the two image planes must be corrected by epipolar 
lines to meet the ideal imaging characteristics of parallel 
binocular vision. The stereo vision system calibration was 
carried out using a checkerboard grid pattern with a spacing 
of 20 mm*20 mm [17]. In order to reduce the distortion of  
reprojection. The Bouquet algorithm was applied to rectify the 
stereo images in this study to reduce the reprojection error [18].

3.2  Edge chain detection

The weld seams can be detected by edge or contour features 
in the image. In image processing, the features of gray value 
differences can be classified as edge features or contour fea-
tures. The most commonly employed edge detection method 

(a) (b)

(d) (c)

Fig. 4  The workpiece image at different grayscale expectation values

Fig. 5  Binarization result of high grayscale expected value image
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in weld seam extraction is the differential operator method. 
The differential operator method is a classical edge detection 
method, which is based on the gray change of image for each 
pixel in their areas, using the edge close to the first-order or 
second-order directional derivative to detect the edge [19]. 
Although edge detection can be accomplished perfectly by 
the differential operator method, and check each pixel of an 
image belongs to an edge or not, it cannot identify whether 
an edge pixel belongs to welds or not. Hence, a grouping 
method that chains edge points together is proposed to dis-
tinguish edge pixels. To reduce the noise and extract the 
edge representing weld seam, the edge chain is a suitable 
method.

As the traditional edge detection, the first step of the edge 
chain detection is to calculate the gradient. The gradient 
magnitude can be expressed as

where the Gx and Gy are the X and Y derivatives at the point 
being considered, respectively. The direction of the gradient 
can be expressed as

Similarly, the upper threshold �u and the lower threshold 
�l of the gradient magnitude are used as the critical param-
eters of the algorithm. The hysteresis thresholding method 
is applied to remove the weak edges and connect the split 
edges. To detect more potential edge pixels, it starts at a 

(1)M =

√
Gx

2 + Gy
2

(2)� = arctan(
Gx

Gy

)

pixel that is greater than �u and searches all 8 surrounding 
neighbors. If the neighbor is greater than �l , then it will 
also become an edge. Besides, the non-maximum suppres-
sion method is also applied in the proposed algorithm.

For an edge pixel A with the gradient direction �a , if a 
neighbor pixel B also belongs to the edge with the gradient 
direction �b . They can be connected if

where (va, vb) , (ub, vb) are the pixel coordinates of A and B, 
respectively; Δx and Δy are the distance between A and B in 
X-axis direction and Y-axis direction, respectively; �0 is the 
orientation difference between A and B. In order to reduce 
the computational cost of the weld seam extraction algo-
rithm and reduce noise from rust and scratches, a threshold 
� of the edge chain length is applied. Only long-enough edge 
chains are retained as meaningful. In this paper, Δx is set to 
1, Δy is set to 2, �0 is fixed empirically to 30°, and the chain 
length is set to � = 100.

To refine the edge detection further, the edge pixel 
(u, v) is divided into horizontal and vertical edge points, 
according to the local gradient magnitude. For a hori-
zontal edge point, the pixel is a horizontal local maxi-
mum of the gradient modulus ( M(u − 1, v) < M(u, v) and 
M(u, v) > M(u + 1, v) ) and the image gradient is more 
horizontal than vertical at that point |Gx(u, v)| > |Gy(u, v)| . 
Analogously, the pixel will be a vertical edge point when 
M(u, v − 1) < M(u, v) and M(u, v) > M(u, v + 1) and the 
image gradient is more vertical than horizontal at that 
point |Gx(u, v)| < |Gy(u, v)| . If two edge points are hori-
zontally (or vertical) adjacent, and one of them is regarded 
as a horizontal ( or vertical) edge point, then the other 
edge point will be deleted. The comparison result of edge 
refinement is shown in Fig. 7. Compared with canny edge 
detection, the proposed edge chain detection can obtain 
more accurate pixels.

Combining with the results of image preprocessing, the 
weld seams pass or are partly contained in the weld seam 
region of the image. Only a long-enough edge chain can be 
retained. The weld seam extraction result of the left image 
is shown in Fig. 8.

3.3  3D reconstruction of weld seams

Shown in Fig. 6 is the ideal configuration of the stereo vision 
system. For a point P with world coordinates (X, Y, Z) , 
the depth information can be calculated by the following 
equation:

(3)

⎧
⎪⎨⎪⎩

�ua − ub� < Δx

�va − vb� < Δy

�𝜃a − 𝜃b� < 𝜃0

Fig. 6  The ideal configuration of the stereo vision system
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where f is the focal length of the camera, b = ‖T‖ is the 
baseline length, and d is the disparity between the mapped 
point in the left and right images. Then, the other coordi-
nates can be calculated by

where x and y represent the modified coordinates of the point 
P in the image frame.

3.3.1  Sparse matching

It is certainly wonderful to be able to accomplish a dense 
reconstruction of a 3D model of a workpiece. However, in 
welding applications, especially narrow butt welds, the 3D 
information on the workpiece surface is not as important as 
expected. In addition, 3D reconstruction of the workpiece 
surface is computationally expensive due to the peculiari-
ties of the metal surface. Therefore, a better approach is to 
obtain the most accurate sparse reconstruction possible. 
The edge is a typical feature; it can be used for sparse 3D 

(4)Z = f ∗
b

d

(5)X = Z ∗
x

f

(6)Y = Z ∗
y

f

reconstruction [20, 21]. Since the edge chain represents the 
weld seam extracted, the disparity of the edge chain can be 
computed by feature matching.

According to [22], the first step to calculating the dispar-
ity is the matching cost computation. The matching compu-
tation is to find the lowest cost for each candidate. Consider-
ing the light influence, the match computation is based on 
normalized cross-correlation (NCC), which has the advan-
tages of robust to slight deformations and lighting changes. 
If a pixel p of the left image Il corresponds to the pixel p + d 
of the right image Ir , the NCC similarity measure between 
two pixels with neighbors can be calculated by

where Īl(p) is the mean value of pixels in the window Wl(p) 
centered at p, and Īr(p + d) is the mean value of pixels in the 
window Wr(p) centered at p + d.

In the sparse match, the cost aggregation step is fused 
with the disparity optimization step. In general, the disparity 
of a pixel corresponds to the minimum matching cost value 
as the final disparity is called win take all. To eliminate false 
matches, disparity optimization will be run twice, with ref-
erence images to choose either the left or right image. The 
disparity can be reserved if they correspond to pixel consist-
ency in the disparity optimization processing. However, the 
disparity optimization method is difficult to apply in pro-
cessing a ferrous metal image with less texture. Besides, the 
corresponding edge pixel in the left and right images may 
not be detected at the same time. Hence, we proposed basic 
principles for sparse matching.

1. Under the scanline, if the edge pixels belong to the 
same edge chain and are adjacent, only the pixels with a 
lower matching cost are reserved for disparity calculation.

2. Under the scanline, the priority of sparse matching 
disparity calculation is determined according to the match-
ing cost, a pair of pixels with a lower matching cost is given 
priority, and then the error points are eliminated according 
to the principle of epipolar constraint.

Neighboring pixels belonging to the same edge chain are 
given the optimal disparity based on their matching costs, 
which is done to minimize noise and improve reconstruction 
accuracy. Prioritizing the pixel points with lower matching 
costs in the disparity range can reduce the mis-matching to a 
certain extent. After completing the calculation of the paral-
lax, the real physical coordinates of the weld point cloud in 
the camera coordinate system can be calculated by Eqs. 5, 
6, and 4. As shown in Fig. 9, the point cloud of S-shaped 
weld seam.

(7)

NCC(d) =

∑
tL∈WL(p),

tR∈WR(p+fp)

[Il(tl) − Īl(p)] × [Ir(tr) − Īr(p + d)]

√ ∑
tl∈Wl(p)

|Il(tl) − Īl(p)|2×
√ ∑

tr∈Wr(p+d)

|Ir(tr) − Īr(p + d)|2

Fig. 7  Edge detection comparison results. a Original image. b Canny 
edge detection. c The refined edge detection

Fig. 8  The weld seam extraction results of the left image. a Edge 
chain detection results. b The weld seam extraction results
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3.3.2  Point cloud filtering

Although the accuracy of the weld feature is refined in the 
image processing stage, the noise points will inevitably 
appear in the generated weld point cloud data caused by the 
influence of illumination and the influence of the metal black 
surface on the stereo matching. To obtain a more accurate 
weld seam trajectory, it is necessary to filter the point cloud 
and remove some discrete points far from the point cloud 
of the weld seam. The point cloud data of the narrow weld 
seam can be defined as a point set P =

{
p1, p2, ..., pN

}
 . The 

radius outlier removal filter is applied to remove the noise. 
At a point pi in the point set P, if there are less than M points 
in the range of the spherical radius R of the point P, then the 
point pi is regarded as a noise point. Besides, the statistical 
outlier removal filter is also applied to remove the sparse 
outliers.

3.4  Curve fitting

Narrow welds can be fitted into a curve, which can further 
improve the accuracy of the point cloud and reduce the 
number of midpoints in subsequent calculations. The com-
monly used methods of welding robot trajectory fitting are 
mainly polynomial fitting and spline function fitting. Com-
pared with polynomial fitting, the spline function fitting has 
high accuracy and can fit irregular curves, which can better 
achieve the fitting effect. A parametric B-spline curve C(t) 
of order p is defined by

where Qi(i = 0,… ,m) are control points and Bi,k(t) are the 
nomalized B-spline functions of order k defined on a knot 
vector. Now, we have a set of point cloud, which represent 
the shape of an unknown curve with considerable noise. To 
order the point data along the fitting curve, we can minize 
the error function

(8)C(t) =
∑m

i=0
QiBi,k(t)

where Xi(i = 0, 1,… , n) represents sample points, and 
d(C(t),Xi) = mint

‖‖C(t) − Xi
‖‖ is the Euclidean distance of 

the data point Xi to the curve C(t). To solve this problem, 
the control points Qi are considered to be column vectors, 
and can be expressed as

Similarly, the sample points Xi are considered to be col-
umn vectors, and can be written as

Then, the error function can be expressed as

where the tp ∈ [0, 1], is scaled sample time. The error func-
tion measures the total accumulation of squared distances. 
To solve this problem by minmizing the error, we can find 
the minimum point when all its first-order partial deriva-
tives are zero. The first-order partial derivative is term of 
the control point Qi and can be expressed as:

The first-order partial derivative is set equal to the zero 
vector; we can get the equations

where A = [Bi,j,k(tp)] is a matrix with m + 1 rows and n + 1 
columns. This equation can be regarded as a least-squares 
problem. The equation can be represented as

The control points Q̂ can be obtained by solving Eq. 15. 
Shown in Fig. 10 are the filtered point cloud and fitted curve.

3.5  Trajectory matching

The points representing the weld seam are calculated from 
pixel coordinates and cannot be used directly by the welding 
robot. Although a more artificial way of setting the inter-
polation can be obtained by fitting, it is difficult to obtain 
the complete weld trajectory by one capture. Therefore, the 

(9)f =
1

2

∑m

i=0
d2(C(t),Xi)

(10)Q̂ =
[
Q0 Q1 ⋯ Qm

]T

(11)X̂ =
[
X0 X1 ⋯ Xn

]T

(12)E(Q̂) =
1

2

m∑
i=0

‖‖‖‖‖‖

n∑
j=0

Bj,k(tp)Qj − Xi

‖‖‖‖‖‖

2

(13)
dE

dQi

=

m∑
p=0

n∑
j=0

Bi,k(tp)Bj,k(tp)Qj −

m∑
p=0

Bi,k(tp)Xp

(14)
0 =

m∑
p=0

n∑
j=0

Bi,k(tp)Bj,k(tp)Qj −

m∑
p=0

Bi,k(tp)Xp

= ATAQ̂ − ATX̂

(15)Q̂ = (ATA)
−1
ATX̂ = [(ATA)

−1
AT ]X̂

Fig. 9  The point cloud of S-shaped weld seam
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fitted weld trajectory will be matched with the weld trajec-
tory in the database. This can identify the trajectory in 3D to 
obtain the complete planning information of the trajectory, 
and can also complete the true weld trajectory through the 
matching. The matched weld trajectory information can be 
used directly by the robot to realize the welding task.

From the 3D model of the workpiece, the model tra-
jectory of the weld seam and the planning information 
can be generated. The model trajectory of the weld can 
be defined as W = {w1,w2, ...,wM} . The fitted trajectory 
computed from the stereo vision system can be defined as 
C =

{
c1, c2, ..., cN

}
 . A transformation T can adjust the posi-

tion, pose, and scale between C and W. An objective func-
tion f can be defined. Then, the trajectory alignment problem 
for C and W can be represented by the following mathemati-
cal function:

where R is the rotation matrix and t is the translation vector. 
The problem can be represented more specifically as

where sij are the weights for corresponding points. To find 
the corresponding points, the rotation matrix and transla-
tion vector can be obtained by minimizing the square error 
E(R, t) .

To satisfy the best correspondence between given point 
clouds, the first step is to calculate the nearest point in the set 
C for every point in the set W due to the N ≠ M . The nearest 
distance can be defined as

Since the sequence of the two sets of point clouds is 
inconsistent, a threshold dt is defined to remove the pair of 
points if di > dt . If the point ci is the nearest point to wj , we 
set the weight as sij = 1 , otherwise the sij = 0.

(16)T = argminf [T(C),W]

(17)E(R, t) =

N∑
i=1

M∑
i=1

sij[(Rci + t) − wi]
2

(18)di = min|ci − wj| j = 1, ...,M

The acquired point clouds are arranged in disorder. To find 
the corresponding points more efficiently, a k-dimensional 
tree search model of P is built to quickly find the nearest point 
in C for each point in W [23]. The (R, t) can be obtained based 
on singular value decomposition (SVD). Hence, the center 
point of both sets can be computed as:

The new point set after alignment by the corresponding 
center point can be expressed as:

The covariance matrix can be computed by H = C�W �T , 
and the SVD can be written as:

Then, the optimal solution of (R, t) can be computed by:

In every iteration, the E(R, t) can be computed by trans-
forming the point cloud C using rotation matrix R and 
translation vector t. The iteration is continued until the 
number of iterations reaches a threshold or the E(R, t) is 
lower than the given threshold. Finally, the weld trajectory 
is replaced by the transformed trajectory W.

(19)Centerc =
1

N

N∑
i=1

ci

(20)Centerw =
1

M

M∑
i=1

wi

(21)C� =
{
ci
� = ci − Centerc

}
i = 1, ...,N

(22)W � =
{
wi

� = qi − Centerw
}

i = 1, ...,M

(23)H = UΛVT

(24)R = ΛVT

(25)t = Centerc − RCenterw

Fig. 10  The curve fitting results of S-shaped weld point cloud

Fig. 11  Experimental equipment
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After trajectory matching, we establish a criterion for 
the similarity between trajectories. This can be calculated 
from the distance between the fitted trajectory and the 
model trajectory, which can be defined as

The trajectory pair with the smallest distance is the match-
ing trajectory. The weld trajectory planning for weld robot 
can be obtained by transfom to robot coordinate system.

4  Experiments and discussion

4.1  Experiment setup

To verify the effectiveness of the proposed method in this 
paper, the experiments were conducted using an AUBO 
collaborative robot with six degrees of freedom. The stereo 
vision system consists of 2 grayscale cameras with a target 
plane of 1/1.8 in. and an imaging plane of 3088(H) × 2064(V) 
pixels. The cameras were mounted on the robot arm as shown 
in Fig. 11. The 3D model of workpieces was used in the 
experiment as shown in Fig. 12. The S-shaped narrow butt 
weld and saddle-shaped weld without groove are designed to 
verify the validity of the proposed method.

4.2  Experiment results

In the experiment, the robot with the stereo vision system 
moves above the workpiece, where the left camera is moved 

(26)Dist =
1

N

∑N

i=1
d2(W, ci)

as vertically down as possible to capture the workpiece. The 
experiments were performed indoors with ambient light 
provided by fluorescent tubes in the ceiling.The results of 
aligning the S-shaped weld fitting trajectory extracted by the 
stereo vision system with the model trajectory are shown in 
Fig. 13. After trajectory matching, the updated S-shaped 
weld trajectory is complete and can further reduce the influ-
ence of the single-point error.

To verify the effectiveness of the proposed method for 
spatially narrow welds, experiments were also performed 
on saddle-shaped weld seams. One of the reasons for using 
saddle-shaped weld seams is to verify the effectiveness of 
the method for narrow welds with complex spatial curves. 
Due to the properties of the optical sensor, complex curved 
welds may be blocked by the workpiece itself, and only a 
local area of the weld can be obtained. Secondly, it is used 
by many researchers as a typical complex welding seam, 
which makes it convenient to compare the experimental 
results with previous similar studies. The image process 

Fig. 12  The 3D model of weld workpiece

Fig. 13  The S-shaped weld seam trajectory detection result

Fig. 14  The image process results of the saddle-shaped weld seam. a 
The left image with hight grayscale expection value. b The left image 
after stereo rectification. c The right image after stereo rectification. 
d The weld seam extraction results of left image. e The edge chain 
detection results

Fig. 15  The saddle-shaped weld seam trajectory detection result
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results of saddle-shaped weld seam workpieces are shown 
in Fig. 14. The results of the point cloud processing of the 
saddle-shaped weld seams are shown in Fig. 15. The accu-
racy of the obtained initial point cloud is relatively poor 
and the weld seam cannot be extracted completely due to 
the pose of the cameras. However, the complete weld seam 
trajectory can be better obtained by fitting the point cloud 
and the trajectory matching.

4.3  Error analysis

The method proposed in this paper refines the 3D position 
of the weld trajectory twice. The first time is to perform 
curve-fitting on the weld point cloud to eliminate part of the 
point cloud error, and the second time is to further eliminate 
the error through trajectory registration. The error analysis 
is divided into two parts, one is the alignment error between 
the fitted trajectory and the model trajectory, and the other 
is the error between the aligned trajectory and the real tra-
jectory in the robot coordinate system. The matching error 
between the fitted trajectory and the model trajectory is used 
to verify the effectiveness of the matching method. Shown in 
Figs. 16 and 17 are the root mean squared errors between the 
fitted sampling points and the matched model trajectory for 

S-shaped welds and saddle-shaped weld seam, respectively. 
Compared with S-shaped welds, the matching accuracy of 
saddle-shaped weld seams is relatively low. The main reason 
is that the length of the saddle-shape weld seam trajectory 
obtained from the vision system is lower compared to the 
overall trajectory, and the rougher surface of the saddle-
shaped weld seam results in a disparity deviation. From the 
matching results, both types of shapes of welds can complete 
the trajectory matching well, and the matching accuracy is 
within the acceptable range.

In order to evaluate the error between the updated tra-
jectory obtained after matching and the real trajectory, we 
calibrate the robot tool central point, camera coordinate 
system, and robot coordinate system. By means of manual 
robot demonstrations, experiments are performed on real 
weld seams to verify the error between the acquired trajec-
tory and the actual trajectory. The maximum and root mean 
square errors for S-shaped and saddle-shaped weld seams are 
shown in Table 1 and Table 2, respectively. Considering the 
calibration error between coordinate systems and the error 
of the teaching process, the proposed method can guide the 
welding robot to complete the welding task.

4.4  Comparison with the existing method

To better validate the proposed algorithm, the existing algo-
rithm is compared with the algorithms proposed in the lit-
erature [6] and [7]. All these studies conducted experiments 
on S-shaped butt narrow welds, while Chen also conducted 
experiments on intersecting curve welds. Since neither Chen 
nor Dinham gives the root mean square error, we compared 
the maximum detection error under different types of welds. 
The comparison results are shown in Table 3. Our method 
has similar accuracy to Dinham’s method when dealing with 
plane curve weld. However, when dealing with spatially 
curved welds, our proposed method has higher accuracy. 
The proposed method is also capable of matching and com-
pleting the weld trajectory compared to previous methods.

Fig. 16  The root mean square error between matching trajectories of 
the S-shaped weld seam

Fig. 17  The root mean square error between matching trajectories of 
the saddle-shaped weld seam

Table 1  The S-shaped weld seam

Case X-axis Y-axis Z-axis

Maximum error 0.69 mm 0.54 mm 1.16 mm
RMSE 0.42 mm 0.35 mm 0.67 mm

Table 2  The saddle-shaped weld seam

Case X-axis Y-axis Z-axis

Maximum error 0.77 mm 0.68 mm 1.65 mm
RMSE 0.55 mm 0.49 mm 0.98 mm
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5  Conclusion

This paper presents a method to identify narrow weld seams 
and obtain their 3D location based on binocular vision. The 
proposed method not only realizes the 2D detection of nar-
row welds in images but also acquires 3D coordinates of the 
welds. This approach improves the weld seam recognition 
capability of the welding robot system. With known weld 
trajectory planning information, the autonomy of the weld-
ing robot is improved, and the assembly accuracy require-
ments of the workpiece are reduced. The main contributions 
of this paper are as follows: 

1. A method to enhance the weld seam features by adjust-
ing the grayscale expectation value is proposed. Com-
bined with edge chain detection, the weld seams in the 
image are extracted.

2. The sparse reconstruction of spatially curved welds 
is achieved on the basis of stereo vision techniques to 
obtain 3D information about the welds.

3. The trajectory matching method is proposed to realize 
the complement of weld trajectory for robot welding 
trajectory planning. In future research, we will further 
utilize the point cloud information acquired by sensors 
to improve the autonomy of the welding robot.
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