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Abstract
The continuous and synchronous calibration process for straightness and roundness of LSAW (longitudinally submerged arc 
welding, LSAW) pipes with three rollers is a bidirectional reciprocating bending process. It includes both axial and circum-
ferential directions. It is particularly important to reveal the deformation mechanism, which provides theoretical support for 
the calibration process to be applied to actual production. Based on this, through the combination of references, theoretical 
analysis and numerical simulation, the deformation mechanism is analyzed in this paper. The whole deformation process 
of pipe is modeled and then numerically simulated with FEM software of ABAQUS. The results show that reciprocating 
bending can eliminate the difference of initial curvature, so that the axial curvature and circumferential curvature are unified 
to the same direction and value, respectively. The calibration process of LSAW pipes is realized by the synergy between 
the axial reciprocating bending straightening process and the circumferential reciprocating bending rounding process. The 
simulation and experimental results support the theoretical results, and the deformation is mainly caused by axial stress and 
circumferential stress.

Keywords LSAW pipes · Three-roller · Continuous and synchronous calibration process · Deformation mechanism · 
Numerical simulations · Axial and circumferential bidirectional reciprocating bending

1 Introduction

With the development of the world's oil and gas resources 
transferring to unconventionality, remote and harsh develop-
ment environment and the development trend of oversized 
transmission have put forward higher requirements for pipe-
line construction. Longitudinally submerged arc welding 
(LSAW) pipes are made from high-steel wide plates, espe-
cially for long-distance oil and gas pipeline transportation 
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and for laying pipes in deep-sea or cold areas. The straight-
ness and roundness of formed welding pipe cannot meet 
the industrial standards due to the factors such as welding 
thermal stress, material properties and technical equipment 
[1–3]. The formed welding pipe needs to be straightened 
and rounded (the process of straightening and rounding is 
referred to as the calibration process in this paper). Accord-
ing to the American Petroleum Institute's industry stand-
ard ANSI/API Spec. 5L, the straightness and roundness of 
finished welding pipes have been strictly required. Namely 
the roundness does not exceed ± 0.75% of a nominal outer 
diameter, and the straightness is not greater than 0.2% of a 
total length [4].

At present, the roundness calibration process mainly 
includes the whole-diameter roundness calibration pro-
cess [5, 6], the over-bending roundness calibration process 
[7–9] and the roll-type roundness calibration process [10, 
11]. Common straightness calibration techniques include the 
pressure straightening [12–14] and the cross-roll straighten-
ing [15–18]. The existing roundness and straightness calibra-
tion processes are done separately. On the one hand, it leads 
to the growth of production process and the reduction of 
production efficiency, which is not easy to realize automatic 
and intelligent production; On the other hand, because the 
deformation process affects each other, the flattening prob-
lem of LSAW pipes cannot be solved [19]. It is difficult to 
adjust both the straightness and roundness to optimal levels, 
which also seriously affects on-site welding and pipeline 
safety [20]. In view of the application trend of LSAW pipes 
and the existing problem of calibration technology, a new 
three-roller continuous and synchronous calibration process 
of straightness and roundness was proposed [20–23]. The 
study of process deformation mechanism provides theoreti-
cal support for understanding the essence of the process and 
applying it to actual production.

Based on the combination of reference, theoretical anal-
ysis and numerical simulation, this paper further studies 
the deformation mechanism of the calibration process. It 
includes the axial reciprocating bending straightening pro-
cess and the circumferential reciprocating bending rounding 
process. In addition, the distribution of equivalent stress, 

maximum and minimum principal stress of pipe in Section 
III is analyzed; the effects of axial stress, circumferential 
stress and radial stress on pipe deformation are discussed. 
The simulation and experimental results can support the 
theoretical analysis results.

2  Process introduction

The three-roller continuous and synchronous calibration 
process of straightness and roundness for LSAW pipes is 
shown in Fig. 1. The process’ main working parts are three 
parallel rollers, including a convex roller (upper roller) and 
two concave rollers (lower rollers). Before experiment, each 
roller pushes the same radial reduction toward the pipe’s 
central axis. During the experiment, two concave rollers 
rotate simultaneously driven by servo motors. This makes 
the pipe and convex roller rotate under the action of friction. 
At the same time, the servo motor drives the push plate to 
make the pipe move along the slideway, thus finishing the 
calibration process.

The schematic diagram of roller-shape is shown in 
Fig. 2. As shown in Fig. 2, both ends of the roller are 
loading section (Section I) and unloading section (Section 
V), both of which are truncated cone shape. The design 
enables the pipe to enter smoothly between the three roll-
ers and ensures that the pipe can unload smoothly, so as 
to unify the curvature. Sections II and IV are roundness 
calibration sections, which are cylindrical in shape. The 
design can make the pipe undergo multiple reciprocat-
ing bending along the circumferential direction, resulting 
in elastic–plastic deformation. Thus, roundness calibra-
tion and complementary roundness calibration are real-
ized. Section III is roundness and straightness calibration 
section. The upper roller part is convex, and the lower 
roller part is concave. The design ensures that the pipe 
can undergo multiple reciprocating bending along the cir-
cumferential and axial directions. Thereby, roundness and 
straightness calibration are realized.

The curvature distribution of Section III is shown in Fig. 3. 
Section III is composed of n tangent arcs with changing 

Fig. 1  Schematic diagram of the 
calibration process
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curvature, whose curvature is gradually reduced from the 
middle to both ends. That is, K1 to Kn gradually increases in 
value, and Kn is the maximum curvature of Section III.

Figure 4 is a schematic diagram of the loading parameter. 
Three rollers load the same radial reduction toward the pipe 
center, and the stroke of each roller is recorded as H.

where H is the radial reduction, R1 is the roller radius, R is 
the pipe radius, and Hj is the distance from the pipe’s center 
to the center of roller after loading.

(1)H = R1 + R − Hj

3  Process deformation mechanism

In this paper, the axial and circumferential reciprocating 
bending deformation are simplified to the pure bending 
problem of plane curved beam [24].

3.1  Reciprocating bending springback analysis 
of axial straightening

The straightening process of the calibration process is an 
axial reciprocating bending process. As shown in Fig. 3, the 

Section I : Loading section; Section II : Roundness calibration section; Section III: Roundness and

straightness calibration section; Section IV: Roundness complement calibration section; 

Section V: Unloading section

Fig. 2  Schematic diagram of roller-shape

Fig. 3  Curvature distribution of Section III–n-segment curvature Fig. 4  Diagram of loading parameters
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curvature distribution of Section III is constantly changing, 
with the curvature increasing from zero ( K1 ) to Kn and then 
reduced to zero. According to the geometric characteristics 
of LSAW pipe, a linear simple kinematic hardening (LSKH) 
constitutive model is adopted [15], as shown in Fig. 5.

The expression is as follows:

where �s is yield stress, D is plastic modulus, and E is elastic 
modulus.

The circular section of pipe is shown in Fig. 6. The coor-
dinate system is established with the geometric center of 
the section as the coordinate origin. The bending moment 
M during loading can be simply described as

where M0 =
4�0

3
(R3

1
− R3

2
) , I = �

4
(R4

1
− R4

2
), R2 is the inner 

diameter of pipe.
Since the deformation of each section is continuous, the 

current initial curvature can be used as the curvature after 
the last bending springback. According to Eq. (3), the recur-
rence equation of reciprocating bending can be expressed as

where n is the times of reciprocating bending and Kpn is the 
springback curvature after reciprocating bending n times.

(2)
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Based on the springback theory of small curvature plane 
bending [25], the springback curvature of pipe micro-beam 
after reciprocating bending n times along the axis is deduced 
by mathematical induction. The reciprocating bending pro-
cess is shown in Fig. 7.

If the first bending is reverse bending, the unified equa-
tion of curvature after springback is

If the first bending is positive bending, the unified equa-
tion of curvature after springback is

Equations (5) and (6) can be expressed uniformly as

Equation (7) proves that multiple reciprocating bend-
ing can eliminate the difference of initial curvature along 
the axial direction. This unifies the curvature to the same 
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(7)Kpn = f (D,E, �0,R1,R2,K1,K2,… ,Kn)

Fig. 5  LSKH constitutive model
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Fig. 6  Circular section of pipes
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direction and value. Kpn is related to material properties, 
inner and outer diameters of pipe and bending curvature. 
When the loading curvature Kn  tends to zero, the spring-
back curvature of the pipe along the axial direction after 
reciprocating bending is also close to zero, thus achieving 
straightening.

3.2  Reciprocating bending springback analysis 
of circumferential rounding

The rounding process of the calibration process is a circum-
ferential reciprocating bending process. Similarly, a linear 
simple kinematic hardening (LSKH) constitutive model is 
adopted [15]. The relation between bending moment and 
curvature can be described as

where M0 =
�0t

2

4
.

(8)M = �
A

𝜎zdz =

{

DI
(

K − K0

)

+M0 K ≥ K0

DI
(

K − K0

)

−M0 K < K0

Then, after reciprocating bending n times, the springback 
curvature of pipe micro-beam along the circumferential 
direction is deduced. The reciprocating bending process is 
shown in Fig. 7. The derivation process is the same as that 
of axial reciprocating bending.

If the first bending is reverse bending, the unified equa-
tion of curvature after springback is

If the first bending is positive bending, the unified equa-
tion of curvature after springback is

Equations (9) and (10) can be expressed uniformly as
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Fig. 7  Schematic diagram of 
reciprocating bending of micro-
beam
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Equation (11) proves that multiple reciprocating bend-
ing can eliminate the difference of initial curvature along 
the circumferential direction. This unifies the curvature to 
the same direction and value. Kpn is related to material 
properties, thickness of pipe wall and bending curvature. 
When the loading curvature Kn tends to a certain value, 
the springback curvature of pipe along the circumferential 
direction after reciprocating bending tends to be consistent, 
thus achieving rounding.

4  Numerical simulation

Using the software ABAQUS, a finite element model of the 
LSAW pipe calibration process is established, as shown in 
Fig. 8. Regardless of the effect of pipe welds on the con-
tinuous calibration process, the mechanical properties and 
geometric dimensions of pipes are shown in Table 1 and 
the geometric dimensions of rollers are shown in Table 2. 
The pipe is set as a deformable body. The pipe wall is 
divided into 4 layers along the thickness, and the pipe is 
discretized by 8-node linear hexagonal nonconforming 

(11)Kpn = f (D,E, �0,K1,K2,… ,Kn)

mode elements. Select the continuum distributing cou-
pling method to couple the center point of the pipe cross 
section and the pipe cross-section boundary, and select all 
6 degrees of freedom for the constrained area. The three 
rollers are set as discrete rigid bodies. The contact between 
the pipe and each roller is set to pure master–slave contact 
and motion contact conditions, and the coefficient of fric-
tion is 0.2.

5  Results and discussion

During numerical simulation, the roller rotation speed is 
150 mm/s and the pipe forward speed is 4 mm/s. The times 
of reciprocating bending of ST12 pipe from starting to 
contact the roller to completely separating from the roller 
is 67.

The equivalent stress distribution of one-half ST12 pipe 
in Section III is shown in Fig. 9. According to the symmetry, 
there are three positive bending regions and three reverse 
bending regions along the circumferential direction. They 
are evenly distributed in the whole pipe [21].

The distribution of maximum and minimum principal 
stresses in Section III is shown in Fig. 10. The maximum 
and minimum principal stress values are shown in Table 3. 
In combination with Figs. 9 and 10, it can be seen that posi-
tions A and C are located in the reverse bending region. The 
maximum principal stress is generated in the inner layer 
of the pipe (nodes 97 and 427), and the minimum princi-
pal stress is generated in the outer layer of the pipe (nodes 
67 and 454). Positions B and D are located in the positive 
bending region. The maximum principal stress is generated 
in the outer layer of the pipe (nodes 460 and 448), and the 
minimum principal stress is generated in the inner layer of 
the pipe (nodes 421 and 433). Based on the above analysis, 
the absolute values of the maximum principal stress and 
the minimum principal stress of the pipe any position are 
basically equal, which verifies the characteristics of pure 
bending deformation.

The distribution of axial stress along the thickness and 
length directions in Section III is shown in Fig. 11. Plastic 
deformation occurs along the thickness and length direc-
tions due to axial stress. It is proved that the geometric 

Fig. 8  Finite element model

Table 1  Mechanical properties and geometric dimensions of pipes

Material Elastic modulus
E (GPa)

Yield stress
�s (MPa)

Plastic modulus
D (MPa)

Outer diameter
Dp (mm)

Length
Lp (mm)

Thickness t 
(mm)

Initial roundness Initial straightness

ST12 179 189 1500 140 700 2 5% 10‰

1736 The International Journal of Advanced Manufacturing Technology (2022) 121:1731–1742
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dimension of the longitudinal section of the pipe has 
changed.

Figure 11a shows the distribution of axial stress along the 
thickness direction. In the positive bending region, the pipe’s 
outer layer is stretched with a maximum stress of 249 MPa 
(node 5) and a minimum stress of 0 MPa (node 1); in the 
reverse bending region, the inner layer of the pipe is com-
pressed with a maximum stress of 0 MPa (node 5) and a 
minimum stress of -278 MPa (node 1). The above indicates 
that one part of the pipe wall has reached yield strength, 
while the other part has produced only elastic deformation.

Figure 11b shows the distribution of axial stress along 
the length direction. The axial stress of the pipe’s outermost 
nodes increases gradually from both ends to the center along 
the length direction. And in the center of the roller curve, the 
axial stress reaches its maximum. That shows that the plastic 
deformation occurs in Section III along the length direction.

The distribution of tangential stress along the thickness 
and circumferential directions in Section III is shown in 
Fig. 12. As indicated in Fig. 12, plastic deformation occurs 
along the thickness and circumferential directions due to 
circumferential stress. It is proved that the geometric dimen-
sion of the circumferential section of the pipe has changed.

Figure 12a shows the distribution of circumferential 
stress along the thickness direction. In the positive bending 
region, the pipe’s outer layer is stretched with a maximum 
stress of 287 MPa (node 5); the inner layer is compressed 
with a minimum stress of -289 MPa (node 1). In the reverse 
bending region, the inner layer of the pipe is stretched, the 
maximum stress is 280 MPa (node 1); the outer layer is 
compressed, and the minimum stress is -276 MPa (node 
5). From this, regardless of the positive bending region or 
the reverse bending region, the absolute value of the outer 
and inner circumferential stresses of the pipe is basically 
the same.

Figure 12b shows the distribution of circumferential stress 
along the circumferential direction. The circumferential 
stress values of the pipe’s outermost nodes are selected. As 
can be seen from Fig. 12b, the area of the positive bending 
region is larger than that of the reverse bending region. This 
is consistent with the equivalent stress distribution in Fig. 9. 
The absolute value of circumferential stress reaches the max-
imum at each region’s center and gradually decreases from 
the center to both ends.

The distribution of radial stress in Section III is shown 
in Fig. 13. It shows that the radial stress of the pipe is very 
small, about -2.0 MPa to 2.0 MPa, and only elastic deforma-
tion occurs.

The effects of axial, circumferential and radial stresses on 
the pipe calibration process are discussed through numeri-
cal simulation. The results show that the pipe calibration 
process is realized by the synergy between axial stress and 
circumferential stress. As a result, the simulation results also 
support the theoretical analysis results.

The equivalent stress distribution of ST12 pipe after cali-
bration is shown in Fig. 14. It can be observed in Fig. 14 
that the distribution of equivalent stress tends to be uniform 
and the residual stress is small. The simulation results show 
that the residual roundness is within 0.14% and the residual 
straightness is within 0.17%. The results meet the standard 
requirements [4]. As a result, the feasibility of the process 
is initially verified.

6  Experimental validation

The experimental device for pipe calibration is shown in 
Fig. 15. The device can realize both continuous rounding 
and continuous straightening of LSAW pipes.

Table 2  Geometric dimension of rollers

Outer diameter
Dg (mm)

Length
Lg (mm)

Proportion of rollers Taper of Section I (rad) Taper of Section V (rad) Kn

(mm−1)
Roller shape curve of Section III

120 600 1:2:4:2:1 0.033 0.025 0.001 0.16x2 − 0.0004y2 − 1 = 0

Fig. 9  Equivalent stress distribution of one-half pipe
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Fig. 10  Distribution of maxi-
mum and minimum principal 
stresses
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Table 3  Maximum and minimum principal stresses

Position Node ID Maximum principal 
stress (MPa)

Minimum 
principal stress 
(MPa)

A 67
97

—
 + 251

-257
—

B 460
421

 + 282
—

—
-281

C 454
427

—
 + 285

-286
—

D 448
433

 + 277
—

—
-269

Fig. 11  Distribution of axial stress

Fig. 12  Distribution of tangential stress (I: positive bending region; II: reverse bending region)

Fig. 13  Distribution of radial stress
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As shown in Fig. 15, the roller is connected with the 
slider fixed on the frame via bearing. The slider can slide 
vertically along the frame surface via a screw to adjust the 
radial reduction of the three rollers. The support assem-
bly keeps the balance of the pipe during the experiment. 
The servo motor drives two lower rollers to rotate syn-
chronously, which drives the pipe and the upper roller to 
start turning. At the same time, the push plate drives the 
pipe to move along the slideway. So far, the calibration 
process of simultaneous rotation and movement of the 
pipe is realized. The pipes and rollers selected for the 
experiment are the same as the pipes and rollers selected 
for the simulation.

The experimental results of ST12 pipes after calibra-
tion are shown in Table 4. From Table 4, it can be observed 
that the residual roundness is within 0.7% and the residual 
straightness is within 0.2%. Both meet industry standard 
requirements [4]. The experimental results further verify 
that the calibration process of pipes is achieved by axial and 
circumferential reciprocating bending. The forming effect of 
ST12 pipes is shown in Fig. 16.

Fig. 14  Distribution of equivalent stress after calibration

Fig. 15  Experimental device for pipe calibration

Table 4  Experimental results 
after calibration

Material Length
Lp (mm)

Initial 
roundness

Initial 
straightness

Outer diameter
Dp (mm)

Thickness
t (mm)

Residual 
roundness
(%)

Residual 
Straightness
(%)

ST12 1000 5% 10‰ 140 2
1.5

0.58
0.65

0.15
0.18

160 2
1.5

0.64
0.59

0.17
0.19

Fig. 16  Forming effect of ST12 pipes
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7  Conclusions

1. Theoretically, the reciprocating bending springback 
analysis of axial straightening and circumferential 
rounding are established, respectively. The deformation 
mechanism of the process is revealed. It is proved that 
the reciprocating bending can eliminate the difference 
of initial curvature, and unify the axial and circumfer-
ential curvature to the same direction and value. It pro-
vides theoretical support for the calibration process to 
be applied to actual production.

2. When the loading curvature tends to zero, the axial curva-
ture after reciprocating bending is also close to zero. The 
straightness can be calibrated. When the loading curva-
ture tends to a certain value, the circumferential curvature 
after reciprocating bending tends to be consistent. The 
roundness can be calibrated. The combination of axial 
reciprocating bending and circumferential reciprocating 
bending enables the calibration process of LSAW pipes.

3. The simulation results show that the distribution of the 
maximum and minimum principal stress accord with 
the characteristics of pure bending deformation; After 
unloading and springback, the residual stress is small 
and evenly distributed; the calibration process is mainly 
influenced by the synergy of axial stress and circum-
ferential stress, which further supports the theoretical 
analysis results.
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