
The International Journal of Advanced Manufacturing Technology (2022) 121:5835–5854

Vol.:(0123456789)1 3

https://doi.org/10.1007/s00170-022-09610-5

ORIGINAL ARTICLE

Exploring the concept of Cognitive Digital Twin from model‑based
systems engineering perspective

Lu Jinzhi1 · Yang Zhaorui2 · Zheng Xiaochen1 · Wang Jian2 · Kiritsis Dimitris2

Received: 9 March 2022 / Accepted: 23 June 2022
© The Author(s) 2022

Abstract
Digital Twin technology has been widely applied in various industry domains. Modern industrial systems are highly com-
plex consisting of multiple interrelated systems, subsystems and components. During the lifecycle of an industrial system,
multiple digital twin models might be created related to different domains and lifecycle phases. The integration of these
relevant models is crucial for creating higher-level intelligent systems. The Cognitive Digital Twin (CDT) concept has been
proposed to address this challenge by empowering digital twins with augmented semantic capabilities. It aims at identifying
the dynamics and interrelationships of virtual models, thus to enhance complexity management capability and to support
decision-making during the entire system lifecycle. This paper aims to explore the CDT concept and its core elements follow-
ing a systems engineering approach. A conceptual architecture is designed according to the ISO 42010 standard to support
CDT development; and an application framework enabled by knowledge graph is provided to guide the CDT applications.
In addition, an enabling tool-chain is proposed corresponding to the framework to facilitate the implementation of CDT.
Finally, a case study is conducted, based on simulation experiments as a proof-of-concept.

Keywords Cognitive Digital Twin · Digital Twin · Knowledge graph · Semantic modelling · Model-based systems
engineering · KARMA language

1 Introduction

The complexity of modern industrial systems is continu-
ously increasing. A highly complex industrial system, such
as a smart manufacturing system, can be defined as a system-
of-systems (SoS) [1]. SoS is a large-scale integrated system
with multiple independent systems working collectively for
a common mission [2]. Each of the systems may consist of
many interconnected subsystems and components. Empow-
ered by Information and Communication Technologies
(ICT) and Cyber-physical Systems (CPS), a large number
of virtual entities, such as data, information and knowledge
related to the systems, subsystems and components, are gen-
erated, which compose the virtual space of the SoS. Certain
digital models are required in order to specify, detect and

resolve dependencies among these virtual entities. During
the entire SoS lifecycle, these virtual entities are evolving
frequently, which makes it even more challenging to handle
the architectural dependencies among different SoS systems,
subsystems and components. Therefore, reliable approaches
and tools are needed for the complexity and change manage-
ment, as well as prediction of evolution dynamics [3–5].

The Digital Twin (DT) concept provides a method to con-
nect physical and virtual spaces. It was first defined in [6],
where a three-dimension DT model was proposed: a DT
consists at least three elements, i.e., physical entities in real
space, virtual entities in virtual space, and the communica-
tions between physical and virtual entities. In recent years,
DT has been widely applied in various industrial sectors and
the enabling technologies of DT have been evolving rapidly.
It reflects the increasing demand of integrating physical sys-
tems with their virtual models [7]. A five-dimension DT
model was proposed in [8] to promote the DT applications.
It is an extended version of the previous three-dimension
DT model with two more elements, i.e., DT data and ser-
vices. As a key enabling technology for Industry 4.0, DT
technology has been reshaping the modern manufacturing

 * Zheng Xiaochen
 xiaochen.zheng@epfl.ch

1 ICT for Sustainable Manufacturing, Ecole Polytechnique
Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland

2 University of Electronic Science and Technology of China,
Chengdu 611731, China

Published online: 29 July 2022/

http://orcid.org/0000-0003-1506-3314
http://crossmark.crossref.org/dialog/?doi=10.1007/s00170-022-09610-5&domain=pdf

The International Journal of Advanced Manufacturing Technology (2022) 121:5835–5854

1 3

systems from many perspectives such as production plan-
ning and control, production process simulation product
fault warning, equipment status monitoring and predictive
maintenance, layout planning, production index optimiza-
tion [9, 10].

DTs are expected to support different phases of the system
lifecycle, such as design, production, and maintenance [11].
An industrial system may have many DT models across its
lifecycle corresponding to different system, subsystems and
components. DT models created by different domain experts
may have different protocols and standards, which results in
heterogeneous structures, in terms of syntax, schema, and
semantics. Moreover, DT models evolve frequently across
the lifecycle, making them even more difficult to manage.
According to a survey about DT applications [7], a universal
design and development platform is required to facilitate the
integration of different DT models.

When developing an integrated DT platform, semantic
modelling is commonly used to capture complex system
information in an intuitive way and to provide a concise,
high-level description of that information [12]. It formal-
izes the information using standardized formalism making
possible of specifying direct interrelationships among vari-
ous systems. In addition, a series of tools are available for
the design, maintenance, query, and navigation of semantic
models, which makes it a promising solution to facilitate
the integration of heterogeneous DT models across system
lifecycle phases and domains. Previous study [13] has dem-
onstrated the feasibility to build semantics-based DT models
using semantic technologies. Researchers [14] make use of
semantic models to describe the rules, computing processes
and interrelationships related to computing models in order
to support automatic decision-makings. Targeting at the
manufacturing domain applications, a decision-making DT
platform based semantic models is proposed for monitoring
and controlling the machining quality [15].

Advanced semantic technologies like Knowledge Graph
(KG), have been widely adopted in recent years. KG enables
to represent information in a triple format with entities and
relationships based on the defined ontology. Moreover, it can
be used to derive new knowledge using a reasoner [16, 17].
Previous studies have explored the application of KG in DT
development and implementations. It is considered as a main
enabling technology for the next generation DT paradigm for
linking and retrieving heterogeneous data, as well as descrip-
tive and simulation models [18]. For example, a semantic
DT solution was proposed in [19] based on an enterprise
KG. It proves that semantic technologies enables to provide
a formal representation to reinforce the capability of DT.
A knowledge graph model is applied in [20] for integrated
knowledge representations for designing data, processing
data, inspection data and additional data. Graph-based query
languages play a important role for knowledge retrieving

with semantic modelling [21]. They support extracting and
inferring knowledge from large-scale production data, as
well as enable KG queries thus to enhance complexity man-
agement of DT models with reasoning capabilities.

When using semantic models, ontology is the basis to
support unified knowledge description and DT integration
among the specific fields across the entire system lifecy-
cle. Particularly, when using upper-level ontologies such as
Basic Formal Ontology (BFO) [22] and Industrial Ontolo-
gies Foundry (IOF) domain ontologies, different ontology
models can be integrated using a unified format to promote
data interoperability. For example, the IOF-MBSE domain
ontology is used in [23] to describe co-simulation models
based on a standardized artifact representation. Then, using
the same ontology, semantic models are used to represent
the model structure of verification models in order to real-
ize DT integration [24]. However, the manual construction
of ontologies is a time-consuming task [25] which restricts
the applications of semantic models. Thus, more efforts on
the ontology definitions should be made for managing the
complexity of DTs.

From the perspective of the cognitive evolution of IoT
technologies, Ahmed [26] proposed the Cognitive Digital
Twin (CDT) concept as an augmented digital representation
of a physical system, including its subsystems, with certain
intelligent capabilities. The authors of [27] categorized DTs
into digital twins, hybrid twins and cognitive twins on the
basis of their intelligent capabilities. According to this cat-
egorization, digital twins are isolated digital models; hybrid
twins are interconnected models with integrative prediction
capabilities; and cognitive twins are incorporated with cog-
nitive features like sensing complex and unpredicted behav-
iors, and reasoning for optimization strategies. In a previous
study [28], the CDT concept is defined as digital twins that
are augmented with semantic capabilities to trace the dynam-
ics of virtual model evolution; to identify interrelationships
between virtual models; and to enhance decision-making.
This definition emphasizes the critical roles of semantic and
knowledge graph technologies for CDT. When developing
CDT, ontology plays an important role to support semantic
modelling for each digital twin. As demonstrated in previ-
ous studies [19–21], semantic modelling and KGs are key
enabling technologies to empower cognitive capabilities of
DTs thus to realize the CDT paradigm.

CDT represents a promising evolution trend of the current
DT technology and is expected to push forward the manufac-
turing technologies to a higher level of intelligence. Some
recent studies and projects have been aiming to apply CDT
in different industry sectors and manufacturing domain is
one the main focuses. A cognitive twin toolbox conceptual
architecture was developed and applied to several use cases
such as operational optimization for aluminum production,
silicon production, steel and related products production

5836

The International Journal of Advanced Manufacturing Technology (2022) 121:5835–5854

1 3

etc. [27, 29]. An application case was presented in a recent
study [30], in which a CDT enabled by KG was developed
to support demand forecasting and production planning in a
manufacturing plant. A knowledge-driven digital twin was
developed in [31] by integrating dynamic knowledge bases
with digital twin models to enable intelligent services for
autonomous manufacturing such as manufacturing process
planning, production scheduling and production process
analysis.

Despite the promising future depicted by the CDT con-
cept, many challenges remain to be addressed to realize it.
For example, there is a lack of unified reference architectures
to support CDT development; there is no available appli-
cation frameworks to integrate enabling technologies and
to provide an implementation tool-chain. This study aims
to bridge these gaps by providing a novel solution based
on systems engineering and KG to facilitate the integration
of heterogeneous models across the entire lifecycle of an
industrial system.

The main contributions of this study are: first, to explore
the CDT concept using systems engineering methodology;
second, to propose a conceptual architecture for CDT design
according to existing standards; third, to provide a KG-cen-
tric application framework and a tool-chain to facilitate the
implementation of CDT; and finally, to verify the proposed
framework and tool-chain through a case study.

2 Research methodology

This study follows a systems thinking approach to conduct
relevant research activities. Systems thinking is an approach
for capturing system nature by analyzing the interrelation-
ships between the components within the system boundary
[32, 33]. Based on the systems thinking methodology, the
following research steps (RS) are complied:

• RS 1: Define the scope and scenarios of CDT and pro-
vide the definition: The scenarios are defined based on
the experience obtained from relevant research projects
and industrial applications (this part is introduced in
Sect. 3.1). Correspondingly, the scope (systems bound-
ary) and related concepts about CDT are specified. Stake-
holders, as well as their concerns, architecture viewpoints
and views extracted from multiple industrial use cases,
are adopted to initially identify relevant concepts within
the systems boundaries of CDT.

• RS 2: Identify entities related to the scenarios: Within
the system boundaries, the related entities of each sce-
nario are captured (the part is introduced in Eq. (1)), such
as the requirements for constructing CDT [34].

• RS 3: Specify the interrelationships between entities:
Interrelationships between entities refer to interactions

between entities, for example, the traceability between
requirement models and verification models (the part is
introduced in Eq. (1)).

• RS 4: Develop an architecture description accord-
ing to ISO 42010: The formal architecture description
of CDT is developed based on the standard ISO 42010
“Software, systems and enterprise - Architecture pro-
cesses” (introduced in Sect. 3.2).

• RS 5: Construct a CDT proof-of-concept: A prototype
of the proposed CDT is constructed based on an industrial
use case to illustrate its feasibility (introduced in Sect. 3.3).

• RS 6: Evaluation of the case study: Through the
case study, the architecture description of the CDT is
explained and evaluated (introduced in Sect. 4).

Following the aforementioned approach, the proposed CDT
concept, as well as its architecture and application frame-
work are presented in the next section; then, a tool-chain and
a case study are provided in the following section.

3 CDT definition, architecture
and application framework based
on MBSE

3.1 CDT definition

As introduced in previous sections, the CDT concept is
evolved from DT, aiming at integrating heterogeneous DT
models across the entire lifecycle of a system. It is consid-
ered as a subset of DT with additional cognitive capabilities
which is proposed for RS 1 in the research methodology. In
a previous study [35], the CDT concept has been initially
investigated where it was defined as a digital representation
of a physical system that is augmented with certain cognitive
capabilities and support to execute autonomous activities;
comprises a set of semantically interlinked digital models
related to different lifecycle phases of the physical system
including its subsystems and components; and evolves con-
tinuously with the physical system across the entire lifecycle.

It is necessary to clarify that the above definition focuses
on the virtual part of the physical-virtual twin to align with
existing DT studies. Similar to DT, a complete CDT should
also consist of virtual entities and physical entities. To avoid
misunderstanding about the names and follow the commons
of DT studies, in the rest of the paper, the singular form CDT
will be used to represent a complete twin system including
both physical and virtual entities. Whereas the plural form
CDTs is used to represent multiple different CDT couples
corresponding to different application cases.

The main difference between CDT and DT is that cog-
nitive entities of CDT include multiple virtual models
across the entire system lifecycle. Each of the models has

5837

The International Journal of Advanced Manufacturing Technology (2022) 121:5835–5854

1 3

its corresponding ontology descriptions as illustrated in
Fig. 1. The ontology of virtual models describes the fea-
tures of cross-domain models, with the fact that it identi-
fies the interrelationships between different virtual models.
As shown in Fig. 1, it supposes the physical entity is an
engine; then, the virtual entities may include CAD models,
performance models, information models, FEM models,
and CFD models etc. These models are used in the different
phases of the engine’s lifecycle. The ontology is defined as
a representational artifact, comprising a taxonomy as proper
part, whose representations are intended to designate some
combination of universals, defined classes, and certain rela-
tions between them [22]. It is developed as the core to for-
malize the meaning of engine models and interrelationships
between all the models.

Based on the previous definitions and systems engineer-
ing methodology, for a given system, we formally define its
CDT and relevant compositions as follows (RS 2 and RS 3
in the research methodology):

The meaning of each composition in CDT is explained
below:

(1)

CDTsys =PEsys

⋃

CE{
∑

Modelt(Mst,Mpt,

Mtht,Mlt,Mtt,Mmt),

Ontology(entities, relationships)}
⋃

Comm{EntitySt,EntityDe,

DType,DContent}

• CDTSysrefers to the corresponding CDT of a given system
sys;

• The notation a
⋃

b refers to a collection of a and b. a = b
refers to a is equal to b;

• PESys is defined as the physical entities of Sys;
• CE{

∑

Modelt(...), Ontology(..)} is defined as one cogni-
tive entity which is a collection of virtual models related
to Sys with their ontology description;

– Modelt refers to model or data used in the system
lifecycle.

– t refers to a timestamp in system lifecycle which each
virtual model is used at.

– Ms (Model Structure) is defined as model topology
representing model compositions, interrelationships
between them, with entire inputs, outputs and param-
eters in compositions.

– Mp (Model purpose) refers to the goal for modelling,
“why is the model needed?”

– Mth (Modelling theory): the mathematical foundations
for modelling, e.g., differential algebraic equations.

– Ml (Modelling language): modelling languages for-
malizing information and knowledge of the given
system which is defined by a consistent set of rules.

– Mt (Modelling tool): tools for developers to build
models.

– Mm (Modelling method): a concept to explain the
approach to develop models using a given language
to represent the system formalisms in one modelling
tool, e.g., finite element modelling.

Fig. 1 An example of the CDT
concept and its core elements,
i.e., physical entities, cogni-
tive entities (including multiple
virtual models and Ontology
models) and the communica-
tions between them

5838

The International Journal of Advanced Manufacturing Technology (2022) 121:5835–5854

1 3

– Ontology (entities, relationships) refers to the ontol-
ogy description representing the model features and
topology between them, where one entity is defined
as one node with the information related to mod-
els, such as one model composition. The interre-
lationships of entities are defined as relationships
between model compositions which are introduced
with details in a previous study [36]:

• Reference — refers to one interaction to track the
versions of the related Modelt.

• Control — refers to one interaction that Modelt
can control another.

• Co-simulation — refers to one interaction that
real-time data exchange among Modelt and sys.

• Model transform — refers to one interaction that
one Modelt is generated from another by model
transformation.

• Trace — describes that traceability links of data
between different Modelt.

• Copy — describes that one Modelt is copied from
another.

• Refine — describes that one Modelt is refined by
another.

• Verify — describes that one Modelt can verify
another.

• Satisfy — describes that one Modelt can satisfy
another.

• Comm{(...)} is defined as the data and information chan-
nels between physical and virtual models or virtual mod-
els themselves. Each channel has four key attributes:

– EntitySt (Entities of Start) represents the start of the
data and information flow.

– EntityDe (Entities of Destination) represents the end
of the data and information flow.

– DType (Data Type) represents the type of data,
including real-time data and historical data.

– DContent (Data Content) represents the content been
transferred in this data flow.

All of these compositions enable to provide services to
stakeholders, data platform and IoT systems.

It is worth mentioning that the term “CDT” in this paper
represents the concept of cognitive digital twin in general,
whereas in Eq. (1), the “sys” subscript is added to indicate
that “ CDTsys ” is a specific cognitive digital twin of the given
system “sys”. This “ CDTsys ” can be then decomposed to a
set of physical entities, cognitive entities and communication
entities etc., as shown in Eq. (1).

3.2 CDT architecture

Due to the heterogeneity of the virtual models for differ-
ent systems, a unified architecture is needed to facilitate the
development of CDT. Based on the standard ISO/IEC/IEEE
42010 “Software, systems and enterprise - Architecture
processes”, a conceptual architecture of CDT is designed
(RS 4 in the research methodology), as presented in Fig. 2.
According to this standard, the physical entity sys of CDTsys
is defined as a “system” with a physical architecture which
is expressed by an architecture description. Using systems
thinking, systems can be considered as a material entity
or a physical process in the real world. The architecture
description then identifies twins-of-interest, stakeholders
and stakeholders’ concerns respectively. Twins-of-interest
refers to a collection of cognitive digital twins including
cognitive entities and physical entities. Stakeholders refers to
the individuals, teams and organizations related to the twins-
of-interest. Concerns refers to the system interests related to
the stakeholders.

The architecture description includes architecture view-
point, architecture view, correspondence, correspond-
ence rule and rational. The architecture viewpoint refers
to entities for establishing specifications of constructing,
interpreting and using architecture views to frame specific
system concerns. The architecture view refers to entities for
expressing the physical entities from specific concerns. The
correspondence refers to interrelationships of architecture
description entities, such as refinement. The correspond-
ence rule refers to specifications for enforcing relations
and governing correspondences. The rational contains the
description, justification or proof of reasoning about the
architecture decisions. It supports physical entity devel-
opment, including the basis for a decision, alternatives,
trade-offs and potential consequences of the decisions and
reference to sources of additional information. The archi-
tecture viewpoint includes different model types which are
used to develop virtual models based on relevant domain
specifications.

Within the defined architecture, the Ontology in CDT is
used to represent correspondence rule and correspondence
among virtual models

∑

Modelt as Comm{(...)} in order to
construct cognitive entities. Moreover, Ontology enables
to represent Comm{(...)} among physical entity sys and
its models

∑

Modelt as well. Finally, the Ontology is the
basis to support trade-off and reasoning whose outcomes
are recorded as rational. Through this given framework,
the interrelationships between models and Ontology can
be identified clear which is also the reason why the cor-
responding cognitive entities are required for the physical
entities.

5839

The International Journal of Advanced Manufacturing Technology (2022) 121:5835–5854

1 3

3.3 CDT application framework based
on knowledge graph

The application of CDT in industry is a challenging task as
it involves multiple domains and across different lifecycle
phases. A framework is developed based on KG to facilitate
CDT applications (RS 5 in the research methodology), as
shown in Fig. 3. It is composed of the following five main
components:

1. Industrial system dynamics modelling and simula-
tion. The purpose of this component is to develop the
virtual models for a real physical system sys and to sim-
ulate the system behaviors based on different models
∑

Modelt using modelling and simulation approaches.
Most modern industrial systems sys are hybridized by
continuous and discrete systems [37]. Thus, the virtual
models

∑

Modelt are required to simulate the hybrid sys-
tems, continuous systems and discrete systems providing
simulation results for analyzing the system dynamics
using a simulation tool Mt, which are developed based
on mathematical theories related to the physical systems.

Finally, simulation results Modelt are generated for con-
structing CDTSys.

2. KG modelling. KG models are considered as the core to
formalize the Ontology (topological interrelationships),
for virtual models

∑

Modelt and the comm (communica-
tions between physical entities and cognitive entities).
Moreover, the KG models are expected to represent the
services of each CDTSys, which refers to the purposes
of using the CDT. Based on the basic CDT concepts
and domain-specific features of Internet of things [38],
we identify seven main concerns when using CDT for
industrial systems Sys:

• Social impacts of industrial systems
• Business models and ecosystems
• Domain dependent and independent services and

application
• Software architectures of the operational systems and

middle-ware, etc.
• Enabling technologies and systems architecture
• Security and privacy mechanisms
• Management strategies of industrial systems

Fig. 2 Conceptual architecture of cognitive digital twins defined based on ISO/IEC/IEEE 42010 standard (labels in red color represent the com-
ponents defined in Eq. (1))

5840

The International Journal of Advanced Manufacturing Technology (2022) 121:5835–5854

1 3

 Based on the seven main concerns, the KG models
can be developed in four main dimensions [28]:

• Domains consist of the contents related to system
domains including physical entities Sys and commu-
nications comm.

• Model objects refer to the contents related to CDT
models CDTSys, such as virtual models

∑

Modelt and
Ontology (topology between models).

• Organizations represent the organizations related to
the system, such as suppliers and manufacturers as
stakeholders in Fig. 2.

• KG objects contain the key information for support-
ing description, structure, methodology, decision-
making, reasoning and manuals of knowledge graph
models as related architectural viewpoints in Fig. 2.

3. CDT construction. Mt with machine learning and AI
APIs,

∑

Modelt including KG models, historical data
and results of system dynamics are combined to gener-
ate virtual entities of CDTSys. When developing CDT,
machine learning models are trained based on the inputs:
(1) KG models, representing ontology including domain-
specific knowledge and information of virtual models
and their topology; (2) Dynamic simulation results,
representing the predicted dynamic system behaviors

based on simulation models; (3) historical data, repre-
senting the previous behaviors of real systems. Then, the
generated machine learning models are used to support
trade-off and reasoning during development and imple-
mentation of the physical system Sys in order to obtain
the rational for its system behaviors.

4. CDT-based analysis for real-time process and devel-
opment optimization. This component is used to make
decisions and optimize the Sys including physical system
and development processes based on the CDT models
and collected real-time data Modelt . When developing
the system Sys, CDT can provide decision-makings for
designers to select one more expected solution, such as
parameter selections and design space exploration [39].
Moreover, CDT enables to optimize the design solu-
tions in order to find an optimal solution. During sys-
tem implementation, CDT enables to support decision-
makings during anomaly detection and forecasting [40].
Moreover, the optimization can be utilized to manipulate
the physical entity and control the workflow of system
development with better performances as a Sys.

5. Service-oriented interface for data interoperability.
A service-oriented approach are used to support inte-
gration of heterogeneous data based on Open Source
Lifecycle Collaboration (OSLC) from our previous work

Fig. 3 Application framework of cognitive digital twins enabled by knowledge graphs (labels in red color represent the components defined in
Eq. (1))

5841

The International Journal of Advanced Manufacturing Technology (2022) 121:5835–5854

1 3

[41]. The digital engineering assets
∑

Modelt including
models, documents and data across business domains
are transformed to unified data formats through the
developed OSLC adapters. These unified data is used
in different components in our proposed framework to
promote the their interoperability. Moreover, different
business domain systems such as ERP provide real-time
data for making decisions based on CDT.

4 Case study

The aim of this case study is to verify the proposed CDT
conceptual architecture and KG-centric framework for CDT
application (RS 6 in the research methodology). This case is
designed based on a vehicle auto-braking system develop-
ment scenario. A tool-chain corresponding to the application
framework is provided to enable the CDT development and
implementation. A series of simulation experiments are con-
ducted, and a machine learning algorithm is used to create
the AI model for constructing CDT for decision-makings in
the case study.

4.1 Scenario definition

In this case study, a simplified scenario of the vehicle auto-
braking system is defined as shown in Fig. 4. Two vehicles
(V1,V2) are driving on the same direction with different ini-
tial positions (p1, p2), velocities (v1, v2) and accelerations
(a1, a2). A controller is expected to be developed for V2 to
protect it from crashing with V1 in different situations. The
distance between them should be more than 1.5 meters, oth-
erwise they are considered as crashed.

The target of the case study is to develop a CDT to
support decision-making of the controller development.
The CDT is expected to evaluate if the current solution of

auto-braking system architecture represented by the system
models can satisfy the demands of the auto-braking scenario,
i.e., preventing the two vehicles crashing. When developing
this controller, a model-based systems engineering approach
is adopted in the previous work [42]. KARMA (Kombina-
tion of ARchitecture Modeling specificAtion) language is
firstly used to support architecture design including require-
ment modelling, functional modelling, behaviors model-
ling and physical architecture modelling based on SysML
specification [43]. Moreover, based on the code generation
approach, KARMA models of physical architecture can be
transformed to Matlab language scripts which are used to
generate Simulink models automatically [44]. Such Simulink
models aim to simulate the performances of the auto-braking
systems and verify the requirements of auto-braking system.

When developing the auto-braking systems using model-
based systems engineering (MBSE), KARMA models and
Simulink models with different parameters represent differ-
ent solutions. In this case, 100 sets of SysML models and
Simulink models with different parameters are developed as
the solution candidates. The Simulink models provide 100
sets of simulation results as the verification of such candi-
dates. In order to make decisions among these solution can-
didates, a CDT model is expected to analyze the controller
solutions (KARMA models) using the previous simulation
results. Finally, this CDT model will be used in a web-based
process management system to support decision-makings
automatically for the controller development [45]. More
details about this case are introduced in previous publica-
tions as listed in Table 1.

4.2 Tool‑chain for CDT development
and application

The proposed tool-chain is shown in Fig. 5, corresponding
to the application framework. This tool-chain includes Meta-
Graph1 for system modelling, Simulink2 for verification of
the auto-braking system, Protégé3 for ontology construction,
and KNIME4 for data processing and AI model training. The
workflow of these tools is introduced as follows:

1. A controller for the auto-braking system is designed by
system models including requirement models, functional
models, logic models and physical structure models in
a domain-specific modelling tool MetaGraph [43] and
verified by virtual simulation models in Simulink [42].

Fig. 4 Scenario definition of the use case for auto-braking controller
system

1 A domain-specific modelling tool based on KARMA language,
http:// www. zkhon eycomb. com/
2 https:// www. mathw orks. com/ produ cts/ matlab. html
3 https:// prote ge. stanf ord. edu/
4 https:// www. knime. com/

5842

http://www.zkhoneycomb.com/
https://www.mathworks.com/products/matlab.html
https://protege.stanford.edu/
https://www.knime.com/

The International Journal of Advanced Manufacturing Technology (2022) 121:5835–5854

1 3

Such Simulink models can be generated from system
models using the code generation function in Meta-
Graph. The detailed models built in this case study are
listed in Table 2.

2. Ontology models are generated from KARMA models
of auto-braking system architectures which represent
the topology and information related to the MetaGraph
models and Simulink models [46]. Thus, one set of sys-
tem models refers to one entire solution of the auto-
braking controller development. Moreover, the gener-
ated Simulink models are used to verify the solutions
and provide their results for controller performances.

3. Several sets of system models and related simulation
results obtained from Simulink models are imported
to KNIME for data processing [47]. In KNIME, a data-
analysis workflow is developed to capture the required
data from ontology models, to develop machine learning
algorithms for AI model training and generation, and to
validate the AI models based on the captured data.

4. Finally, after the AI models are generated, they are inte-
grated with a process management system in order to
support parameter selection for system developers.

4.3 Virtual model development for CDT
construction

A set of the KARMA models are developed to define require-
ments, functions, behaviors, physical structure and verifica-
tion of the auto-braking system based on the SysML specifi-
cation. Such KARMA models are constructed as one solution
for the auto-braking system development. As introduced in
the Scenario definition, each set of KARMA models repre-
senting one solution has their own parameters5. Moreover,
such models can be used to generate a Simulink model for
verifying the performance of the designed controller.

4.3.1 Architecture models

As shown in 6, some examples of the KARMA models are
created with relevant information listed in Table 2. The phys-
ical entities, cognitive entities and comm construct a com-
plete CDT, which enables to make decisions in the process
management system [45]. The overall architecture design
and verification process for the auto-braking system consists
of the following five phases:

Fig. 5 Tool-chain for CDT development and application

Table 1 Case study and related previous work

Previous work Reference Steps in Fig. 5

A model-driven approach for auto-braking system development [42] Steps 1–3
KARMA Language supporting architecture design of auto-braking system [43] Step 1
KARMA Language supporting code generation for implement Simulink models automatically [44] Step 2
GOPPRRE ontology generation from KARMA language for constructing knowledge graph models [46] Step 4
A process management platform which can integrate CDT for selecting parameters automatically [39] Step 8

5 The entire models are introduced in https:// www. youtu be. com/
watch?v= Flccx JBdtwo

5843

https://www.youtube.com/watch?v=FlccxJBdtwo
https://www.youtube.com/watch?v=FlccxJBdtwo

The International Journal of Advanced Manufacturing Technology (2022) 121:5835–5854

1 3

• Requirement: KARMA models are used to create
SysML Requirement diagrams for describing the require-
ments of the controller when developing the auto-braking

system. As shown in Fig. 7A, requirements such as “top
level requirement for auto-braking system”, “the system
shall provide a base brake funnctionality where the driver

Table 2 Cognitive digital twins constructed for the case study

Entities Models Views

Physical entities Decision-making processes for auto-braking system
design

Making decisions in the process management system
for auto-braking systems

Cognitive entities Models
(Virtual
entities)

Requirement models SysML requirement diagram for formalizing the
requirements of auto-braking systems

Function models SysML use case and activity diagrams for developing
the functions of the auto-braking systems

Behavior models SysML State machine diagram and Sequence diagram
for behavior formalism of auto-braking systems

Physical structure models SysML Block definition diagram and Internal block
diagram for describing the system structure of the
auto-braking systems

Verification models (mirror to Simulink models
which are not included in models)

SysML Parametric diagram and Internal block diagram
to describe the parameter configuration and model
structure of Simulink models

Simulink models Simulation models for verifying the controller
performances

Simulation results Simulation results obtained from Simulation models for
verifying the controller performance

Ontology KG models generated from SysML models described
in OWL

Topologies between all the model entities with their
own information

Comm Integration of CDT models and a web-based process
management platform

Implementations of Decision-makings between system
development process based on cognitive entities

Fig. 6 Construction of the CDT virtual models including architecture models and Simulink models

5844

The International Journal of Advanced Manufacturing Technology (2022) 121:5835–5854

1 3

indicates that he/she wants to reduce speed and the brak-
ing system starts decelerating the vehicle”, are defined in
the Requirement Diagram.

• Function: SysML Use Case and Activity diagrams are
used to develop KARMA models aiming to identify the
use case scenarios and function flow of the controller. As
shown in Fig. 7B, several Use Case diagrams are created
to identify the stakeholders and the features (an abstract
concept of a collection of functions). Such features are
decomposed into 158 functions as shown in Fig. 7C. For
example, the function of breaking control needs four
functions. Such functions are then defined as an entire
function flow, as shown in Fig. 7D, which is used to rep-
resent the functioning process for the entire auto-braking
scenario.

• Behaviors: SysML State Machine diagram and Sequence
diagram are used to develop KARMA models for design-
ing the logic flow of the controller with the behaviors of
each component. As shown in Fig. 7E, system behaviors
of each component are represented by Sequence dia-
grams in order to identify all the physical components in
the physical structure.

• Physical structure: SysML Definition Block diagram
and Internal Block diagram are used to develop KARMA
models for describing physical structure of the auto-brak-
ing system including its components, such as the control-
ler. As shown in Fig. 7F, the entire physical structure is
shown including all the related system components.

• Verification: In order to realize automated testing
from the architecture models, we construct a KARMA
model to derive Simulink models for simulation based

on SysML Internal Block diagram. Moreover, KARMA
models based on SysML Parametric diagram are defined
to support parameter settings for automated testing as
shown in Fig. 8.

It is worth noting that the decision-making process for the
auto-braking system design is considered as the physical
entity in this case study. The main reason is that from the
systems engineering perspective, a process can also be con-
sidered as a system. In this case study, although the targeted
“physical” entity is the auto-braking system, we are focusing
on the design phase of its lifecycle, or more specifically the
decision-making process among different design solutions.
Therefore, the system becomes process-oriented instead
of product-oriented. The physical auto-braking system
becomes the target of the process and more other informa-
tion related to the decision-making process itself is included
to create a more complete “system”. Corresponding to the
decision-making process, different types of models such as
requirement models, function models, behavior models, and
physical structure models are defined as the virtual entities
as introduced above. Among them, the physical structure
models can be mapped to the physical auto-braking system
which can be used in the following lifecycle stages such as
production and maintenance.

4.3.2 Code generation for automatic testing

Enabled by the code generation function of KARMA [45],
the KARMA models of SysML Internal Block diagram are
used to generate the Simulink models. First, a KARMA

Fig. 7 KARMA models in MetaGraph 2.0

5845

The International Journal of Advanced Manufacturing Technology (2022) 121:5835–5854

1 3

script is designed in order to implement code generation.
As shown in Algorithm 1, after identifying all the elements

and connections of the KARMA model which represents
the physical architecture, an M file is generated based on the
developed KARMA script. Then, an M file, which can be
used by Matlab, is generated from KARMA Internal Block
diagram model for generating Simulink Models finally.

Fig. 8 Code generation process from KARMA models for Simulink execution

5846

The International Journal of Advanced Manufacturing Technology (2022) 121:5835–5854

1 3

Moreover, KARMA models of SysML Parametric dia-
grams are used to describe parameter configurations of Sim-
ulink model executions. As shown in Algorithm 2, after each
constraint is identified, based on the connected parameters,
the M script is printed for configuring the parameters in
Simulink based on the KARMA script. Then, it enables to
generate an M file to execute parameter setting and simu-
lations through code generation. Through these KARMA
models, Matlab scripts are generated to configure the Sim-
ulink models and execute the simulation automatically.
During the automatic testing process, 6 key parameters are
captured when implementing the simulations:

• initial position of the V1

• initial velocity of the V1

• initial acceleration of the V1

• initial position of the V2

• initial velocity of the V2

• initial acceleration of the V2

The KARMA model based on SysML Parametric diagram
describes the given range of each previous parameter. Then,
when executing the simulations, the value of each parameter
in Simulink is set for every simulation.

4.4 Machine learning algorithm for CDT
construction

In order to construct CDT, 100 KARMA models based on
SysML specifications are firstly transformed to 100 OWL
files by MetaGraph. Moreover, Simulink models generated
from SysML models are implemented with 100 simulation
results. As shown in Fig. 9A, the OWL models and simula-
tion results from Simulink models are input into KNIME for
developing AI models used in the web-based process man-
agement system. As shown in Fig. 9C, the AI model aims
to import the OWL file (model structural data generated
from KARMA models) to provide a decision-making option
(being crash or not) for the process management system. In
order to train the AI model, the OWL files are transformed to
structural OWL data using SPARQL query [48] and simula-
tion results are labelled as (0 (crash) and 1 (no crash)) based
on the situation if the distance of these two vehicles is less
than 1.5 meters anytime. These labels are mapping to the
structural OWL data which means if the OWL data repre-
senting each solution from KARMA models can satisfy the
demand that these two vehicles cannot be crashed.

The data from labels and structural OWL data are col-
lected as training dataset for a five-layer neural network
model development empowered by the APIs provided by the
Tensorflow in KNIME. Some key parameters of the neural
network model are listed in Table 3. Regarding the training

dataset, 80% of the simulation data (80 pairs of OWL struc-
tural data and labels (1 or 0)) are used to train the neural
network model and the rest 20% are used to test the perfor-
mance of the obtained model.

5847

The International Journal of Advanced Manufacturing Technology (2022) 121:5835–5854

1 3

The details of the data processing are demonstrated in
Algorithm 3. The source code of the data processing and
neural network model training are available online6 with all
the data samples. One set of the data contains one OWL
file and multiple simulation result files generated with Sim-
ulink. Some key parameters and performance indicators of
the neural network model are listed in Table 3. With 80 sets
training of data, the five-layer neural network produced 65%
accuracy with an 86% recall rate among 20 sets of testing
data. The accuracy of the neural network is relatively low

mainly because the size of the data samples is small. Since
the machine learning algorithm is not the main contribution
of this paper, we used a basic neural network structure to
demonstrate the workflow. In real industrial applications,
much larger training data size will be available and more
advanced machine learning algorithms can be applied to
achieve a better performance.

4.5 Applying CDT for supporting decision‑making

As shown in Fig. 5, the trained neural network model based
on historical data referring to the CDT is integrated into a
web-based process management system for the auto-braking

Fig. 9 CDT models supporting automated parameter selections

6 https:// github. com/ zheng xiaoc hen/ cogni tivet wins

5848

https://github.com/zhengxiaochen/cognitivetwins

The International Journal of Advanced Manufacturing Technology (2022) 121:5835–5854

1 3

system development (Fig. 9B). This development process is
developed in our previous research [39] aiming at selecting
parameters for co-simulation of auto-braking system design.
In the previous research, a web-based process management
system is developed to select parameters for co-simulation
based on the Simulink simulation. In this paper, we develop
a CDT which is plugged into the web-based process man-
agement system to provide a decision-making process for
automatic testing. The whole process includes 5 tasks:

• Work task 1, referring to requirement analysis of the
auto-braking system. In this working task, requirement
models are developed using KARMA. Through the web-
based process management system, users can reach to the
requirement models developed in MetaGraph 2.0.

• Work task 2, referring to generating architecture model
for auto-braking systems. In this working task, function,
behavior, physical structure and verification models
are reviewed. After the models are developed, different
stakeholders enable to reach to the related KARMA mod-
els through the web service.

• Work task 3, referring to uploading models for auto-braking
system. In this working task, KARMA models are generated
into OWL models and uploaded to the server which is used
for decision-makings through CDT.

• Work task 4, as shown in Fig. 9C, when the CDT is
integrated with the work task 4, the web-based process
management system implements the CDT through a Java
program which captures the inputs from the OWL mod-
els and then provides the decision-making options if the
two cars are crashed or not without simulations.

• Work task 5, referring to feedback. In this working task,
feedbacks based on the decision-makings from the CDT
are provided to the users in the web-based process man-
agement system.

4.6 Summary of case study

In the above case study, in order to design an architecture
description for the auto-braking system design process, the
architecture design and verification of the auto-braking sys-
tem are considered as two separate architecture viewpoints.
Therefore, the KARMA models and Simulink models are
defined as model type to support the architecture description

of such process. They are essential elements for constructing
the virtual entities. It is worth to mention that the KARMA
models for verification are not considered as virtual entities,
because they are only used to generate Simulink models.
The simulation results generated from Simulink models
are considered as virtual entities in the scope since they are
important to the decision-making process.

The M files for Matlab and KARMA scripts for code gen-
eration are not considered as virtual entities. The reasons
are two-fold: first, they are introduced to generate Simulink
models from KARMA models and have no specific descrip-
tions about the real auto-braking system design process;
thus, they are not included in any architecture view; second,
they are not defined in the ontology models; thus, there is no
relationships defined between them and other virtual entities
such as architecture models, simulation models and simula-
tion results.

The OWL models generated from KARMA models
contain specifications of the topology between virtual enti-
ties. They include the information of KARMA models for
verification which is the mirror to Simulink models, thus,
it is not necessary to add extra information to represent
Simulink. The simulation results are not included in the
generated OWL models. This information is added to the
generated ontology models manually using Protégé. In sum-
mary, the OWL models include the following three types of
information:

• KARMA models including requirement, function, behav-
ior and physical structure models and their topology.

• KARMA models including verification models which are
mirrored to Simulink models and their topology.

• Simulink results which are linked to Simulink models
and their topology.

All the cognitive entities and their quantities in the scope
of the case study are listed in Table 4. There are totally 31
KARMA models, including requirement, function, behavior,
physical structure and verification models. Among them, the
SysML parametric diagram model is configured 100 times
with different settings to generate the Simulink models and
the other 30 remain the same. Therefore, 130 KARMA
models are created for this case study. Simulink models and
results are separately generated by 100 times; thus, their
numbers are both 100. Ontology models are generated by
100 times in order to synchronize with Simulink models. A
dedicated plugin is developed to integrate these virtual enti-
ties into the web-based process management system.

When constructing the cognitive entities, model evolu-
tion, understanding the interrelationships, and enhancing the
decision-makings are three critical features. They are further
elaborated as follows:

Table 3 Parameters and performance of the neural network model

Neural network model Performance

Layers 5 Accuracy 0.65
Batch 30 Recall 0.86
Learning rate 0.001 TN(FN) 7 (1)
Epochs 1000 TP(FP) 6 (6)

5849

The International Journal of Advanced Manufacturing Technology (2022) 121:5835–5854

1 3

First, model evolution is defined from two aspects: (1)
dynamic model evolution across the entire lifecycle; (2)
model evolution based on each model baseline. The first
aspect refers to dynamic model evolution from problem
domain to solution domain across the entire system lifecycle.
In the case study, we develop requirement models, function
models, behavior models, physical structure models, verifi-
cation models and simulation models using KARMA. These
models support the whole development process from prob-
lem domain (black box) to solution domain (white box). All
these KARMA models are transformed to ontology models
including all the evolution information from requirement
to verification. The second aspect is model evolution based
on its baseline. Because all the model topology and param-
eters are described using ontology models, the IT techniques
enable to support version management, change management
and consistency management of KARMA models. Using
such techniques, each KARMA model can be managed from
its baseline and the following versions.

Second, using a unified ontology, virtual entities, physical
entities and their relationships can be formally described.
KARMA language [43] and GOPPRRE ontology [46] pro-
vide a basic specification to develop architecture models.
Meta-models, such as SysML diagrams, are developed under
a unified semantic data structure which promotes the inter-
operability of architecture models. Through code genera-
tions, KARMA architecture models can be transformed to
Simulink models which describe the transformation rules
from architecture to simulation models. With top-level
ontology, such as BFO, ontology models enable to describe
the interrelationships between physical systems, system life-
cycle, architecture models, models in other simulation tools
and other data formats.

Third, the ultimate objective of the developed CDT is
to replace the simulation execution in order to improve the
efficiency of the decision-making process. When using tradi-
tional decision-making processes, Simulink models are cre-
ated through code generation and then executed to obtain the
given simulation results as the input of the decision-making

algorithm, which then provides a final decision reference.
After constructing the CDT with pre-trained AI models,
architecture model information in OWL models is provided
as input of the decision-making algorithm directly. The code
generation and simulation execution are not required com-
pared with the traditional process. In this situation, the effi-
ciency of decision-making process can be promoted.

5 Discussion

5.1 Main achievements

As an emerging concept, CDT is still in its early stage of
development. Although some previous studies have explored
the CDT concept from theoretical perspective, there is still
a lack of successful application cases to realize the concept.
This paper aims to bridge the gap between CDT theoretical
concept and industrial applications by providing a concep-
tual architecture and an application framework containing
necessary enabling technologies and tools.

A case study about auto-braking system development
is used to validate the proposed solution. The CDT of this
system is developed based on ontology models, heterogene-
ous virtual models and system dynamics simulation results.
In this case, the development process of the auto-braking
system can be considered as the physical entity of the CDT.
As shown in Table 2, all the defined concepts related to
the decision-making process for the parameter selection are
captured. Using the KARMA language and Simulink tool,
seven types of models are used as virtual entities. Moreo-
ver, the OWL models generated from KARMA models are
used to represent model information and the topology across
models. All these models compose the cognitive entities of
the CDT. The communication between physical entities and
cognitive entities refers to the integration of the AI models
and the web-based process management system. The results
of the case study prove that the given tool-chain is capable
of constructing a practical CDT.

Table 4 CDT entities and their quantities

Physical entity Decision-making process during the auto-braking system design Quantities

Cognitive entity Models
(Virtual
entities)

KARMA models supporting auto-braking system design, including requirement, function, behavior,
physical structure model

130

Simulink models supporting auto-braking system verification which are mapped to KARMA models
for verification

100

Simulation results from Simulink models 100
Ontology Ontology models developed in Protégé representing topology among KARMA architecture models,

Simulink models and simulation results
100

Comm A plugin for the web-based process management system embedded the CDT to implement decision-
makings without simulation execution [45]

1

5850

The International Journal of Advanced Manufacturing Technology (2022) 121:5835–5854

1 3

The conceptual architecture of the CDT is also validated
through the given case study. In this case, the architecture
description of the physical entity, i.e., the development
process of the auto-braking system, includes viewpoints
conforming concerns from stakeholders: (1) requirement
analysis; (2) function definition; (3) logic flow of each com-
ponents in the auto-braking system; (4) physical structure;
(5) verification of the controller; (6) performance analysis
of the controller. Simulink models and KARMA models
are used to represent views governed by such viewpoints.
Because of code generation from KARMA models, the
information related to Simulink models is represented in
KARMA models. Thus, the OWL models which are gener-
ated from KARMA models, enable to represent the infor-
mation of not only KARMA models themselves, but also
Simulink models and topologies among them. Such OWL
models can be considered as ontology to represent relations
and correspondences. The OWL models are constructed
based on its own schema which can be defined as corre-
spondence rules.

In the case study, the feasibility of the proposed tool-
chain is also validated corresponding to the proposed CDT
application framework. First, Simulink is used to imple-
ment the system dynamic analysis and simulation for con-
structing CDT. Second, OWL models generated from the
KARMA models are constructed for KG modelling. Though
the given KARMA models in the case study only represent
seven viewpoints related to part of the mentioned concerns,
the KARMA language enables to be extended with other
meta-models for further concerns. KNIME is used to inte-
grate AI platforms, OWL models and data from Simulink
model execution in order to construct CDT models. Finally,
the CDT models are integrated with a real web-based pro-
cess management system in order to support decision-mak-
ings of parameter selections during auto-braking system
development.

5.2 Limitations

The work presented in this paper can be considered as a pri-
mary demonstrator to reveal the great potential of the CDT
concept. However, many advanced enabling technologies
are required to fully realize the CDT vision, such as seman-
tics engineering and KG, machine learning, IoT, and cloud
computing. Due to limited resources, the case study mainly
focused on some of the main functions of the CDT concept.
There exist several limitations of this study as listed below.

• Due to limited resources, a simplified use case is used
with much less factors than real complex systems. This
impacts the performance of the obtained decision-support
model. Moreover, since the machine learning algorithm is
not the main focus of this paper, limited efforts are spent

on the parameter tuning of the algorithm. In practical
applications, much more data will be collected and more
advanced machine learning algorithms should be designed
to obtain better performance.

• The case study only covers the development phase of
the auto-braking system, whereas a complete CDT is
expected to include more lifecycle phases, such as pro-
duction, maintenance, and recycling. To construct such
a complete CDT, a special team involving experts from
all relevant domains is needed, which requires high-level
of inter-organizational interoperability.

• The automatic testing scenario based on Simulink is lim-
ited by a simplified model. In this paper, the purpose of
the use case is to evaluate our CDT concept rather than
a real verification for the auto-braking system design.
Thus, more complex models such as CAE models, CAD
models are not considered in the case study. Further
research will be implemented for the industrial case to
improve the model complexity.

• The service-oriented interfaces are not included in the
case study. However, previous research [41] has pro-
vided a possible solution for integrating heterogeneous
data using OSLC, which will be integrated in the future
research.

5.3 Future works

CDT is a novel concept which is believed to be the next
evolution of DT. The contributions of this paper, including
the CDT concept, conceptual architecture and application
framework, paved way to more future research opportunities.
Some of them are listed below:

• Application of advanced KG and relevant technologies
in CDT development: Semantic modelling and KG tech-
nologies are key enabling technologies for CDT. They
are currently under rapid development and new tools are
appearing frequently. It is important to investigate such
new achievements and explore their applications for CDT
development.

• Development and application of standardized industrial
ontologies: Ontology is crucial to obtain high interop-
erability among digital entities. However, most ontolo-
gies are developed based on their own scenarios without
standardization. Top-level ontologies, such as BFO and
Descriptive Ontology for Linguistic and Cognitive Engi-
neering (DOLCE) [49], can help increase the semantic
interoperability among different lower-level ontologies.
Efforts are needed to investigate how to unify and stand-
ardize existing domain ontologies based on such top-
level ontologies.

• Development and application of MBSE technologies in
complex system development: MBSE models provide a

5851

The International Journal of Advanced Manufacturing Technology (2022) 121:5835–5854

1 3

structural description for formalizing DTs. Such models
are the foundation to formalize the topology between dif-
ferent digital entities. The semantic and unified languages
supporting MBSE, such as KARMA language, provide
a potential way to create KGs automatically, which can
accelerate the CDT development.

• Application of advanced machine learning techniques to
support CDT implementation: The performance of the
adopted machine learning algorithms determines the
reliability of the decision-making results of CDT. More
efforts are required to explore how to select and apply the
optimal algorithms for CDT implementations.

• More detailed industrial CDT implementation refer-
ence architectures and tool-chains: This paper presents
a conceptual architecture and tool-chain based on the
knowledge of the authors. Experts from other domains
might have different viewpoints and concerns about
CDT implementation. More architectures and tools are
required to complete the CDT vision.

6 Conclusion

This paper proposes a formal definition of CDT based on a
systems engineering approach. Moreover, a CDT concep-
tual architecture is defined based on the systems engineer-
ing standard ISO 42010. To facilitate CDT development and
implementation, a KG-based framework is developed together
with an enabling tool-chain. To verify the proposed frame-
work and tool-chain, a case study of an auto-braking system
development is conducted. KARMA models and Simulink
models are used to define solutions and verify requirements.
Based on such models, a multi-layer neural network is trained
based on simulation data and ontology models generated from
KARMA models, which is then utilized to support decision-
making. The case study demonstrated the practicability of the
proposed CDT concept, architecture and reference framework.
The simulation results indicate the potential of CDT in pro-
moting the decision-makings during complex system develop-
ment. This study bridges the gaps between theoretical CDT
concept and industrial CDT applications. It reveals the great
potential of CDT, as the next generation of DT, for complex
system development and management.

Author Contributions L.J. and Z.X. conceived the presented idea and
developed the theory and performed the computations. Y.Z. and W.J.
provided support for the case study. D.K. encouraged L.J. and Z.X.
to investigate the topic and supervised the findings of this work. All
authors discussed the results and contributed to the final manuscript.

Funding Open access funding provided by EPFL Lausanne The work
presented in this paper has been partially funded by the EU H2020 pro-
ject FACTLOG (869951) - Energy-aware Factory Analytics for Process

Industries, and EU H2020 project QU4LITY (825030) - Digital Reality
in Zero Defect Manufacturing.

Availability of data and material The data that support the findings of
this study are available from the corresponding author upon request.

Code availability The codes that support the findings of this study are
available from the corresponding author upon request.

Declarations

Ethics approval Not applicable

Consent to participate Not applicable

Consent for publication Not applicable

Competing interests The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Tao F, Qi Q (2017) New it driven service-oriented smart manu-
facturing: framework and characteristics. IEEE Transactions on
Systems, Man, and Cybernetics: Systems 49(1), 81–91, DOI:
10.1109/TSMC.2017.2723764

 2. Kumar P, Merzouki R, Bouamama BO (2017) Multilevel mod-
eling of system of systems. IEEE Transactions on Systems, Man,
and Cybernetics: Systems 48(8):1309–1320. https:// doi. org/ 10.
1109/ TSMC. 2017. 26680 65

 3. Fortino G, Russo W, Savaglio C, Shen W, Zhou M (2017) Agent-oriented
cooperative smart objects: From iot system design to implementa-
tion. IEEE Transactions on Systems, Man, and Cybernetics: Systems
48(11):1939–1956. https:// doi. org/ 10. 1109/ TSMC. 2017. 27806 18

 4. Mordecai Y, Orhof O, Dori D (2016) Model-based interoperability
engineering in systems-of-systems and civil aviation. IEEE Trans-
actions on Systems, Man, and Cybernetics: Systems 48(4):637–
648. https:// doi. org/ 10. 1109/ TSMC. 2016. 26025 43

 5. Tavčar J, Horvath I (2018) A review of the principles of designing
smart cyber-physical systems for run-time adaptation: Learned
lessons and open issues. IEEE Transactions on Systems, Man,
and Cybernetics: Systems 49(1):145–158. https:// doi. org/ 10. 1109/
TSMC. 2018. 28145 39

 6. Grieves M (2014) Digital Twin: Manufacturing Excellence
Through Virtual Factory Replication. Tech Rep. https:// doi. org/
10. 5281/ zenodo. 14939 30

 7. Qi Q, Tao F, Hu T, Anwer N, Liu A, Wei Y, Wang L, Nee A
(2019) Enabling technologies and tools for digital twin. J Manuf

5852

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/TSMC.2017.2668065
https://doi.org/10.1109/TSMC.2017.2668065
https://doi.org/10.1109/TSMC.2017.2780618
https://doi.org/10.1109/TSMC.2016.2602543
https://doi.org/10.1109/TSMC.2018.2814539
https://doi.org/10.1109/TSMC.2018.2814539
https://doi.org/10.5281/zenodo.1493930
https://doi.org/10.5281/zenodo.1493930

The International Journal of Advanced Manufacturing Technology (2022) 121:5835–5854

1 3

Syst. https:// doi. org/ 10. 1016/j. jmsy. 2019. 10. 001, https://
linki nghub. elsev ier. com/ retri eve/ pii/ S0278 61251 93008 6X

 8. Tao F, Zhang M, Cheng J, Qi Q (2017) Digital twin workshop:
a new paradigm for future workshop. Jisuanji Jicheng Zhizao
Xitong/Computer Integrated Manufacturing Systems, CIMS.
https:// doi. org/ 10. 13196/j. cims. 2017. 01. 001

 9. He B, Bai KJ (2021) Digital twin-based sustainable intelligent
manufacturing: A review. Adv Manuf 9(1):1–21

 10. Kritzinger W, Karner M, Traar G, Henjes J, Sihn W (2018) Digital
twin in manufacturing: A categorical literature review and clas-
sification. IFAC-PapersOnLine 51(11):1016–1022

 11. Tao F, Zhang H, Liu A, Nee AYC (2019) Digital Twin in Indus-
try: State-of-the-Art. IEEE Trans Ind Inf 15(4):2405–2415.
https:// doi. org/ 10. 1109/ TII. 2018. 28731 86, https:// ieeex plore.
ieee. org/ docum ent/ 84771 01/

 12. Hui W, Dong X, Guanghong D, Linxuan Z (2007) Assembly
planning based on semantic modeling approach. Comput Ind
58(3):227–239. https:// doi. org/ 10. 1016/j. compi nd. 2006. 05. 002

 13. Kharlamov E, Martin-Recuerda F, Perry B, Cameron D, Fjellheim
R, Waaler A (2018) Towards semantically enhanced digital twins.
In: 2018 IEEE International Conference on Big Data (Big Data),
IEEE, pp 4189–4193. https:// doi. org/ 10. 1109/ BigDa ta. 2018.
86225 03, https:// ieeex plore. ieee. org/ docum ent/ 86225 03/

 14. Zheng P, Sivabalan AS (2020) A generic tri-model-based approach
for product-level digital twin development in a smart manufactur-
ing environment. Robot Comput Integr Manuf 64:101958. https://
doi. org/ 10. 1016/j. rcim. 2020. 101958, https:// www. scien cedir ect.
com/ scien ce/ artic le/ pii/ S0736 58451 93052 89

 15. Liu S, Lu Y, Li J, Song D, Sun X, Bao J (2021) Multi-scale evo-
lution mechanism and knowledge construction of a digital twin
mimic model. Robot Comput Integr Manuf 71:102123. https://
doi. org/ 10. 1016/j. rcim. 2021. 102123, https:// www. scien cedir ect.
com/ scien ce/ artic le/ pii/ S0736 58452 10000 90

 16. Ehrlinger L, Wöß W (2016) Towards a definition of knowledge
graphs. In: CEUR Workshop Proceedings. http:// ceur- ws. org/ Vol-
1695/ paper4. pdf

 17. Nickel M, Murphy K, Tresp V, Gabrilovich E (2015) A Review of
Relational Machine Learning for Knowledge Graphs. Proc IEEE
104(1):11–33. https:// doi. org/ 10. 1109/ JPROC. 2015. 24835 92,1503.
00759

 18. Rosen R, Boschert S, Sohr A (2018) Next Generation Digital Twin.
atp magazin 60(10):86. https:// doi. org/ 10. 17560/ atp. v60i10. 2371,
http:// ojs. di- verlag. de/ index. php/ atp_ editi on/ artic le/ view/ 2371

 19. Gómez-Berbís JM, de Amescua-Seco A (2019) SEDIT: Semantic
Digital Twin Based on Industrial IoT Data Management and Knowl-
edge Graphs. pp 178–188. https:// doi. org/ 10. 1007/ 978-3- 030- 34989-
9_ 14, http:// link. sprin ger. com/ 10. 1007/ 978-3- 030- 34989-9_ 14

 20. Dai S, Zhao G, Yu Y, Zheng P, Bao Q, Wang W (2021) Ontology-
based information modeling method for digital twin creation of as-
fabricated machining parts. Robot Comput Integr Manuf 72:102173.
https:// doi. org/ 10. 1016/j. rcim. 2021. 102173, https:// www.
scien cedir ect. com/ scien ce/ artic le/ pii/ S0736 58452 10005 70

 21. Banerjee A, Dalal R, Mittal S, Joshi KP (2017) Generating Digital
Twin models using Knowledge Graphs for Industrial Production
Lines. In: Workshop on Industrial Knowledge Graphs, co-located
with the 9th International ACM Web Science Conference 2017.
https:// doi. org/ 10. 1145/ 30914 78. 31623 83

 22. Arp R, Smith B, Spear AD (2015) Building Ontologies with Basic
Formal Ontology, vol 91. The MIT Press, Cambridge. https:// doi.
org/ 10. 7551/ mitpr ess/ 97802 62527 811. 001. 0001, https:// direct. mit.
edu/ books/ book/ 4044, https:// www. cambr idge. org/ core/ produ ct/
ident ifier/ CBO97 81107 41532 4A009/ type/ book_ part

 23. Li Y, Chen J, Hu Z, Zhang H, Lu J, Kiritsis D (2021) Co-simulation
of complex engineered systems enabled by a cognitive twin archi-
tecture. Int J Prod Res 0(0):1–22. https:// doi. org/ 10. 1080/ 00207 543.
2021. 19713 18

 24. Meierhofer J, Schweiger L, Lu J, Züst S, West S, Stoll O, Kiritsis D
(2021) Digital twin-enabled decision support services in industrial
ecosystems. Appl Sci 11(23). https:// doi. org/ 10. 3390/ app11 23114 18,
https:// www. mdpi. com/ 2076- 3417/ 11/ 23/ 11418

 25. Ochoa JL, Valencia-García R, Perez-Soltero A, Barceló-Valenzuela
M (2013) A semantic role labelling-based framework for learning
ontologies from Spanish documents. Expert Systems with Applica-
tions 40(6):2058–2068. https:// doi. org/ 10. 1016/j. eswa. 2012. 10. 017,
https:// linki nghub. elsev ier. com/ retri eve/ pii/ S0957 41741 20113 11

 26. Adl AE (2016) The cognitive digital twins: Vision, architecture
framework and categories. https:// www. slide share. net/ slide show/
embed_ code/ key/ JB60X qcn7Q Vyjb

 27. Abburu S, Berre AJ, Jacoby M, Roman D, Stojanovic L, Stojanovic N
(2020) Cognitwin–hybrid and cognitive digital twins for the process
industry. In: 2020 IEEE International Conference on Engineering,
Technology and Innovation (ICE/ITMC), IEEE, pp 1–8. https:// doi.
org/ 10. 1109/ ICE/ ITMC4 9519. 2020. 91984 03

 28. Lu J, Zheng X, Gharaei A, Kalaboukas K, Kiritsis D (2020b)
Cognitive twins for supporting decision-makings of internet of
things systems. In: Proceedings of 5th International Conference
on the Industry 4.0 Model for Advanced Manufacturing, Springer,
pp 105–115. https:// doi. org/ 10. 1007/ 978-3- 030- 46212-3_7

 29. Albayrak Ö, Ünal P (2020) Smart steel pipe production plant via
cognitive digital twins: A case study on digitalization of spiral
welded pipe machinery. In: Cybersecurity workshop by European
Steel Technology Platform, Springer, pp 132–143

 30. Rožanec JM, Lu J, Rupnik J, Škrjanc M, Mladenić D, Fortuna B,
Zheng X, Kiritsis D (2021) Actionable cognitive twins for deci-
sion making in manufacturing. International Journal of Production
Research pp 1–27. https:// doi. org/ 10. 1080/ 00207 543. 2021. 20029 67

 31. Zhou G, Zhang C, Li Z, Ding K, Wang C (2020) Knowledge-
driven digital twin manufacturing cell towards intelligent manu-
facturing. Int J Protein Res 58(4):1034–1051

 32. Cloutier R, Sauser B, Bone M, Taylor A (2014) Transitioning
systems thinking to model-based systems engineering: Sys-
temigrams to sysml models. IEEE Transactions on Systems,
Man, and Cybernetics: Systems 45(4), 662–674, DOI: 10.1109/
TSMC.2014.2379657

 33. Haskins C (2014) A Journey Through The Systems Landscape.
INSIGHT 17(2):63–64. https:// doi. org/ 10. 1002/ inst. 20141 7263a,
http:// doi. wiley. com/ 10. 1002/ inst. 20141 7263a

 34. Gharaei A, Lu J, Stoll O, Zheng X, West S, Kiritsis D (2020) Systems
engineering approach to identify requirements for digital twins devel-
opment. In: Lalic B, Majstorovic V, Marjanovic U, von Cieminski
G, Romero D (eds) Advances in Production Management Systems.
The Path to Digital Transformation and Innovation of Production
Management Systems, Springer International Publishing, Cham, pp
82–90. https:// doi. org/ 10. 1007/ 978-3- 030- 57993-7_ 10

 35. Zheng X, Lu J, Kiritsis D (2021) The emergence of cognitive
digital twin: vision, challenges and opportunities. International
Journal of Production Research pp 1–23

 36. Lu J, Zheng X, Schweiger L, Kiritsis D (2021) A cognitive approach
to manage the complexity of digital twin systems pp 105–115

 37. Botta A, de Donato W, Persico V, Pescapé A (2016) Integration of
Cloud computing and Internet of Things: A survey. Future Gen-
eration Computer Systems 56:684–700. https:// doi. org/ 10. 1016/j.
future. 2015. 09. 021, https:// linki nghub. elsev ier. com/ retri eve/ pii/
S0167 739X1 50030 15

 38. Minerva R, Biru A, Rotondi D (2015) Towards a definition of the
Internet of Things (IoT). IEEE Internet Initiative. https:// doi. org/
10. 1111/j. 1440- 1819. 2006. 01473.x

 39. Lu J, Chen D, Wang G, Kiritsis D, Törngren M (2021) Model-based
systems engineering tool-chain for automated parameter value
selection. IEEE Transactions on Systems, Man, and Cybernetics:
Systems pp 1–15. https:// doi. org/ 10. 1109/ TSMC. 2020. 30488 21

5853

https://doi.org/10.1016/j.jmsy.2019.10.001
https://linkinghub.elsevier.com/retrieve/pii/S027861251930086X
https://linkinghub.elsevier.com/retrieve/pii/S027861251930086X
https://doi.org/10.13196/j.cims.2017.01.001
https://doi.org/10.1109/TII.2018.2873186
https://ieeexplore.ieee.org/document/8477101/
https://ieeexplore.ieee.org/document/8477101/
https://doi.org/10.1016/j.compind.2006.05.002
https://doi.org/10.1109/BigData.2018.8622503
https://doi.org/10.1109/BigData.2018.8622503
https://ieeexplore.ieee.org/document/8622503/
https://doi.org/10.1016/j.rcim.2020.101958
https://doi.org/10.1016/j.rcim.2020.101958
https://www.sciencedirect.com/science/article/pii/S0736584519305289
https://www.sciencedirect.com/science/article/pii/S0736584519305289
https://doi.org/10.1016/j.rcim.2021.102123
https://doi.org/10.1016/j.rcim.2021.102123
https://www.sciencedirect.com/science/article/pii/S0736584521000090
https://www.sciencedirect.com/science/article/pii/S0736584521000090
http://ceur-ws.org/Vol-1695/paper4.pdf
http://ceur-ws.org/Vol-1695/paper4.pdf
https://doi.org/10.1109/JPROC.2015.2483592,1503.00759
https://doi.org/10.1109/JPROC.2015.2483592,1503.00759
https://doi.org/10.17560/atp.v60i10.2371
http://ojs.di-verlag.de/index.php/atp_edition/article/view/2371
https://doi.org/10.1007/978-3-030-34989-9_14
https://doi.org/10.1007/978-3-030-34989-9_14
http://springerlink.bibliotecabuap.elogim.com/10.1007/978-3-030-34989-9_14
https://doi.org/10.1016/j.rcim.2021.102173
https://www.sciencedirect.com/science/article/pii/S0736584521000570
https://www.sciencedirect.com/science/article/pii/S0736584521000570
https://doi.org/10.1145/3091478.3162383
https://doi.org/10.7551/mitpress/9780262527811.001.0001
https://doi.org/10.7551/mitpress/9780262527811.001.0001
https://direct.mit.edu/books/book/4044
https://direct.mit.edu/books/book/4044
https://www.cambridge.org/core/product/identifier/CBO9781107415324A009/type/book_part
https://www.cambridge.org/core/product/identifier/CBO9781107415324A009/type/book_part
https://doi.org/10.1080/00207543.2021.1971318
https://doi.org/10.1080/00207543.2021.1971318
https://doi.org/10.3390/app112311418
https://www.mdpi.com/2076-3417/11/23/11418
https://doi.org/10.1016/j.eswa.2012.10.017
https://linkinghub.elsevier.com/retrieve/pii/S0957417412011311
https://www.slideshare.net/slideshow/embed_code/key/JB60Xqcn7QVyjb
https://www.slideshare.net/slideshow/embed_code/key/JB60Xqcn7QVyjb
https://doi.org/10.1109/ICE/ITMC49519.2020.9198403
https://doi.org/10.1109/ICE/ITMC49519.2020.9198403
https://doi.org/10.1007/978-3-030-46212-3_7
https://doi.org/10.1080/00207543.2021.2002967
https://doi.org/10.1002/inst.201417263a
http://doi.wiley.com/10.1002/inst.201417263a
https://doi.org/10.1007/978-3-030-57993-7_10
https://doi.org/10.1016/j.future.2015.09.021
https://doi.org/10.1016/j.future.2015.09.021
https://linkinghub.elsevier.com/retrieve/pii/S0167739X15003015
https://linkinghub.elsevier.com/retrieve/pii/S0167739X15003015
https://doi.org/10.1111/j.1440-1819.2006.01473.x
https://doi.org/10.1111/j.1440-1819.2006.01473.x
https://doi.org/10.1109/TSMC.2020.3048821

The International Journal of Advanced Manufacturing Technology (2022) 121:5835–5854

1 3

 40. Lomov I, Lyubimov M, Makarov I, Zhukov LE (2021) Fault detec-
tion in tennessee eastman process with temporal deep learning
models. J Ind Inf Integr 23:100216. https:// doi. org/ 10. 1016/j. jii.
2021. 100216, https:// www. scien cedir ect. com/ scien ce/ artic le/ pii/
S2452 414X2 10001 45

 41. Chen J, Hu Z, Lu J, Zhang H, Huang S, Torngren M (2019) An
open source lifecycle collaboration approach supporting internet
of things system development. In: 2019 14th Annual Conference
System of Systems Engineering, SoSE 2019. https:// doi. org/ 10.
1109/ SYSOSE. 2019. 87538 83

 42. Lu J (2016) A Model-driven and Tool-integration Framework
for Whole Vehicle Co-simulation Environments. 8th European
Congress on Embedded Real Time Software and Systems (ERTS
2016) https:// hal. archi ves- ouver tes. fr/ hal- 01280 473/

 43. Lu J, Wang G, Ma J, Kiritsis D, Zhang H, Törngren M (2020) General
Modeling Language to Support Model-based Systems Engineering
Formalisms (Part 1). INCOSE International Symposium 30(1):323–
338. https:// doi. org/ 10. 1002/j. 2334- 5837. 2020. 00725.x, https://
onlin elibr ary. wiley. com/ doi/ 10. 1002/j. 2334- 5837. 2020. 00725.x

 44. Guo J, Wang G, Lu J, Ma J, Törngren M (2020) General Modeling
Language Supporting Model Transformations of MBSE (Part 2).
INCOSE International Symposium 30(1):1460–1473. https:// doi.

org/ 10. 1002/j. 2334- 5837. 2020. 00797.x, https:// onlin elibr ary.
wiley. com/ doi/ 10. 1002/j. 2334- 5837. 2020. 00797.x

 45. Lu J, Wang J, Chen D, Wang J, Törngren M (2018) A service-
oriented tool-chain for model-based systems engineering of aero-
engines. IEEE Access 6:50443–50458. https:// doi. org/ 10. 1109/
ACCESS. 2018. 28680 55

 46. Lu J, Ma J, Zheng X, Wang G, Li H, Kiritsis D (2021) Design
ontology supporting model-based systems engineering formalisms.
pp 1–12. https:// doi. org/ 10. 1109/ JSYST. 2021. 31061 95

 47. Berthold MR, Cebron N, Dill F, Gabriel TR, Kötter T, Meinl T,
Ohl P, Thiel K, Wiswedel B (2009) KNIME - the Konstanz infor-
mation miner. ACM SIGKDD Explorations Newsletter 11(1):26–
31. https:// doi. org/ 10. 1145/ 16562 74. 16562 80, http:// portal. acm.
org/ citat ion. cfm? doid= 16562 74. 16562 80, https:// dl. acm. org/ doi/
10. 1145/ 16562 74. 16562 80

 48. O’Connor M, Das A (2009) SQWRL: A query language for OWL.
In: CEUR Workshop Proceedings. http:// webont. org/ owled/ 2009/
papers/ owled 2009_ submi ssion_ 42. pdf

 49. Masolo C, Borgo S, Gangemi A, Guarino N, Oltramari A, Schneider
L (2003) Dolce: a descriptive ontology for linguistic and
cognitive engineering. WonderWeb Project, Deliverable D17 v2
1:75–105. https:// doi. org/ 10. 3233/ AO- 210259

5854

https://doi.org/10.1016/j.jii.2021.100216
https://doi.org/10.1016/j.jii.2021.100216
https://www.sciencedirect.com/science/article/pii/S2452414X21000145
https://www.sciencedirect.com/science/article/pii/S2452414X21000145
https://doi.org/10.1109/SYSOSE.2019.8753883
https://doi.org/10.1109/SYSOSE.2019.8753883
https://hal.archives-ouvertes.fr/hal-01280473/
https://doi.org/10.1002/j.2334-5837.2020.00725.x
https://onlinelibrary.wiley.com/doi/10.1002/j.2334-5837.2020.00725.x
https://onlinelibrary.wiley.com/doi/10.1002/j.2334-5837.2020.00725.x
https://doi.org/10.1002/j.2334-5837.2020.00797.x
https://doi.org/10.1002/j.2334-5837.2020.00797.x
https://onlinelibrary.wiley.com/doi/10.1002/j.2334-5837.2020.00797.x
https://onlinelibrary.wiley.com/doi/10.1002/j.2334-5837.2020.00797.x
https://doi.org/10.1109/ACCESS.2018.2868055
https://doi.org/10.1109/ACCESS.2018.2868055
https://doi.org/10.1109/JSYST.2021.3106195
https://doi.org/10.1145/1656274.1656280
http://portal.acm.org/citation.cfm?doid=1656274.1656280
http://portal.acm.org/citation.cfm?doid=1656274.1656280
https://dl.acm.org/doi/10.1145/1656274.1656280
https://dl.acm.org/doi/10.1145/1656274.1656280
http://webont.org/owled/2009/papers/owled2009_submission_42.pdf
http://webont.org/owled/2009/papers/owled2009_submission_42.pdf
https://doi.org/10.3233/AO-210259

	Exploring the concept of Cognitive Digital Twin from model-based systems engineering perspective
	Abstract
	1 Introduction
	2 Research methodology
	3 CDT definition, architecture and application framework based on MBSE
	3.1 CDT definition
	3.2 CDT architecture
	3.3 CDT application framework based on knowledge graph

	4 Case study
	4.1 Scenario definition
	4.2 Tool-chain for CDT development and application
	4.3 Virtual model development for CDT construction
	4.3.1 Architecture models
	4.3.2 Code generation for automatic testing

	4.4 Machine learning algorithm for CDT construction
	4.5 Applying CDT for supporting decision-making
	4.6 Summary of case study

	5 Discussion
	5.1 Main achievements
	5.2 Limitations
	5.3 Future works

	6 Conclusion
	References

