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Abstract
Coordinate measurement machines (CMMs) at the workshop level are gaining increasing significance for achieving high 
machining efficiency while ensuring machining accuracy. As thermal error significantly affects the measurement accuracy of 
CMMs at the workshop level, it is crucial to predict and compensate for this kind of error. Based on functional requirements, 
we investigated the thermal positioning error of the Z-axis of this special CMM. The main thermal error source is determined 
as the ambient temperature for the considered CMM running at a low measuring speed. Usually, the ambient temperature 
is used as a single variable. We believe that this is inaccurate, because when the temperature changes drastically, the tem-
perature at different locations would be different owing to uneven heat transfer. Therefore, in the study, we split the ambient 
temperature into multiple temperature variables. This leads to a strong correlation among the variables and a reduction in the 
accuracy and robustness of the error model. Then, we developed an integrated temperature regression method for thermal 
error modelling. This method merged these temperature variables into one temperature variable for thermal error modelling 
based on error separation. Afterwards, the integrated temperature model is compared to the single temperature and ridge 
regression models. The results show that the proposed temperature regression method can eliminate the collinearity between 
input variables and simplify the overall thermal error modelling. In addition, the compensation accuracy of the proposed 
model can be controlled within 5 μm at a large ambient temperature range (10–35 °C) by using only two temperature sensors.

Keywords  CMM · Ambient temperature · Thermal error · Integrated temperature

1  Introduction

Thermal errors account for 40–70% of the total errors in pre-
cision machine tools and coordinate measurement machines 
(CMMs) [1, 2]. The prediction, identification, and compen-
sation of thermal errors is crucial for improving the volu-
metric accuracy of machine tools and CMMs. Therefore, it 
is critical to establish an efficient and robust thermal error 
compensation model.

Thermal error prevention and compensation are two 
effective means to deal with the thermal error problem [3]. 
Thermal errors can be reduced in various ways, such as opti-
mizing the mechanical structure of a machine, reducing the 
influence of possible heat sources, using high-performance 
materials, controlling the workshop environment tempera-
ture, etc. [4]. With the increase in accuracy requirements, 
the cost and difficulty of implementing this strategy are also 
increasing. Error compensation eliminates thermal error 
by modifying the tool position and orientation. Therefore, 
error compensation has become a cost-efficient and con-
venient method for reducing the impact of thermal errors 
in machines [5].

The thermal error compensation strategy can be divided 
into two categories: theoretical and empirical thermal 
error modelling [6]. Theoretical thermal error model-
ling involves the collection of related theoretical knowl-
edge and uses finite element simulation software, such as 
ANSYS and ABAQUS. Ma et al. [7] proposed closed-loop 
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iterative thermal behaviour modelling based on error 
mechanism analysis. Zhang et al. [8] studied the thermal 
error characteristics of a machining tool by establishing a 
heat transfer function. However, theoretical thermal error 
modelling requires the consideration of many factors, and 
the model is extremely simplified, resulting in distorted 
models and inaccurate prediction results [9].

In recent years, empirical models based on statisti-
cal learning have attracted considerable attention owing 
to their simplicity and efficiency. The empirical thermal 
error model has two key points: the selection of the ther-
mal error model algorithm and processing of temperature 
variables. Owing to their strong ability to deal with multi-
input problems, machine learning models such as multiple 
regression [10, 11], support vector machine [12], and neu-
ral network models [13] are frequently employed to build 
thermal error models. Temperature variable processing is 
employed to decrease the number of input variables and 
reduce the collinearity of input variables. Vyroubal [14] 
chose relevant temperature variables according to the sta-
tistical assessment using sample correlation coefficient, 
where deformation of selected machine part and tempera-
ture changes are compared to find the best fit value. Liu 
et al. [15] proposed a grey relation split unbiased esti-
mation thermal error robust modeling method to improve 
the multiple linear regression algorithm and inhibited the 
influence of collinearity of temperature sensitive points. 
Yang et al. [16] selected temperature-sensitive variables 
based on a fuzzy clustering method and established a neu-
ral-network-based thermal error model. Abdulshahed et al. 
[17] selected temperature sensitive points using the fuzzy 
clustering and grey correlation method and established 
the adaptive neuro-fuzzy inference system thermal error 
model.

Although the conventional grouping and selecting method 
can reduce the collinearity between temperature variables, 
it also reduces the correlation between the selected input 
temperature variables and thermal error, thus reducing the 
robustness of the model [11]. Many methods have been 
developed to simultaneously reduce the collinearity of the 
temperature variables and improve the correlation between 
temperature variables and thermal errors. Li et al. [18] used 
a reconstructed variable regression algorithm to strengthen 
the correlation between the selected temperature variables 
and thermal error. Miao et al. [19] proposed a principal com-
ponent regression (PCR) method that could eliminate the 
influence of multi-collinearity among temperature variables. 
Liu et al. [20] used a correlation coefficient to select temper-
ature-sensitive points and the PCR algorithm to establish the 
thermal error model. Although it used only two temperature 
sensors, the results showed that the model was highly robust. 
Tan et al. [21] proposed a wrapper-approach-based method 
to select temperature-sensitive points and established a 

thermal error model using a least squares support vector 
machine.

To improve the robustness of the thermal error model 
and strengthen the intrinsic relation between input and out-
put variables, this study presents an integrated temperature 
regression method, which uses synchronization and colline-
arity as the temperature measurement point variables. Owing 
to the special structure and low-speed movement of the 
CMM in this study, the change in the temperature of its mov-
ing shaft is affected only by the ambient temperature. The 
ambient temperature, which affects the thermal error of the 
machine, is influenced by daily variations and seasonal tran-
sitions [8]. Therefore, as the ambient temperature changes, 
the temperature measurement points change synchronously. 
However, owing to uneven heat transfer, the changes in the 
values of the temperature variables may not be completely 
consistent. With regard to the thermal error characteristics of 
a transmission system, Wang et al. [22] determined that the 
slope of the positioning error curves changes linearly with 
temperature, thus causing slight variations in the shape of 
the error curve. In this study, we examine the relationship 
between temperature and the overall slope of the error curve. 
However, the accuracy of the thermal positioning error pre-
dicted by different temperature variables under the influ-
ence of a single ambient temperature is not high enough. 
Therefore, the use of multiple temperature variables (under 
the influence of ambient temperature) to optimize the tem-
perature, which results in higher correlation with the thermal 
error, can improve the model accuracy compared with single 
temperature modelling. Furthermore, under the influence of 
a single temperature factor, calculating an equivalent tem-
perature is visually comprehended.

This study aimed at accurately determining the mapping 
relation between environmental temperature and thermal 
error. The remainder of this paper is organized as follows. 
The experimental condition for thermal error, including the 
structure of the CMM, measurement methods of tempera-
ture points, and thermal error are described in Sect. 2. The 
necessity of temperature integration and the integrated tem-
perature regression method for thermal error modelling are 
deduced in Sect. 3. In Sect. 4, the proposed model is verified 
by comparing it with the single temperature modelling and 
ridge regression methods. Finally, the conclusions of this 
study are drawn in Sect. 5.

2 � Analysis and measurement of thermal 
error

2.1 � Structure of the CMM

A CMM at the workshop level can avoid repeated circula-
tion of the workpiece in machining and measuring shops. 
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However, its positioning accuracy is sensitive to temperature 
variation. Therefore, a thermal error model for the CMM 
must be established.

In this study, a θFXZ-type of CMM was considered, as 
shown in Fig. 1, where θ indicates that the workpiece rotates 
with the turntable, and XZ indicates that the probe moves 
linearly in the X- and Z-directions. The turntable rotates 
the workpiece, and the column can move in the horizontal 
and vertical directions. The column slide is equipped with a 
counterweight to counteract the effects of gravity along the 
Z-axis. The components of the column sliding seat, which 
moves linearly on the Z-axis, are connected by rolling linear 
guides and driven by a ball screw, and a grating ruler is used 
to ensure positioning accuracy. To obtain a linear expansion 
grating ruler, an installation method in which one end is 
fixed and the other is free is adopted.

The main function of the CMM is to use the laser probe 
to scan the workpiece by moving the z-axis up and down 
while keeping the x-axis stopped. As a result, the main factor 
affecting the accuracy of this special CMM is the positioning 
accuracy of the z-axis. Therefore, this paper only studied the 
z-axis thermal error of the special CMM.

To eliminate the negative thermal influence of the heat 
generated by the ball screw system, the grating ruler is 
fixed far away from the ball screw. Thus, the heat generated 
by the ball screw, which moves along the Z-axis at a low 
speed, can be further reduced. In the measurement experi-
ment, which was conducted every 30 min, it was found that 
the value of each temperature measurement point did not 

change significantly as shown in Table 1. In Table 1, “Ambi-
ent temperature” represents the set of temperatures in the 
constant temperature room, “Number” represents the num-
ber of measurements, and “T0,” “T1,” and “T2” represent 
the temperature measurement points. T0, T1, and T2 are the 
measured ambient temperature, temperature at the upper end 
of the grating, and temperature at the lower end of the grat-
ing, respectively.

Fig. 1   Structure of the moving 
shaft of the CMM

Table 1   Various temperature changes in the experiment

Ambient 
temperature (°C)

Number T0 (°C) T1 (°C) T2 (°C)

10 1 11.0 9.2 10.5
2 11.1 9.3 10.5
3 11.2 9.4 10.6

15 1 14.9 15.0 15.1
2 15.0 15.0 15.1
3 15.1 15.0 15.1

20 1 20.9 20.1 21.2
2 21.0 20.1 21.1
3 21.1 20.0 21.0

30 1 30.2 29.7 30.6
2 30.1 29.7 30.6
3 30.2 29.7 30.7

35 1 35.2 35.4 34.8
2 35.2 35.4 34.8
3 35.1 35.3 34.8

5769



The International Journal of Advanced Manufacturing Technology (2022) 121:5767–5778	

1 3

In the experiment, it was found that the temperature of 
each temperature measurement point did not change for 
approximately 30 min during the measurement of thermal 
error on the Z-axis. This confirmed one of the advantages 
of the structure of the CMM. Therefore, the influence of the 
internal heat source on the scale can be neglected, and we 
can consider that only the ambient temperature influences 
the thermal error in this study.

2.2 � Temperature measurement

In the previous section, it was shown that the most obvious 
difference compared to the machine tool is that the moving 
shaft of the θFXZ coordinate measuring machine used in the 
study has no internal heat source. For measurements along 
the Z-axis of the measuring machine positioned with the 
grating ruler, which is affected by a single heat source, we 
placed temperature sensors near the two ends of the grating 
ruler. The temperature sensor used was pt100 of HangZhou 
Meacon Automation Technology Co., LTD. The locations 
of the temperature sensors are shown in Fig. 2, indicated by 
T0, T1, and T2.

For workshop-level measurements, temperature changes 
caused by seasonal variations have a greater impact on the 
measuring machine. To simulate a wide range of tempera-
ture changes with respect to changing seasons, thermal  
error experiments were performed in a temperature- 
controllable constant temperature room. In the experiment, the  

temperature of the constant temperature room was set to 
10, 15, 20, 30, and 35 °C. The thermal error was measured 
when the temperature in the room remained constant for 
more than 10 h after setting the temperature values.

2.3 � Thermal‑error measurement

A laser interferometer is generally used to measure the 
thermally induced positioning error of transmission 
systems [23, 24]. In this study, the Renishaw XL-80 
laser interferometer was used. It provides an accuracy 
of ± 0.5 ppm with a resolution of 1 nm. The thermal error 
data under the experimental temperature conditions can 
be accurately obtained using the laser interferometer with 
a precise environmental compensation module. The posi-
tioning error is calculated by comparing the ideal and 
measured positions along the Z-axis. The linear position-
ing accuracy along the Z-axis is obtained by comparing 
the movement data displayed on the machine’s controller 
with the data measured by the laser interferometer. The 
optics are arranged as shown in Fig. 3, with a measurement 
interval of 20 mm.

Fig. 2   Placement locations of temperature sensors
Fig. 3   Linear setup measurement of positional accuracy along the 
Z-axis
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3 � Thermal error modelling

The positioning errors at different Z-axis positions and 
ambient temperatures were measured and collected, and 
the results are as shown in Fig. 4. The thermally induced 
positioning error of the shaft moving along the Z-axis is 
related to both the temperature and position. Therefore, the 
thermally induced positioning error can be divided into a 
geometric component and thermal component [22, 25]. In 
summary, the thermal error modelling includes two parts: 
error separation and integrated temperature regression.

3.1 � Error separation

The profile of the thermal-variant slope is shown in Fig. 5. 
Because the positioning error profiles show a linear trend 
relationship with the position, the profiles are fitted by 
straight lines that pass through the origin using the least 
square method. This will simplify the final model.

From Fig. 5, it can be seen that the shape of the thermal 
positioning error curve remains unchanged when the tem-
perature changes. The positioning and thermal errors in the 
thermally induced positioning error can be separated by.

where Ez is the comprehensive positioning error along the 
z-axis; E(P)z is the geometric component of the positioning 
error at the reference temperature, 20 ℃; and E(T)z is the 
thermally induced error related to temperature change.

Each term is defined as follows:

(1)Ez = E(P)z + E(T)z,

where ɑi is a coefficient of the polynomials; z is the position 
of the shaft moving along the Z-direction of the CMM; KT 
is the slope of the thermal error at temperature T; and K20 is 
the slope of the thermal error when the preset temperature is 
20 °C (it is used as the reference slope in this study). Further, 

(2)E(P)z =
∑n

i=0
aiz

i = a0 + a1z + a2z
2 + ⋅ ⋅ ⋅ + anz

n

(3)E(T)z = (KT − K20)z

(4)KT = b0 + b1Tintegrated,

Fig. 4   Characteristics of the positioning error curves

Fig. 5   Variation characteristic of the thermal-variant slopes
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b0 and b1 are the coefficients, and Tintegrated is the integrated 
temperature, which is explained in detail in Sect. 3.2.

Combining Eqs. (1), (2), (3), and (4), a prediction model 
for the Z-axis thermal positioning error can be obtained, and 
it is expressed as follows:

In Eq. (5), T20

integrated
 is the integrated temperature when the 

preset temperature is 20 °C.
The positioning error at the reference temperature is used 

to fit the polynomial curve at 20 °C using the least square 
method.

3.2 � Integrated temperature regression

3.2.1 � Necessity for the integrated temperature

In this study, because the shaft of the CMM moving in the 
Z-direction is only affected by a single external heat source 
(ambient temperature), it is appropriate to integrate all the 
temperature measurement points. Compared to that of the 
machine tool, which is significantly affected by the internal 
heat source, the temperature measurement point changes in 
this experiment show stronger similarity and consistency. 
The values of the temperature measurement points are listed 
in Table 2.

Cosine similarity is used to measure the degree of simi-
larity between the temperature measurement points and is 
expressed as

where CS(X, Y) is the cosine similarity between X and Y, and 
X = {x1, x2, …, xn} or Y = {y1, y2, …, yn} is the collection of 
observation from a temperature measuring point (T0 – T2). 
The closer the value of cosine similarity is to one, the higher 
the similarity. The cosine similarities between the tempera-
ture measuring points are shown in Table 3.

There is a strong similarity between the temperature meas-
urement points and the input variables, which results in high 
collinearity. Collinearity indicates that the explanatory vari-
ables in the linear regression model are distorted or complex 

(5)
Ez = a0 + a1z + a2z

2 + ⋅ ⋅ ⋅ + anz
n +

(
Tintegreted − T20

integreted

)
b1z.

(6)CS(X, Y) =

∑n

i=1
(xiyi)�∑n

i=1
(xi)

2
�∑n

i=1
(yi)

2

to be estimated accurately owing to precise or high correla-
tion. Highly relevant features do not provide much informa-
tion. This indicates that the information provided by each data 
is highly correlated, and it does not increase the upper limit of 
the data. Therefore, integrating the input variables with high 
similarity can compress the information and eliminate collin-
earity. It is necessary and statistically significant to integrate 
various temperature variables into one.

3.2.2 � Method of the integrated temperature regression

Unlike reconstructed variable regression [18], integrated tem-
perature regression uses the correlation distance algorithm 
to optimize multiple temperature values into one to obtain a 
stronger linear correlation between this temperature value and 
the thermal-variant slope KT. The relationship between the 
temperature and thermal-variant slopes is shown in Fig. 6. The 
temperature measurement points affected by a single exter-
nal heat source are integrated into a temperature value, and a 
regression model is established between the integrated tem-
perature and slope. Figure 6 shows that there is a strong linear 
relationship between the temperature and slope.

The integrated temperature expression is as follows:

where Tintegrated is the integrated environment temperature, 
referred to as the integrated temperature in this study; T0, 

(7)Tintegrated =
∑m

i=0
liTi = l0T0 + l1T1 + ⋅ ⋅ ⋅ + lmTm

Table 2   Values of the temperature measuring points (unit: °C)

Tset 10 15 20 30 35

T0 11.1 15.0 21.0 30.2 35.2
T1 9.3 15.0 20.1 29.7 35.4
T2 10.5 15.1 21.1 30.6 34.8

Table 3   Cosine similarities between the temperature measuring points

Cosine similarity CS(T0, T1) CS(T0, T2) CS(T1, T2)

Value 0.99985 0.99912 0.99954

Fig. 6   Relationship between temperature and thermal-variant slopes
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T1, …, Tm are the temperatures at different locations of the 
machine affected by the environment; and l0, l1, …, lm are 
the weights of the ith temperature variable.

To provide physical meaning to the integrated environ-
ment temperature, or to make the integrated environment 
temperature equivalent to the actual temperature of the 
CMM to a certain extent, the weights in this study are 
limited as follows:

Correlation distance D(Tintegrated, KT) is used to reflect 
the linearity between the integrated temperature Tintegrated 
and thermal-variant slope KT, which is defined as follows:

P(Tintegrated, KT) represents the Pearson correlation coef-
ficient, which is expressed as.

in which

where Tj

integrated
 is the integrated temperature when the con-

stant temperature is set to j degrees Celsius. Kj

T
 is the slope 

of the thermal error when the constant temperature is set 
to j degrees Celsius, and card(n) is the number of set 
temperatures.

The correlation distance can be obtained from Eq. (13), 
(15), (16), and (17):

The smaller the value of D(Tintegrated, KT), the higher 
the linear positive correlation between the integrated 
temperature and thermal-variant slope is and the higher 
the fitting accuracy of the thermal model will be. When 
D(Tintegrated, KT) is between 0 and 0.2, it can be considered 
that there is a strong linear positive correlation between 
the features. Because Tj

i
 and Kj

T
 are known, D(Tintegrated, 

KT) is only related to li. Therefore, the objective function 
is obtained as follows:

(8)
�∑m

i=0
li = 1

li ≥ 0
, i = 0, 1, ⋅ ⋅ ⋅,m.

(9)D
(
Tintegrated,KT

)
= 1 − P

(
Tintegrated,KT

)
.

(10)

P(Tintegrated,KT ) =
Cov(Tintegrated ,KT )√
D(Tintegrated)

√
D(KT )

=

∑n

j
(Tk

integrated
−Tintegrated)(K

j

T
−KT )�

[
∑n

j
(Tk

integrated
−Tintegrated)

2

]×[
∑n

j
(K

j

T
−KT )

2

]

,

(11)Tintegrated =
1

card(n)

∑n

j
Tj

integrated
,KT =

1

card(n)

∑n

j
K

j

T
,

(12)

D
�
Tintegrated ,KT

�

= 1 −

∑n

j

�∑m

i=0
liT

j

i
−

∑n

j

∑m

i=0
liT

j

i

card(n)

��
K

j

T
−

∑n

j
K

j

T

card(n)

�

����
�
∑n

j

�∑m

i=0
liT

j

i
−

∑n

j

∑m

i=0
liT

j

i

card(n)

�2
�
×

�
∑n

j

�
K

j

T
−

∑n

j
K

j

T

card(n)

�2
� .

This is a nonlinear optimization problem that can be 
solved using Python or MATLAB. Thus, the optimal solu-
tion is obtained, which implies that l0, l1, …, lm are known, 
and the integrated temperature can be obtained. Therefore, 
the thermal error model can be obtained using Eq. (5). 
The modelling process is simplified by the integrated tem-
perature regression method. More importantly, the inte-
grated temperature has an apparent physical meaning in 
this study.

4 � Experimental validation

4.1 � Positioning error modelling

In this study, the positioning error curve obtained when 
the constant temperature is set to 20 °C is used as the geo-
metric component of thermally induced positioning error. 
The least square method is used to fit the positioning error 
curve. And, the highest order term of the polynomial fit-
ting is selected as 17 times. The expression is.

in which.
A = 
[-9.86402064e-4 51.25539203e-40 -7.26303338e- 

372.52699965e-33.
-5.89404690e-30 9.72430065e-27 -1.16681849e-23 

1.03076751e-20.
-6.70915993e-183.18720424e-15 -1.08272441e-12 

2.54237949e-10.
-3.91153291e-083.59829515e-06 -1.54886835e-04 

-1.63970781e-03.
2.25572864e-01 9.62676061e-01].
The collected data points are relatively dense, and the 

fitting effect is shown in Fig. 7.

4.2 � Integrated temperature

Table 4 lists the values of each temperature measurement point 
and thermal gradient when the set temperature in the constant 
temperature room is 10, 15, 20, 30, and 35 °C.

The objective function of the integrated temperature 
method is obtained using Eq. (15), where l0, l1, and l3 are the 

(13)

min Object(l0, l1, ⋅ ⋅ ⋅, lm) = 1 −

∑n

j
(
∑m

i=0
liT

j

i
−

∑n
j

∑m
i=0

liT
j

i

card(n)
)(K

j

T
−

∑n
j
K
j

T

card(n)
)

�
[
∑n

j
(
∑m

i=0
liT

j

i
−

∑n
j

∑m
i=0

liT
j

i

card(n)
)

2

]×[
∑n

j
(K

j

T
−

∑n
j
K
j

T

card(n)
)

2

]

s.t.

�∑m

i=0
li = 1

li ≥ 0
i = 0, 1, ⋅ ⋅ ⋅,m

.

(14)
E(P)z = a0 + a1z + a2z

2 + ⋅ ⋅ ⋅ + a17z
17

=
[
a17, a16, ⋅ ⋅ ⋅, a0

][
z
17, z16, ⋅ ⋅ ⋅, 1

]T
= A ⋅ Z

T ,
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unknown weights. The objective function and the boundary 
conditions are expressed as follows:

The optimal solution of the nonlinear multivariate function 
can be obtained using the gradient method. The results are 
l0 = 0, l1 = 0.4393, and l2 = 0.5607. Therefore, the integrated 
temperature can be expressed as follows:

The integrated ambient temperature at each preset tempera-
ture is shown in Table 5.

The relationship between the available slope and the inte-
grated temperature is obtained using Eq. (4). The regression 
equation is as follows:

(15)

min Object(l0, l1, l2) = 1 −

∑35

j=10
(l0T

j

0
+l1T

j

1
+l2T

j

2
−

1

5

∑35

set=10
(l0T

j

0
+l1T

j

1
+l2T

j

2
))(K

j

T
−

1

5

∑35

set=10
K

j

T
)�

[
∑35

j=10
(l0T

j

0
+l1T

j

1
+l2T

j

2
−

1

5

∑35

j=10
(l0T

j

0
+l1T

j

1
+l2T

j

2
))
2
]×[

∑35

set=10
(K

j

T
−

1

5

∑35

set=10
K

j

T
)
2
]

s.t.

⎧⎪⎨⎪⎩

l0 + l1 + l2 = 1

l0 ≥ 0

l1 ≥ 0

l2 ≥ 0

.

(16)Tintegrated = 0.4393T1 + 0.5607T2.

4.3 � Comparison and analysis of thermal error 
models

On the one hand, to prove the necessity of the method pro-
posed in this study, we compared the thermal error modelling 
of a single temperature with the integrated environmental tem-
perature modelling. On the other hand, to verify the effective-
ness of the method, the newer ridge regression modelling [11] 
was used as a comparative model. Finally, another group of 
experimental data was collected to compare the practicality 
of each model.

4.4 � Integrated temperature thermal error 
modelling (IR)

According to Eqs. (5), (14) and (17), the final thermal error 
model can be expressed as.

4.5 � Single temperature for thermal error modelling

R0: Only ambient temperature T0 is used for modelling. The 
modelling results are as follows:

R1: Only ambient temperature T1 is used for modelling. The 
modelling results are as follows:

R2: Only ambient temperature T2 is used for modelling. 
The modelling results are as follows:

(17)KT = 0.0108Tintegrated − 0.2057

(18)E(P)z = A ⋅ ZT + 0.0108 ×
(
Tintegrated − 20.6607

)
z.

(19)
{

KT = 0.0111T0 − 0.2157

E
(
P)z = A ⋅ ZT + 0.0111 ×

(
T0 − 21.0

)
z

(20)
{

KT = 0.0105T0 − 0.1971

E(P)z = A ⋅ Z
T + 0.0105 × (T1 − 20.1)z

Fig. 7   Positioning error curve

Table 4   Temperature measurement points and thermal-variant slopes 
(unit: ℃)

Set T 10 15 20 30 35

T
j

0
11.1 15.0 21.0 30.2 35.2

T
j

1
9.3 15.0 20.1 29.7 35.4

T
j

2
10.5 15.1 21.1 30.6 34.8

K
j

T
 − 0.09831  − 0.04211 0.01634 0.12176 0.17243

Table 5   Integrated ambient temperature values(Unit: ℃)

Set T 10 15 20 30 35

Tintegreted 9.9728 15.0561 20.6607 30.2046 35.0636
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Ridge regression modelling (RR for short) can effectively 
reduce the collinearity of the input variables, and the rel-
evant hyperparameters are selected by the grid parameter 
method of Python. The modelling results are as follows:

The performance of the above five thermal error mod-
els can be evaluated in terms of the root mean square 
error (RMSE), mean sum of the absolute residual (MSAR), 
adjusted coefficient of determination (R2_adjusted), and 
whether the model has a physical meaning (PM).

where xi is the measured value; x̂i is the fitted or predicted 
value of the models; R2 is the coefficient of determination; 
n is the number of samples; and p is the number of features. 
The performance of the different models is compared in 
Table 6.

The smaller the values of the RMSE and MSAR and the 
larger the value of R2_adjusted, the better the prediction 
accuracy of the thermal positioning error model. Table 7 
shows that the various indicators of the IR model are opti-
mal. This indicates that the integrated temperature regres-
sion method for thermal error modelling has an excellent 
predictive effect. Overall, the prediction effect of the inte-
grated temperature model is no less than that of the ridge 
regression model, and it is significantly better than the sin-
gle temperature model. Compared with the ridge regres-
sion model, the integrated temperature algorithm made the 

(21)
{

Kt = 0.0110T0 − 0.2124

E
(
P)z = A ⋅ ZT + 0.0109 ×

(
T2 − 21.1

)
z

(22)

⎧⎪⎨⎪⎩

KT = 0.0021788T0 + t0.00433348T1 + 0.00432128T2 − 0.20678767

E(P)z = A ⋅ ZT + 0.0021788 × (T0 − 21.0)z

+0.00433348 × (T1 − 20.1)z + 0.00432128 × (T2 − 21.1)z

.

(23)RMSE =

√
1

n

∑n

i=1
(xi − x̂i)

2

(24)MSAR =
1

n

∑n

i=1
||xi − x̂i

||

(25)R2
adjusted

= 1 −

(
1 − R2

)
(n − 1)

n − p − 1
,

overall thermal error model simpler and calculated a tem-
perature value with PM. A single temperature variable with 
PM that helps many mature CNC systems realize thermal 
error compensation in engineering applications.

To test the model's validity, the temperature of the constant 
temperature room was set to 25 ℃ as a verification experi-
ment, and the values of the temperature measuring points were 
obtained as follows: T0 = 24.7, T1 = 24.5, and T2 = 25.3.

Therefore, the integrated temperature can be calculated 
using Eq. (16):

According to Eq. (18), the thermal positioning error can 
be expressed as.

The thermal error models for a single temperature, namely 
R0, R1, and R2, are expressed as follows:

The ridge regression thermal error model is expressed as 
follows:

The prediction results of three categories (five in total) are 
shown in Fig. 8 and Table 7.

In Eq. (30), ZR is the set of residuals of thermal error 
compensation, ZRq is the set with residual values less than 
q, card() is used to calculate the total number of elements 
in the set, and ƞq is the percentage of the absolute value of 
residuals less than q (it is referred to as the error accuracy 
guarantee in this study).

(26)T25

integreted
= 0.4393 × 24.5 + 0.5607 × 25.3 = 24.9486.

(27)
IR ∶ E(P)z = A ⋅ Z

T + 0.0108 × (24.9486 − 20.6607)

z = A ⋅ Z
T + 0.0463z.

(28)

⎧⎪⎪⎨⎪⎪⎩

R0 ∶ E(P)z = A ⋅ ZT + 0.0111 × (24.7 − 21.0)z = A ⋅ ZT + 0.0411z

R1 ∶ E(P)z = A ⋅ ZT + 0.0105 × (24.5 − 20.1)z = A ⋅ ZT + 0.0462z

R2 ∶ E(P)z = A ⋅ ZT + 0.0109 × (25.3 − 21.1)z = A ⋅ ZT + 0.0458z

.

(29)

RR ∶ E(P)z = A ⋅ ZT + 0.0021788 × (24.7 − 21.0)z + 0.00433348 × (24.5 − 20.1)z

+0.00432128 × (25.3 − 21.1)z = A ⋅ ZT + 0.0453z

(30)

𝜂q =
card(ZRq)

card(ZR)
× 100%, ZRq = {−q < x < q|x ∈ ZR, q > 0}

Table 6   Performance of the different models

Model RMSE MSAR R2_adjusted PM

IR (ours) 3.3014 2.4065 0.9987 Yes
R0 4.9729 3.8150 0.9970 Yes
R1 4.4162 3.3211 0.9976 Yes
R2 4.8003 3.6405 0.9972 Yes
RR 3.3939 2.4696 0.9986 No

Table 7   Validation effects of different models

Model RMSE MSAR R2_adjusted PM

IR (ours) 2.9551 2.2863 0.9931 Yes
R0 6.9237 5.9419 0.9622 Yes
R1 3.0170 2.3448 0.9928 Yes
R2 3.1124 2.4376 0.9924 Yes
RR 3.6724 2.9881 0.9894 No
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Fig. 8   Fitting results and residual of different models. a IR (our model). b R0. c R1. d R2. e RR
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In the experiment, we found that the prediction accuracy 
of the single temperature model and the integrated tempera-
ture model would decrease depending on its deviation from 
the reference temperature. However, the prediction accuracy 
of the single temperature model dropped more sharply. The 
results of the modelling experiment showed that the inte-
grated temperature has no relationship with the ambient 
temperature T0. On comparing models R1 and R2 to the IR 
model, it can be observed that integrated temperature model-
ling is better than single temperature modelling. Compared 
to the ridge regression model, which reduces collinearity, 
the IR model has an easy-to-understand PM and a higher 
prediction accuracy. The maximum error in the verification 
experiment is 95 μm, and after the IR model error com-
pensation, the error accuracy guarantee is ƞ5 = 92.11% and 
ƞ10 = 100.00%. Therefore, for a moving shaft that is only 
affected by ambient temperature owing to the unevenness of 
heat transfer, the integrated temperature is essential, and the 
integrated temperature regression thermal error modelling 
is a good choice.

5 � Conclusion

This paper proposed an integrated temperature thermal error 
modelling for the high-precision moving shaft that is mainly 
affected by the ambient temperature. The experimental 
results showed that the proposed method reduces the col-
linearity of the input variables and simplifies the thermal 
error model by calculating the integrated temperature. The 
following conclusions can be drawn.

1.	 The thermally induced positioning error of the mov-
ing shaft of the special CMM includes a heat-affected 
part and a reference part. The reference part was the 
linear positioning error of the moving shaft when the 
constant temperature room was set to 20 °C, and by 
integrating the ambient temperature, a concise thermal 
error model was established. The proposed model sig-
nificantly reduces the influence of ambient temperature 
on the positioning error and enables the realization of 
workshop-level measurement.

2.	 We split the ambient temperature into several tem-
perature variables and then built the corresponding 
single-temperature thermal error model. By using the 
integrated temperature algorithm, the multiple-input 
problem becomes a single-input problem. Compared 
to the single temperature and ridge regression models, 
the proposed model is more accurate, more concise and 
easier to compensate.

3.	 The integrated temperature thermal error modelling is 
suitable for a wide range of temperature changes, such as 

seasonal variations. However, depending on its deviation 
from the reference temperature, the prediction accuracy 
of the model will decrease slightly. The causes and solu-
tions of this problem can be considered in future studies.
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