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Abstract
This review provides a critical overview of the influence of the laser powder bed fusion (LPBF) processing parameters on 
the final properties of the three steels used in the plastic injection mould industry (420 stainless steel, H13, and P20 steels). 
The main objective is to provide an engineering overview concerning the response of the parts made from the materials 
produced by this technique. A comprehensive summary of LPBF processing parameters and their influence on the physical, 
mechanical, tribological, corrosion, and thermal properties of the LPBFed parts is presented and discussed. An analysis of 
the suitability of these steels for the production of components for the plastic injection mould industry is also presented. This 
review shows that, despite the increase research about these steels over recent years, there are still some shortcomings and 
issues that require further investigation, such as the behaviour of LPBFed parts in-service conditions, their thermal behaviour, 
and the influence of the processing parameters and their surroundings on the final properties of the parts.

Keywords Laser powder bed fusion · 420 stainless steel · H13 and P20 steels · Final properties · Plastic injection mould 
industry

1 Introduction

Additive manufacturing (AM) has gained considerable inter-
est during the last few decades [1–5]. In contrast to sub-
tractive techniques, AM involves a family of layer-by-layer 
building technologies capable of producing geometrically 
intricate components in a single step [1, 2, 6–11]. AM has 
several advantages compared to traditional methods of 
manufacturing, such as the (i) manufacture of components 

with highly complex geometries, (ii) improvement of the 
production-development cycle, (iii) ability to fabricate small 
batches of parts in a short time, with low financial invest-
ment, (iv) use of a wide range of materials, (v) cost saving 
by optimising material usage (low waste of material), (vi) 
production of functionally graded parts, and (vii) customi-
sation without requiring extremely expensive tools and sys-
tems [5, 7, 12–14]. These advantages make AM attractive for 
a wide range of fields including the aerospace, biomedical, 
automobile, and mould industries [3, 5, 15, 16].

AM techniques can be categorised based on their type of 
feedstock (powder or wire) and the energy source employed 
(laser or electron beam) [14, 17, 18]. Laser powder bed 
fusion (LPBF) is considered one of the most promising 
additive manufacturing technologies in different fields of 
the industry, such as aerospace, automotive, and injection 
moulds [2, 3, 19, 20]. This technique uses a high-energy 
laser beam to melt a bed of metal powder, in a protective 
atmosphere along the laser path, which rapidly solidifies. 
The process is then repeated for successive layers until the 
three-dimensional components required are built completely 
[14, 19, 21–23]. LPBF includes complex processes that 
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involve the understanding of different parameters related to 
the material, machine, and manufacturing [21]. A wide vari-
ety of metal powders have been fabricated by LPBF, includ-
ing Al-based, Ti-based, Fe-based, Ni-based, Cu-based, and 
Co-based alloys [24, 25]. The process parameters that most 
influence the quality and properties of the parts produced, 
are divided into four categories: (i) laser-related (power, spot 
size, mode-pulsed or continuous), (ii) scan-related (speed, 
spacing, pattern), (iii) powder-related (particle size, shape, 
and distribution, powder bed density, layer thickness, and 
powder properties), and (iv) temperature-related (powder 
bed temperature, powder feeder temperature, and tempera-
ture uniformity) [17, 26].

The plastic injection moulding industry is one of the fast-
est-growing industries in the world since a lot of products 
that are used in daily life involve the use of plastics [27–29]. 
Despite having numerous advantages, namely high dimen-
sional and geometric precision, repeatability, and adapt-
ability to a wide range of raw materials [30, 31], the costs 
associated with the mould and the injection machine are 
high [32, 33]. Therefore, a reduction in cycle time, more spe-
cifically the cooling time, has been a never-ending challenge 
for manufacturing plants, with a direct influence on the pro-
duction costs, productivity, and quality of the parts produced 
[29, 34–36]. The use of conformal cooling channels has been 
one of the main solutions to achieve this objective [37, 38]. 
In the last few decades, additive manufacturing processes, 
particularly LPBF, have been widely used in the fabrication 
of parts and tools with high geometric complexity, challeng-
ing the traditional design guidelines for cooling systems in 
industrial heat transfer cases, namely in the plastic injection 
moulding industry [39–42]. In fact, this technology allows 
several innovative design approaches to intricate cooling 
systems in mould inserts, which cannot be manufactured 
by conventional machining processes [36, 41], eliminating 
some limitations associated with the geometric aspects of 
the mould’s cavity and core [43, 44].

Steel alloys are the main materials used for the fabrication 
of moulds for plastics. They can combine the most essential 
characteristics required from a mould, in order not to fail in 
service, e.g., high resistance to corrosion, mechanical resist-
ance, hardness, wear resistance, and resistance to fatigue 
[31, 45–48]. 420 stainless steel, H13 and P20 steels are the 
steels most used for the production of moulds for plastics 
[49–52]. 420 stainless steel is a martensitic low carbon steel 
(< 0.15 wt% C), with a minimum chromium content of 12%. 
It is characterized by high strength, hardness, and corrosion 
properties [33, 53–55]. H13 steel has 0.32–0.45 wt% C, and 
chromium (4.75–5.50 wt%), molybdenum (1.10–1.75 wt%), 
silicon (0.80–1.20 wt%), and vanadium (0.80–1.20 wt%) as 
its main alloying elements. It presents a high tensile strength, 
hardness, and thermal fatigue [45, 56, 57]. Finally, P20 steel 
has 0.28–0.4 wt% C, and chromium (1.40–2.00 wt%) and 

molybdenum (0.30–0.55 wt%) as its main alloying elements. 
It is characterized by high toughness, and reasonable hard-
ness, and tensile strength [47, 58, 59].

The present review provides a comprehensive overview 
of the densification, microstructure, quality of surface finish, 
and mechanical, corrosion, tribological and thermal proper-
ties reported for steels used in the plastic injection moulds 
produced by LPBF, and their relationship with the process-
ing parameters (Fig. 1).

2  LPBF—powder bed system

AM systems can be divided into three broad categories: (i) 
wire feed systems, (ii) powder feed systems, and (iii) pow-
der bed systems, in which LPBF is included [18, 60]. A 3D 
CAD model is imported to the LPBF software system, a 
laser beam with a high-energy density scans over the layer 
using the parameters previously defined, and after successive 
layers a final part is obtained (Fig. 2) [7, 20, 21, 61].

LPBF is a complex process that involves the understand-
ing of different parameters related to the material, machine, 
and manufacturing aspects. Regarding the material, the pow-
der’s properties can be subdivided into multiple levels: (i) 
physical and chemical properties of the individual particles 
(morphology, particle size distribution, impurities, compo-
sition, moisture, and particle density), (ii) behaviour of the 
powder ensemble as a whole (apparent density, tap density 
Hausner ratio, and flowability of powder), and (iii) behav-
iour of the powder under process-specific conditions (repro-
ducibility, layer density, continuity, and homogeneity). The 
sum of the various aspects of each level influences the char-
acteristics of the final part, namely density, surface rough-
ness, mechanical properties, and accuracy [63]. Concerning 
manufacturing, the main relevant and influential processing 
parameters for LPBF are laser power, scan speed, hatching 
spacing, and layer thickness (Fig. 3).

The volumetric energy density (VED) (J/mm3) makes 
the comparison of parts produced using LPBF under differ-
ent sets of parameters possible [7, 64]. It can be calculated 
according to the following equation:

where P is the laser power (W), v represents the scan speed 
(mm/s), h denotes the hatch spacing (mm), and t is the layer 
thickness (mm). If the VED is too low, a lack of fusion 
between the powder particles occurs; if the VED is too high, 
an excessive evaporation occurs for the parts, which leads to 
internal porosity [4, 65–69].

Other important aspects of LPBF technique are related to 
the atmosphere, platform, supports, and scan strategy. The 

(1)VED =
P

v × h × t
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material to be produced must be taken into consideration 
when choosing the atmosphere in order to prevent oxida-
tion. When the powder bed interacts with the laser beam, its 
temperature increases, and the formation of oxides is likely 
to occur. To avoid oxidation, the purity of the atmosphere 
required is generally established by flushing the selected gas 
into the process chamber, which results in a dilution of the 
oxygen and impurities initially present [70, 71]. The second 
important aspect is associated with the temperature of the 
platform (base plate), which may significantly affect the final 

properties of the parts. One of the main issues of LPBF is 
related to significant thermal stresses resulting from high 
thermal gradients. This issue can, potentially, be solved by 
elevating the temperature of the platform during the fab-
rication, hence reducing temperature gradients during the 
process [72, 73]. The supports to connect the platform to the 
parts are extremely important to ensure a good heat transfer 
during the process, to avoid localised heat accumulation, 
and to prevent defects in the parts produced [74]. Finally, 
the laser scan strategy is another important parameter of 

Fig. 1  Structure of this review: a comprehensive overview of the final properties of the steels used in the plastic injection moulds produced by 
LPBF and their relationship with the processing parameters

Fig. 2  Schematic representation of the LPBF process (based on [62])
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LPBF. It is known that it has a significant impact on the 
thermal gradient and, consequently, on the formation of the 
grain structure and crystallographic texture [75, 76]. Zhang 
et al. [77] and Robinson et al. [78] demonstrated that the 90° 
rotation of the scan direction after finishing one layer caused 
a more uniform and lower residual stress compared with no 
layer rotation, because the perpendicular laser trajectories 
between each layers balance the directional residual stresses 
(Fig. 4a). Moreover, this strategy slows down the cooling 
speed and thus mitigate the residual stress. Thijs et al. [79] 
concluded that the rotation between successive layers also 
improved the density of LPBFed parts. On the other hand, 
Masoomi et al. [80] showed that island scanning is an effec-
tive strategy to reduce the final component residual stress, 
due to the decrease in localised thermal gradients (Fig. 4b). 

Therefore, appropriate control of this parameter can signifi-
cantly improve the heat transfer, leading to the.

formation of homogeneous microstructures, with better 
final mechanical properties of the parts [75, 81].

3  LPBF process parameters and raw materials

As mentioned previously, 420 stainless steel, and H13 and 
P20 steels are three of the steel alloys most used in the 
plastic injection mould industry. The final properties of the 
LPBFed parts depend on the production equipment and the 
processing parameters. In this subsection, an overview of 
the literature on laser powder bed fusion of these steels is 
presented, which is a tool that can be used by engineers to 

Fig. 3  Schematic diagram of 
the main processing parameters 
of the LPBF process (adapted 
from [7])

Fig. 4  Examples of laser 
scanning strategies: a parallel 
scanning with and without rota-
tion between successive layers, 
and b island scanning (based on 
[82, 83])
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support future works in the scope of the development of 
parts of these materials produced by this technology.

3.1  420 stainless steel

Most of the studies selected on the use of this steel for the 
fabrication of moulds by LPBF are quite recent (ten pub-
lished in 2019–2021 [84–93] and three in 2015 [50, 53, 94]). 
An overview of the inputs discussed.

in these studies, which are essential for the discussion of 
the LPBF process, is presented in Table 1. Concerning the 
LPBF apparatus, the Concept Laser Mlab cusing R machine 
has been one of the most used [89, 91–93]. Most of the stud-
ies concern the production of parts with a simple geometry 
(cubic shape) [50, 85, 86, 89–94] from spherical particles 
with an average particle size of between 20 and 53 μm [53, 
85, 88–91, 93, 94]. In LPBF, the metal particles need to be 
spread on the substrate by a continuous and smooth powder 
transporting process, which requires a high degree of sphe-
ricity, and an appropriate particle size distribution to ensure 
good flowability. The energy density values reported varied 
from 41.7 to 139.0 J/mm3, the 63.0 J/mm3 value being the 
one most widely used [86, 89, 91–93]. All the studies refer 
to a layer thickness of between 10 and 50 μm (20 μm is 
the value most referred [53, 86, 89–93]), and laser power 
values from 50 to 200 W (most studies opted for 90 W [86, 
89, 91–93]).

Regarding scanning speed, most of the studies used 600 
to 700 mm/s [53, 86, 88–93]. However, there are two stud-
ies that opted for a different approach with lower scanning 
speed (120 mm/s), and laser power (60 W) [50, 94]. Finally, 
all the studies indicate hatch spacing values between 80 and 
200 μm. Concerning the production strategy, three different 
approaches have been used: an island pattern with an alter-
nating path, a continuous line scan alternating layers at − 45 
and + 45°, and a rescanning strategy [84, 85, 87, 89, 91–93].

3.2  H13 steel

Among the three steels of this study, H13 has been the most 
studied to produce parts by LPBF, with thirty-one studies 
considered in this review, from 2016 to 2021 (Table 2). As 
for 420 stainless steel, almost all the studies used spheri-
cal particles (average diameter sizes from 15 to 63 μm) 
for the production of cube parts [57, 66, 69, 95–112]. The 
energy density varied from 17.4 to 760 J/mm3, with the most 
reported values of 67, 80, 100, and 300 J/mm3 [15, 57, 66, 
69, 74, 96, 97, 100, 103, 109–116]. In most studies the layer 
thickness was 30 μm [15, 57, 74, 101, 108, 109, 112–117]. 
Jung et al. [99] used a dual scan approach, with a layer thick-
ness of 250 μm. In regard to laser power, a wide range of val-
ues were reported (90 to 1000 W), with the value of 175 W 
being the most preferred [15, 57, 74, 109, 112, 114–116, 

118]. This value is higher than that used in most cases for 
420 stainless steel. Regarding the scanning speed, the litera-
ture refers to values in the range of 56 to 1400 mm/s with 
many studies reporting values similar to the ones for 420 
stainless steel (720 mm/s) [15, 74, 109, 111, 112, 114–116]. 
The hatch spacing used in most of the studies was 120 μm. 
However, two studies present extremely different values for 
this parameter (700 and 800 μm) which can be explained by 
the use of more powerful lasers and/or different scan strate-
gies (dual scan) [99, 106]. The most used scanning strategy 
was the alternate-hatching pattern and stripe scanning [15, 
66, 74, 97, 98, 100, 102, 103, 107, 110, 111, 114, 118].

3.3  P20 steel

The production of P20 steel parts by LPBF has not been 
studied much yet. Just three studies are included in this 
review [115, 120, 121], all related to the last 3 years. As for 
the previous cases, Table 3 presents the inputs of the LPBF 
process for P20 steel.

Again, these studies mainly concerned the production of 
cubic parts from spherical particles with an average size 
from 25 to 70 μm. The energy densities used were similar 
to the ones of 420 stainless steel and H13 steel (78.0 to 
333.1 J/mm3). In all these studies, the layer thickness was 
30 μm and the laser power varied from 100 to 200 W. Two 
studies used a scanning speed of 800 mm/s [115, 120], and 
one, 350 mm/s [121]. The hatch spacings chosen were in the 
range of 80–105 μm. Only one study refers to the scanning 
strategy adopted (zig-zag strategy) [120].

4  The influence of the LPBF process parameters 
on the properties of the LPBFed steel parts

In this subsection, the influence of the LPBF process param-
eters on the densification, microstructure, quality of surface 
finish, mechanical, corrosion, tribological, and thermal prop-
erties of the final parts is presented and discussed. These 
properties are essential in a plastic injection mould, not only 
to ensure the smooth operation of the mould in production 
but also to achieve a good quality of the plastic components 
produced.

4.1  Densification

The densification of parts in the LPBF process is not just 
influenced by the energy density collectively, but also by 
the: laser power, scanning speed, hatch spacing, and layer 
thickness individually [91]. Fully densified components with 
the lowest energy density possible are required to avoid any 
adverse effects of a high energy density such as internal 
porosity and high surface roughness.
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For the three steels, the highest density values (> 99%) 

were obtained from high laser energy densities (high laser 
powers and low scanning speeds). The densification of LPBF 
parts occurs by diffusion in the liquid phase of the sinter-
ing process. Therefore, for the same material, the higher the 
energy transferred per unit of time is, the higher the energy 
density is, resulting in melt pools of suitable size, adequate 
re-melting of the previous layers, and good bonding between 
layers. This causes high densification and, consequently, 
lower porosity. For the higher cooling rates (higher scan-
ning speeds), macro cracks resulting from thermal stresses 
have been detected (Fig. 5), leading to a lower final density 
of the parts [122–124]. The high temperature in the upper 
layers lead to their expansion. On the other hand, the under-
lying solidified layers have a lower temperature and restrict 
this expansion, inducing compressive stresses in the upper 
layers. When the yield strength is reached, the compressive 
stresses cause plastic deformation. On the other hand, when 
these layers cool, their compressive state is converted into 
residual tensile stresses that can lead to cracks [66].

For 420 stainless steel, a maximum densification of 
99.95% was obtained for a laser energy density of 53.0 J/
mm3 [53]. Nath et al. [86] revealed that for low energy den-
sities (29.0 J/mm3), the use of a finer powder is beneficial 
in terms of densification, but this effect is attenuated as the 
energy density is increased by up to 63 J/mm3. An increase 
in the hatch spacing and laser spot size contributed to a 
decrease in densification [84, 89]. The width of the melt 
pool increases with an increase in laser spot size, whilst the 
depth of the melt pool slightly decreases with an increase in 
the size of the laser spot, leading to the formation of pores 
between the melt pool boundaries and at the edge between 
two layers. The melt pool depth may be less than the layer 
thickness defined, so there will be no complete layer den-
sification [84]. Shen et al. [87] built the same component 
in three different directions, thickness direction (t), width 
direction (w), and length direction (l) with t < w < l. The 
component built in the thickness direction leads to higher 
densification, because the total number of layers to build the 
final component is smaller and, consequently, the porosity 
between successive layers associated with deposition of the 
new layers is lower.

Concerning H13 steel, the highest density reported in 
the literature is 99.70% and corresponds to a laser energy 
density of 60.0 J/mm3 [66]. The density of H13 steel can 
be enhanced by laser re-melting (dual scan) as mentioned 
in [99]. However, although the second scanning closes the 
pores on the top of the molten pool, the internal pores cannot 
be removed [7, 99, 101]. Thermo-mechanical treatments, 
particularly hot isostatic pressing (HIP) have been applied 
to improve the density of the LPBFed H13 steel parts [7, 
114, 125, 126]. By increasing the temperature and pressure, 
HIP allows diffusion between the chemical elements with 
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consequent reduction of porosity and formation of more 
homogeneous microstructures [7, 113, 127]. Wang et al. [7] 
demonstrated that the relative density was increased from 
80.50 to 98.20% by HIP treatment.

For P20 steel, the maximum density reached was 99.50%, 
for a density energy value of 79.4 J/mm3 [115]. As for the 
previous materials, increasing laser power and decreasing 
scanning speed are beneficial for this property [121].

4.2  Microstructural properties

The microstructural properties of the LPBFed parts, such as 
morphology, segregation, grain structure (shape and size), 
stability, secondary phases, defects, and inclusions, depend 
on the processing parameters [1]. The thermal history to 

which the metal is exposed during the LPBF process is very 
different from that of traditional manufacturing processes [1, 
7]. LPBF induces rapid solidification rates and high thermal 
gradients caused by the melting of the various subsequent 
layers [1, 128, 129]. The high cooling rate gives rise to high 
nucleation rates and the consequent microstructure refine-
ment [4, 7, 130].

The microstructure of LPBFed 420 stainless steel parts 
is mainly composed of fine martensitic needles/laths, and 
some residual austenite (cellular structures) (Fig. 6) [85, 
89–94, 131].

No carbides are reported in the literature in LPBFed parts 
of this steel, which can be explained by the low carbon con-
tent (< 0.15 wt% C) and high cooling rates that minimises 
the diffusion mechanism and thus prevents the formation 

Fig. 5  Thermal stresses in LPBF process and origin of thermally induced cracks (based on [7, 66])

Fig. 6  Typical microstructure of 
420 stainless steel produced by 
LPBF (after polishing followed 
by etching with Kalling reagent 
II) (adapted from [91, 131])
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of equilibrium structures [89, 132]. Striking differences 
are observed in the orientation of the martensite needles 
in the build and scan directions. An increased directionally 
is observed in the scan direction, with the needles located 
at the edge of the scan tracks due to the faster cooling rates 
near the edge of the melt pool [91]. Nath et al. [89] showed 
that the martensite content in the microstructure of LPBFed 
420 stainless steel parts increased when the layer’s thick-
ness decreased. This can be explained by the fact that they 
experience a higher number of thermal cycles. The addition 
of alloying elements, namely Nb and Mo, did not reveal 
significant changes in the contents of martensite and residual 
austenite [93]. However, some nanoscale transition metal 
carbides (NbC) are formed during processing, which, as 
will be discussed below, play a key role in improving the 
mechanical properties [92, 93]. Laser power also influences 
the microstructure of 420 stainless steel. Zhao et al. [53] 
found that the amount of the martensite phase decreases with 
an increase in this parameter, due to the higher temperature 
of the molten pool, and lower cooling rate, with a conse-
quent higher amount of residual austenite. The higher the 
temperature reached in the part during the process is, the 
greater the dissolution of the chromium carbides existing 
in the base material and the incorporation of carbon and 
chromium in the austenitic phase are. This lowers the start-
ing temperature of the martensitic transformation with a 
consequent decrease in the percentage of this phase in the 
final microstructure. On the contrary, when the laser power 
decreases, the cooling rate increases, and a higher amount 
of martensite is formed. Nath et al. [86] claim that LPBFed 
parts processed at the same energy density using fine and 
coarse powders show no significant difference in the micro-
structure. After post-processing operations, some differences 
may be verified in the microstructure [85, 88, 89, 91, 93]. 
Tian et al. [85] and Shi et al. [88] state that the as-built parts 
are formed by martensite and retained austenite with strong 
mechanical property anisotropy in both strength and duc-
tility. In these studies, a fully tempered martensitic micro-
structure with some dispersed  Cr23C6 carbides was obtained 
after tempering. Other authors also mention the removal of 
residual stresses during this heat treatment [89, 91, 93].

Concerning H13 steel, the LPBFed microstructure of the 
parts includes martensite and large amounts of austenite [7, 
100]. During solidification, the high cooling rate involves 
a lower diffusion of the alloying elements Cr, Mo, and V, 
and, therefore, no formation of carbides occurs [7, 133]. The 
rapid solidification inherent to the process leads to the seg-
regation of alloying elements at the boundary of the molten 
pool and results in a cellular/dendritic microstructure [7, 
95, 97, 100, 107, 112]. Since carbon, chromium, and vana-
dium are austenite stabilisers, the amount of this phase after 
cooling is higher in the regions with a higher concentration 

of carbon atoms [7]. The grain size of austenite is of a few 
microns (about 1–5 μm) [7, 68, 97, 98, 106, 112, 117]. Three 
distinct types of grain structures are highlighted in [7, 15], 
depending on the temperature gradients and, the consequent 
growth rates during solidification: (i) columnar, (ii) fine cel-
lular, and (iii) coarse cellular (Fig. 7).

The microstructure in the centre of the molten pool is 
relatively coarse due to the high temperatures and cooling 
times [7, 135]. On the other hand, the microstructure of the 
cross-section along the building direction consists of colum-
nar grains going in this direction. This can be explained 
by the heat conduction that makes the grain elongate along 
direction of the laser scanning [68, 103, 127]. The energy 
density also affects the grain structure. Similar to 420 stain-
less steel, the higher the energy density (higher temperature 
at the surface of the part under construction) is, the lower the 
tendency for the formation of columnar grains is [7, 136], 
and the higher the amount of residual austenite and its grain 
size is too [97, 108]. The preheating of the base plate dur-
ing the LPBF process is another factor that plays an impor-
tant role concerning the microstructure [104]. It results in 
lower cooling rates, and consequently higher amounts of 
retained austenite [66, 117]. Contrarily to the energy den-
sity, an increase in the scanning speed leads to a decrease  
in the grain size [68]. The higher the scanning speed is, the 
lower the surface temperature, the diffusivity, and the grain 
size are.

In order to decrease the amount of residual austenite and 
to improve the toughness of the LPBFed parts, quenching 
and tempering heat treatments are performed [69, 95, 97, 
102, 107, 110, 112, 114, 117]. During quenching, the aus-
tenite in the cellular grain boundaries (austenite indicated 
by the arrows in Fig. 8a) is eliminated and a full martensite 
microstructure is formed (Fig. 8b) [7, 66, 97, 98, 107, 110]. 
During tempering, martensite loses carbon as the tempera-
ture increases and carbides are formed, initially of iron and 
later of stronger carbide forming elements [7, 69, 97, 107, 
110, 112, 117]. The typical tempered microstructure is 
composed of tempered martensite, ferrite, and secondary 
carbides (Cr, Mo, and V carbides) [7, 69, 97, 98, 105, 107, 
112, 117] (Fig. 8c).

Regarding P20 steel, the information available in the lit-
erature is scarce. Li et al. [121] reveal that the microstruc-
ture of LPBFed P20 steel parts consists of martensite laths 
and some residual austenite dendrites. As expected, a finer 
grain structure was observed in the middle of the melt pool 
(higher energy intensity), and coarse grains were detected 
in the most peripherical zone of the melt pool (heat affected 
zone in the weld) [120, 121]. After tempering, the martensite 
phase is progressively transformed into tempered martensite 
and fine carbides precipitated between the martensite laths 
[121].
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Fig. 7  Solidification structures: a the effect of temperature gradient and solidification rate on the grain, and b H13 LPBFed samples morphology 
(adapted from [7, 134])
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4.3  Quality of surface finish

Surface roughness is one of the most important features 
of components fabricated by LPBF, namely for the plastic 
injection moulding industry as it directly influences the 
appearance of the final product [5, 7]. There are two main 
causes of surface roughness associated with the AM pro-
cesses, the staircase effect, and the insufficient melting 
of the powder particles/balling effect [5, 7, 137, 138]. The 
first is related to the stepped approximation of layers of 
curves and inclined surfaces, and depends on the layer’s 
thickness ( t  ) and build angle ( � ) [5, 139], according to 
Eq. (2).

(2)R
a
= 1000t × sin

(

90 − �

4

)

tan(90 − �)

where R
a
 is the arithmetic mean of the surface roughness, t 

is the layer’s thickness, and � is the build angle. The stair-
case effect, and consequently the surface roughness, can be 
reduced by decreasing the layer thickness or by increasing 
the build angle [5, 140]. For lower layer thickness, a low 
scanning speed and a long dwell time are needed to melt the 
thicker powder layer fully. This causes process instability, 
which leads to balling and splashing during the scanning 
process and a high final roughness (Fig. 9). Concerning the 
build angle, Leary [141] states that for low values ( � → 0°), 
staircase effects dominate, and the roughness observed is 
high. As the orientation of the surface increases, the stair-
case effects coalesce, and roughness is predominantly the 
result of the presence of adhered, partially melted particles. 
However, for orientation angles higher than 75°, the rough-
ness does not improve any further, because this effect does 

Fig. 8  Microstructure of H13 steel produced by LPBF: a as-built condition, b after quenching, and c after tempering (adapted from [7, 98])

Fig. 9  Interaction between laser and powder bed: balling effect phenomenon (adapted from [7, 19, 66])
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not play a role anymore and other effects, such as balling, 
cause the roughness to increase [140].

The second mechanism is related to energy density, par-
ticularly laser power and scanning speed [5, 7, 137, 138]. 
High laser power can lead to evaporation and splashing in 
the molten metal pool [7], whilst a low laser power causes a 
balling effect, because the sintering temperature decreases, 
leading to an incomplete melting of the powder particles 
and a reduction in the amount of liquid [7, 142] (Fig. 9). 
The balling effect occurs when the molten material does not 
wet the underlying substrate due to the surface tension lead-
ing to the formation of individual spherical drops instead of 
merging the fusion pools along the scan tracks. Therefore, 
there is an undesired formation of single melt drops instead 
of a continuous melt pool. This fact results in a rough and 
not uniform surface, impeding a smooth layer deposition 
and decreasing the densification of the final part [7, 138].

Concerning scanning speed, high values allow the 
melted drop to be splashed easily [5, 7]. Wang et al. [7] 
claim that in this case, the molten sintering track is highly 
unstable and the surface energy of the liquid trajectory will 
continually decrease to obtain the final equilibrium state, 
leading to the abovementioned phenomenon. Increasing 
the scanning speed leads to a decrease in the energy den-
sity and, consequently, to a decrease in the working tem-
perature and melting path diameter (same as the melt pool 
width, corresponding to the maximum size affected by a 
single track of the laser scanning) [7, 143]. Contrarily, for 
slow scanning speeds, the interaction time between laser 
and powder increases, which leads to a large molten pool. 
This results in a lack of powder in the original position, 
and a low density and a high number of pores are obtained 
[5, 7, 143].

As expected from Eq. (2) and discussed by Nath et al. 
[89] for the particular case of 420 stainless steel, the surface 
roughness of the parts increased with the increasing thick-
ness of the layer (Fig. 10).

The addition of alloying elements (1.2 wt% Nb and 
0.57 wt% Mo) does not show any influence on the surface 

roughness for the same processing parameters [93]. Further-
more, Yang et al. [84] showed that the surface roughness 
along the laser scanning direction increases with an increas-
ing laser spot size (Fig. 11).

This phenomenon can be attributed to the balling effect 
(verified to laser spot sizes of 30 and 40 μm (Fig. 11c, d), 
caused by a lower volumetric energy density. When the 
laser’s energy density is too low to fully melt the powder, 
the wetting effect deteriorates, and the balling effect occurs 
due to the creation of large balls of adhered powder to the 
track. The powder size also has a significant influence on 
the surface roughness of parts produced by LPBF. For the 
same energy density, a finer powder leads to better surface 
finish [86]. Furthermore, Nath et al. [86] showed that the 
difference in surface roughness between a finer and coarse 
powder is minimal at a processing parameter of 63 J/mm3.

4.4  Mechanical properties

The mechanical properties are the key aspect for plas-
tic injection moulds since during the injection cycle, the 
mould is subjected to cyclic mechanical stresses, due to the 
pressure inherent to the process. Moreover, the mechanical 
resistance prevents the deformation of the injected materi-
als and, consequently, avoids defects in the final parts. They 
depend on the densification, microstructure, and chemical 
composition of the material of the mould.

Figure 12 shows the influence of the energy density and 
heat treatment on the hardness, yield strength, ultimate 
tensile strength, and elongation of 420 stainless steel parts 
produced by LPBF. Two main conclusions can be drawn 
from this figure: (i) there is no direct and clear relationship 
between the energy density and the values of the mechanical 
properties, although there is a certain tendency for prop-
erty values to increase with an increasing energy density 
value and (ii) the heat treatments have different effects on the 
mechanical properties of the LPBFed parts. Concerning the 
as-built parts, the highest values of hardness, yield strength, 
ultimate tensile strength reported were obtained from a part 

Fig. 10  Surface roughness of 420 stainless steel samples fabricated with different layer thicknesses: a 10, b 20, and c 30 μm (adapted from [89])
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built with an energy density of 63.0 J/mm3 and a final den-
sity of 99.30% [93]. As mentioned before, the highest den-
sity achieved in LPBFed parts from this steel was 99.95% 
for a laser energy density of 53.0 J/mm3 [53]. However, as 
is known, the mechanical behaviour of the LPBFed parts is 
not just influenced by density, but also by the metallurgical 
and microstructural properties [5].

The ductility of 420 stainless steel can be improved 
by subsequent tempering, which changes the microstruc-
ture and reduces the residual stresses [91, 144]. Accord-
ing to the literature, tempering at temperatures lower than 
425 °C is responsible for an increase in ductility without 
a considerable drop in the values of the other mechanical 
properties. This is due to: the decrease of residual stresses, 
the tempering of the martensite, and the formation of fine 
Cr-rich and Nb-rich carbides dispersed in the matrix [89, 
91, 93]. A slight decrease in hardness and an increase in 
yield strength, ultimate tensile strength, and elongation are 
reported in many studies. According to Nath et al. [91], the 
decrease in the residual stresses together with the carbon 
loss from martensite may explain the decrease in hardness 
during tempering.

The addition of Nb (1.2 wt%) and Mo (0.57 wt%) in 
low-carbon steel alloys has been reported to improve the 
mechanical properties. However, it does not have an appre-
ciable influence on the hardness of both as-built and heat-
treated samples [93]. This result may appear surprising since 
these elements are strong carbide formers and both NbC and 
 Mo2C carbides are harder than the martensite microstruc-
ture with < 0.15 wt% C. However, their formation involves 
a decrease in the carbon in the martensite structure with a 
subsequent decrease in hardness.

Yang et al. [84] reported that, in general, a decrease in 
spot size (keeping the other processing parameters constant) 
leads to an increase in the tensile properties. When the spot 
size decreases (higher energy density), the re-heated zone 
decreases, and a higher temperature gradient is verified, 
allowing the formation of a finer microstructure. On the 
other hand, Nath et al. [86] revealed that the initial powder 
size does not have a significant effect on the mechanical 
properties of 420 stainless steel parts. However, the build 
direction influences the mechanical properties of LPBF com-
ponents. Shen et al. [87] state that the yield strength and 
ultimate tensile strength are higher when the part is built in 

Fig. 11  Representative 3D profile of the top surface of samples produced with different laser spot sizes: a 10 μm, b 20 μm, c 30 μm, and d 
40 μm (surface roughness along the laser scanning direction) (adapted from [84])
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the direction of the higher dimension. On the other hand, 
the elongation increases inversely due to the variation of 
the densification.

It is important to compare the different values of the 
mechanical properties of the parts produced by LPBF (with 
and without posterior heat treatments) and other manu-
facturing techniques (Table 4). Although the mechanical 
strength of the LPBFed parts is superior to that of wrought 
and heat-treated or annealed cold drawn 420 stainless steel, 
the elongation tends to be lower [87, 90]. Once again, this 
is due to the higher cooling rates achieved by the LPBF 

process, with the formation of a high martensite contents. 
Heat treatment mitigates these differences. The fracture sur-
face of as-built parts is characterised by a fragile fracture 
mode typical of brittle components, whereas after the heat 
treatment the parts clearly showed a mixed-mode of fracture, 
consisting of ductile-fragile behaviour, which is responsible 
for the increase in elongation [84, 87, 90]. Comparing the 
mechanical properties of the as-built LPBF, and MIMed 
parts, one can conclude that higher values are obtained by 
using the former process. In LPBF, the samples experience a 
large number of thermal cycles and have potentially different 
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Fig. 12  The influence of the heat treatment on the hardness, yield strength, ultimate tensile strength, and elongation of 420 stainless steel parts 
(with and without Nb and Mo elements) produced by LPBF (AB = as-built, HT = heat-treated) [50, 53, 88–91, 93]

Table 4  Mechanical properties 
of 420 stainless steel produced 
by different manufacturing 
processes (MIM metal injection 
moulding)

Condition Hardness 
(HV)

Yield 
strength 
(MPa)

Ultimate tensile 
strength (MPa)

Elongation (%)

LPBF [91] 649 700 1050 2.5
LPBF (tempered) [91] 567 950 1520 6.3
(Nb + Mo) LPBF [93] 549 1065 1320 4.0
(Nb + Mo) LPBF (tempered) [93] 531 1280 1750 9.0
Wrought (annealed) [1, 145] --- 626 800 6.0
Wrought (quenched and tempered) [85, 91] 567 1250 1625 7.0
MIM [91] 490 --- 775 1.2
MIM (tempered) [91] 497 1100 1350 2.0
Annealed cold drawn [90, 146] --- 700 800 6.0–7.0
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microstructures compared to other powder net-shaping pro-
cesses such as MIM [61, 85, 93]. The improvement in yield 
strength, ultimate tensile strength, and hardness is mainly 
attributed to the grain refinement in the LPBFed parts. On 
the other hand, 420 stainless steel with the addition of Nb 
and Mo present the best properties due to the combination 
of the nanoscale NbC precipitation with the appearance of 
tempered martensite [93].

After a heat treatment (tempering) of both parts, the dif-
ference between the values is attenuated. Tempering leads 
to the transformation of retained austenite and martensite 
into ferrite and alloyed carbide precipitation, which induces 
an increase in both strength and elongation after heat treat-
ment [85, 93, 147]. The influence of the energy density and 
heat treatment on the hardness, yield strength, ultimate ten-
sile strength, and elongation of H13 steel parts produced by 
LPBF is presented in Fig. 13.

As for 420 stainless steel, no direct relationship exists 
between the energy density and the values of the mechanical 
properties. However, some authors claim that an increase in 
the energy density has a positive effect on the mechanical 
properties up to a certain value, particularly on hardness 
[97, 100, 108, 110].

Pellizzari et al. [110] claim that there is an optimum value 
of the energy density up to which the hardness increases and 
then lowers due to the increase in the fraction of retained 
austenite. The existence of a large amount of martensite, 

as well as the residual stresses associated with the high 
solidification rate inherent to the process, is beneficial to 
enhance the hardness [7, 127]. The hardness of H13 steel 
is strongly affected by the strain rate [7, 119]. Nguyen et al. 
[119] claimed that the hardness (indentation stress) of the 
LPBF-processed H13 material is susceptible to the strain 
rate. The hardness increased from 8.41 to 9.18 GPa for strain 
rates from 0.002 to 0.1  s−1 at a scanning speed of 100 mm/s. 
The effective stress of LPBF H13 has an approximately lin-
ear relationship with the logarithmic strain rate, implying an 
increase in hardness as the strain rate increases. The same 
hardness behaviour was observed for increasing scanning 
speeds. The values increased 9.2, 7.9, 11.5, 11.8, and 13.6% 
with increasing strain rate (0.002 to 0.1  s−1), for scanning 
speeds of 100, 200, 400, 800, and 1600 mm/s, respectively. 
Based on the results, the authors claimed that the hard-
ness of the H13 steel prepared by LPBF is less susceptible 
to the strain rate as the laser scan speed is reduced below 
200 mm/s, but is more critically affected for values higher 
than 200 mm/s. Lee et al. [68] also reported that hardness 
increases for lower scanning speeds. The build direction is 
another aspect that influences the mechanical properties of 
the LPBFed parts made from H13 steel. Tomas et al. [74] 
and Džugan et al. [118] showed that the yield strength is 
higher when the part is built in z direction and decreases 
when the build direction is 90° to this axis. On the other 
hand, the elongation is higher when the build direction is 
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90° to the z-axis. Džugan et al. [118] showed that the low-
est ductility is related to the high concentration of defects, 
namely the lack of fusion defects and pores because they act 
as stress concentration sites.

As in the case of 420 stainless steel, the improvement 
of the mechanical properties of the H13 steel is usually 
achieved by heat treatments [57, 69, 98, 112, 114]. Higher 
values of mechanical properties were observed in many stud-
ies after tempering at around 525 °C (the temperature of 
the secondary hardening), ascribed to the decrease in the 
retained austenite content and the formation of secondary 
hardening phases (mainly V-enriched carbides) [69, 98, 105, 
112]. The values of the mechanical properties of the LPB-
Fed H13 parts after heat treatment are higher than those 
fabricated by conventional methods [98, 101, 112]. When 
compared to wrought H13 samples, LPBF parts maintain 
higher microhardness values during temperature treatments 
[69], probably because of a higher dislocation density, the 
refinement of the grain because of the rapid solidification, 
and a higher volume fraction of the formation of carbide 
nanoparticles.

For P20 steel, Li et al. [121] pointed out three different 
aspects that can contribute to the increase in the hardness of 
LPBFed parts compared to conventional processes: (i) the 
lower grain size, (ii) the existence of carbides in the micro-
structure, and (iii) the formation of a large amount of acicu-
lar martensitic structures. The hardness after heat treatment 
(tempering) decreases compared to the as-built condition for 
the same reason provided for the previous materials.

Another important mechanical property is fatigue 
strength, associated with the failure of metal components 
under cyclic loading, present in many applications, namely 
plastic injection moulds. Therefore, a component’s fatigue 
performance is one of the most important factors in the 
LPBF process. Process-inherent properties, such as surface 
roughness and defects (i.e., size, shape, and the distance 
from surface), strongly influence the fatigue performance of 
LPBFed parts [1, 3, 107]. However, only a very few papers 
are available in the literature for these steels and those exist-
ing are only related to H13 steel. Some authors claim that a 
considerable improvement in fatigue life can be achieved by 
surface machining to remove the surface defects of the LPBF 
parts [1, 148, 149]. Different reasons have been presented to 
explain the inferior fatigue behaviour of LPBFed H13 steel 
parts compared to conventional methods [1, 57, 107, 113, 
150]. The main reasons are the high surface roughness, and 
residual stresses, which promote crack initiation [1, 57, 105, 
107, 118]. However, with a stress-relieving treatment, the 
fatigue life of LPBFed parts may increase significantly [57, 
107]. The other challenge to this technology is inhomogene-
ity throughout the part [1]. A non-uniform tempering, due 
to the heat transfer from the solidifying layer to the previous 

layers, is responsible for a heterogeneous distribution of 
properties [1, 97].

Pellizzari et al. [107] studied the effect of building direc-
tion (0, 45, and 90° to the z-axis) and defect sensitivity on 
the fatigue behaviour of additively manufactured H13 tool 
steel. The authors concluded that the fatigue strength for 0° 
is lower than that for 45° and especially 90°, due to the dif-
ference in residual stresses and the orientation of the defects 
concerning the load applied. Samples built in the z-direction 
(0°) are characterised by a lack of fusion defects with a split 
shape perpendicular to the loading axis, which leads to a 
higher stress concentration factor compared the 90° samples. 
The size of the defect is smaller for the samples with a 90° 
orientation.

4.5  Corrosion properties

The corrosion properties of plastic injection moulds are very 
important due to the corrosion caused by the plastic material 
and any eventual additives at elevated temperatures [33, 52]. 
They depend on the microstructure, porosity, and chemical 
composition of the material of the mould [1, 89]. Moreover, 
lack of fusion pores is referred to as being more detrimental 
to corrosion properties than spherical pores, since they act 
as pit formation sites in a corrosive environment [1, 151, 
152] (Fig. 14a).

There are some studies on the corrosion behaviour of 
LPBFed parts built from 420 stainless steel and P20 steel. 
The corrosion resistance of 420 stainless steel is associ-
ated with the presence of chromium, which enables the 
formation of a chromium oxide passive film on the metal 
surface [89, 91, 93, 153]. The corrosion resistance of LPB-
Fed 420 stainless steel parts has been the subject of dif-
ferent studies, in particular with regard to particle size, 
layer thickness, the addition of alloying elements, and heat 
treatments [86, 89, 91, 93]. A summary comparison of the 
influence of these factors on the corrosion properties is 
given in Table 5.

The initial powder size has a significant effect on the 
corrosion properties of 420 stainless steel parts. Fine pow-
der increases the corrosion properties of the final parts, 
since for the same processing parameters, high densifica-
tion is obtained [86]. Nath et al. [89] claim that the higher 
corrosion resistance observed for samples fabricated at 
lower layer thicknesses is due to the high densification 
and higher amount of martensite. On the contrary, pit-
ting corrosion occurred for higher layer thicknesses. The 
addition of alloying elements, such as Nb and Mo, is ben-
eficial for corrosion properties, because both elements act 
as stabilising agents, reducing the tendency to undergo 
intergranular corrosion [93]. The heat treatment does not 
have a significant effect on the corrosion properties of 
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LPBFed 420 stainless steel parts [89, 91, 93] (Fig. 14b). 
Comparing the corrosion properties of the as-built LPBF 
and wrought parts, one can conclude that lower properties 
are obtained by using the former process. The formation 
of non-equilibrium microstructures during LPBF process 
and the final porosity are regarded as the main reasons for 
the reduced corrosion resistance [154].

For P20 steel, and contrarily to 420 stainless steel, the as-
built LPBFed parts showed poorer corrosion resistance than 
the heat-treated ones and as-supplied samples, which might 
be explained by the inherent porosity that originates crack 
corrosion and the formation of martensite [121]. The tem-
pering of martensite and the resulting relief of the residual 
stresses leads to increased corrosion properties [121].

4.6  Tribological properties

The tribological properties, particularly wear resistance, 
are crucial for plastic injection moulds to guarantee effi-
cacy and safety [156], especially when the injected mate-
rial is reinforced with hard particles, such as glass fibre 

reinforcements, or when additives like titanium oxide are 
used [31, 52]. The tribological properties are dependent 
on the microstructure (type of phase(s), shape, and size), 
porosity, and surface roughness [157]. Some studies show 
that the wear resistance of materials processed by LPBF 
improves when compared to traditional manufacturing pro-
cesses due to the refined microstructure achieved by the 
process [156–158].

Tribological results can be found in the literature for LPB-
Fed parts made of H13 and P20 steels. Dzukey et al. [108] 
performed wear sliding tests of LPBFed parts of H13 steel 
against 6-mm-diameter ceramic balls, at 20 N loading, with 
a speed of 100 r/min for 60 min (room temperature and dry 
friction). The author showed that the tribological behaviour 
of LPBFed parts of H13 steel depends on the energy density. 
The surface morphology of the wear tracks for samples pro-
duced with different energy densities is shown in Fig. 15.

When the energy density increases, the specific wear rate 
and coefficient of friction decreases and then increases. The 
optimum values, 2.816 ×  10−4  mm3/N m and 0.437, respec-
tively, are obtained for an energy density of 172 J/mm3. The 

Fig. 14  Corrosion: a schematic 
representation of pitting corro-
sion (adapted from [155]) and 
b pits on 420 stainless steel 
surface produced by LPBF on 
the as-printed and heat-treated 
conditions (adapted from [91])

Table 5  Corrosion properties of the 420 stainless steel produced by different manufacturing processes (t–layer thickness)

Condition Corrosion current 
(μA/cm2)

Breakdown 
potential (V)

Polarisation resistance 
(Ω/cm2)

Corrosion 
rate (μm/
year)

LPBF t10 μm [89] 3.1 --- 16,800 31
t20 μm [89] 2.9 0.05 17,100 28
t30 μm [89] 4.1 --- 16,100 42

LPBF (t20 μm) (HT) [89, 91] 3.5 0.22 16,800 35
LPBF_fine powders (t20 μm) [86] 2.8 0.25 17,420 26
LPBF_fine powders (t20 μm) (HT) [86] 3.3 0.20 17,070 32
(Nb + Mo) LPBF (t20 μm) [93] 1.5 0.03 24,200 16
(Nb + Mo) LPBF (t20 μm) (HT) [93] 1.8 0.20 23,800 18
Wrought (quenched and tempered) [86, 93] 2.1 0.15 18,700 23

4277The International Journal of Advanced Manufacturing Technology (2022) 121:4255–4287



1 3

best results come from a combination of high densification 
and fine grain size.

For P20 steel, Lin et al. [120] (load of 5 kg and 600 rpm 
for 20 min; counter-body: tungsten balls) report two impor-
tant points: (i) the defects on the surface can be beneficial 
for tribological properties because they can act as a reser-
voir for wear debris, minimising third body abrasion, and 
(ii) the metal matrix composites, and particularly hard par-
ticles, improve the wear resistance and lubrification of the 
base material.

4.7  Thermal properties

The thermal properties, particularly thermal conductivity, 
are the key aspect in the plastic injection mould industry 
since one of the great challenges of this industry is to 
make cooling more efficient, decreasing the total cycle 
time [29, 36].

The thermal properties of 420 stainless steel produced 
by LPBF have been little explored. Momenzadeh et al. 
[92] claimed that lower values for the layer thickness 

Fig. 15  Surface morphology of the wear tracks, COF and specific wear rate values for samples produced with energy densities of: a 125, b 148, 
c 172, and d 203 J/mm.3 (adapted from [108])
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lead to higher coefficients of thermal expansion for tem-
peratures above 100 °C but do not present any explana-
tion for this result. However, since the density of the part 
produced where the layer is 10 μm thick (7.70 ± 0.02 g/
cm3) was higher than that of the one with a thickness of 
20 μm (7.67 ± 0.02 g/cm3) it can be affirmed that for the 

processing parameters used by the authors, the porosity 
increased with the increase in the layer’s thickness. There-
fore, the higher the porosity is, the lower the thermal con-
ductivity and the coefficient of thermal expansion are. For 
temperatures with the same limit, the addition of Nb and 
Mo to 420 stainless steel demonstrated a lower value of this 

Fig. 16  Thermal properties of 
as-built H13 steel (P = 172 W, 
v = 700 mm/s, h = 80 μm, 
t = 30 μm) as a function of tem-
perature (adapted from [109])

Fig. 17  Imperfections on the surface and thermal conductivity of the as-built H13 steel for three different build directions (based on [118])

4279The International Journal of Advanced Manufacturing Technology (2022) 121:4255–4287



1 3

coefficient, reducing the possible warping that might occur 
in parts produced by LPBF.

Concerning H13 steel, Fonseca et al. [109] and Džugan 
et al. [118] mention that the thermal properties (thermal diffu-
sivity, thermal conductivity, and thermal capacity) can be very 
sensitive to an increase in temperature (Fig. 16) and, therefore, 
the temperature of the platform influences these properties.

Džugan et al. [118] showed that the building directions do 
not influence the coefficient of thermal expansion. The values 
of thermal diffusivity and specific heat do not differ signifi-
cantly up to 700 °C. However, the lower thermal conductivity 

corresponds to the sample where the angle with the z-axis is 
0° (vertical direction) (Fig. 17). This can be explained by the 
higher number of microstructural imperfections.

5  Challenges and future perspectives

LPBF investigations of the steels used in the plastic injection 
mould industry, as reviewed in the present article, are interdisci-
plinary since they integrate fields from materials science, metal-
lurgical engineering, mechanical engineering to laser technology.

Fig. 18  Schematic representation of the limitations and potential solutions for the plastic injection mould industry
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Despite the huge potential of LPBFed steel parts for 
the plastic injection moulding industry, there are two main 
aspects that need further investigation and optimization to 
make LPBFed solutions proper to mass plastic injection 
moulds production: surface finishing and heat extraction. 
Figure 18 aims to schematically explain the present limita-
tions and the potential solutions for this purpose. Further-
more, the plastic injection moulds usually comprise very 
complex shape designs, and so the effects of the anisotropy 
and response of the steel alloys under multi-axial stresses 
can generate severe stress concentrations zones. In this 
regard, the integration of laser localised heat treatments 
with LPBF technology can be an effective strategy to inves-
tigate in short-coming studies. Moreover, the same strategy 
can be used to relieve the residual stresses generated on the 
surface. Finally, the optimization of the scanning strategy 
according to the specific and local demands of the plastic 
injection moulds to create a more customised component 
according to the requests is an added value to this industry.

5.1  Surface finishing

Surface finishing remains one of the LPBF technology’s 
greatest challenges since it affects the appearance of the 
final product. The development of an adaptive process with 
the integration of other technologies (additive and subtrac-
tive operations), as well as the use of laser to reduce surface 
roughness must be adopted. The literature has already shown 
the suitability of  CO2 laser to polish the as-built surface of 
LPBF parts [159]. Another relevant aspect is the ability to 
monitor the in situ LPBF process is a priority area of study 
in the plastic injection moulding since each mould region 
is mechanically requested in a different way. In this sense, 
the in situ analysis of the properties is essential to adjust the 
LPBF processing parameters according to the local specifi-
cations of the part.

5.2  Heat extraction

The thermal properties of the steels used in the plastic 
injection mould industry produced by LPBF have not been 
much explored. However, considering that the cooling time 
of a mould is critical (~ 70% of the cycle) in the injection 
moulding process (as can be seen in the plot in Fig. 18), the 
development of solutions capable of promoting heat extrac-
tion is essential. The use of LPBF technique for combin-
ing different materials in the same parts, and thus creating 
multi-functional solutions not possible using conventional 
routes, might be a future possible strategy to improve this 
aspect. These multi-material solutions can be manufactured 
using hybrid additive manufacturing equipment (additive 
and subtractive operations in the same processing route) 
for obtaining high-advanced LPBFed solutions. Chen et al. 

[160] have already proved to be possible the fabrication of 
the 316L stainless steel-CuSn10 multi-material structures 
by LPBF, which is a strong evidence of the potential of 
multi-material structures. Following this strategy, moulds 
with superior heat extraction can be manufactured by print-
ing zones with high thermal conductivity materials (such as 
copper or copper alloys) within a steel block which allows 
assuring mechanical, corrosion and wear resistance, high 
dimensional and geometric accuracy, simultaneously.

6  Concluding remarks

This review provided an engineering overview concerning 
the response of 420 stainless steel, H13 and P20 steel parts 
made by Laser Powder Bed Fusion and the influence of the 
LPBF processing parameters on the final properties of these 
materials. The main conclusions are summarised as follows:

• H13 steel is the most studied steel (between these three 
steels considered) concerning the production of metallic 
LPBFed parts. Contrarily, P20 steel has not been studied 
much yet.

• An increase in the LPBF energy density is beneficial as 
it increases densification, with optimum values of 53, 60, 
and 79 J/mm3 for 420 stainless steel, H13, and P20 steels, 
respectively. Subsequent heat treatments have a positive 
effect on this property.

• Surface roughness of the parts produced is a poorly 
explored property in the studies of this review. The sur-
face roughness of 420 stainless steel parts increases with 
increasing layer thickness and laser spot size. For the 
same processing parameters and considered aspects, the 
addition of alloying elements does not appear to have any 
influence on the surface roughness of LPBFed parts of 
this steel.

• Considerable variability in the mechanical properties has 
been reported. This variability, at least partially, origi-
nates from the sensitivity on the properties of these mate-
rials to LPBF process parameters, which are still not fully 
understood. The mechanical properties of the as-built 
parts are strongly influenced by the energy density and 
the resulting microstructural properties. The mechani-
cal strength and hardness of the LPBFed 420 stainless 
steel parts are superior to that of wrought materials, MIM 
parts, and annealed cold drawn ones, but the elongation 
tends to be lower. The addition of Nb and Mo improves 
the mechanical behaviour of this steel. The hardness of 
the H13 parts is related to the strain rate and the mechani-
cal strength depends on the build direction; after heat 
treatment, higher values of yield strength, ultimate tensile 
strength, and elongation are reported. For P20 steel, the 
hardness of LPBFed parts is higher than the one of con-
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ventional processes. The fatigue life of LPBFed H13 steel 
parts is inferior to that of parts fabricated by conventional 
methods. No fatigue resistance results are presented for 
420 stainless steel and P20 steel in the articles considered 
in this review.

• The corrosion properties of the parts depend on the 
microstructure, porosity, and chemical composition of 
the material. For 420 stainless steel, the presence of chro-
mium allows the formation of a chromium oxide passive 
film and inhibits surface corrosion; the addition of Nb 
and Mo is beneficial for these properties. Subsequent 
heat treatments do not have a significant effect on the 
corrosion properties of 420 stainless steel parts. LPBFed 
P20 steel parts showed poorer corrosion resistance com-
pared with heat-treated ones. No results could be found 
for LPBFed H13 steel parts.

• The tribological properties of the parts are dependent on 
the microstructure, porosity, and surface roughness. The 
wear resistance of the materials processed by LPBF is 
higher compared to traditional manufacturing processes. 
No tribological results are reported for LPBFed 420 stain-
less steel parts. For H13 steel, the best tribological proper-
ties are obtained from the combination of high densifica-
tion and fine grain size. Concerning the addressed studies 
on P20 steel parts, the defects on the surface resulting 
from the LPBF process are beneficial for the tribological 
properties because they can act as a reservoir for wear 
debris, minimising any third body abrasion.

• The thermal properties of the LPBFed parts have been 
little studied. For 420 stainless steel, a reduction in the 
layer thickness leads to higher values of the coefficient 
of thermal expansion. The addition of Nb and Mo has the 
opposite effect, reducing any possible warping. Concern-
ing H13 steel, the thermal properties are very sensitive to 
an increase in temperature, namely of the platform. The 
building direction affects the thermal conductivity, due to 
the difference in terms of microstructural imperfections.

• It is important to highlight that there is a panoply of aspects, 
essential in the LPBF process and in the final properties 
of the components, rarely mentioned in the studies con-
sidered in this review, such as protective gas flow during 
production, type, height and temperature of the supports, 
dimensional compensations, and overmelting between 
passages and layers. To further advance the fundamental 
understanding of the process-structure–property relation-
ship, deep theoretical investigations related to physical 
and chemical metallurgy and multiphysics simulation are 
required. This would make understanding the melt pool 
characteristics, residual stresses and distortion, densifica-
tion, phase transformations, among others possible to pre-
dict the build properties or customise the parts, taking into 
consideration the required properties.
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