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Abstract
Parametric interpolation has been widely used in robot control because of its advantages over traditional linear or circular 
interpolation. The NURBS interpolation based on S-shaped feedrate scheduling can realize the smooth continuous motion 
of robots, but it also faces two challenges. One challenge is that when the NURBS curve is split into multiple blocks, if one 
or more blocks are too short, the final feedrate profile is often discontinuous. The other challenge is that the NURBS curve 
cannot be obtained entirely due to calculation errors. In this paper, a high-precision NURBS interpolator based on S-shaped 
feedrate scheduling is proposed. In this interpolator, a bidirectional velocity scanning scheme is developed to effectively 
handle the too short split blocks of the NURBS curve. Meanwhile, an optimization algorithm is proposed to ensure the preci-
sion of NURBS curves. The feasibility and advantages of the proposed method are verified through case studies.
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1  Introduction

Parametric interpolation for the non-uniform rational 
B-spline (NURBS) curve has become an important part 
of the control of robot path planning [1, 2]. An effective 
NURBS interpolator can not only obtain accurate contour 
trajectories but also have smooth dynamic performance. The 
discontinuities in feed motion can evoke the natural modes 
of the mechanical structure and the servo control system, 
which will degrade the contouring accuracy [3]. To achieve 
a shock-free and smooth machining process, researchers 
have considered jerks when designing interpolators.

With the inequality constraints of physical limits includ-
ing joint velocity, acceleration, and jerk, an iterative optimi-
zation strategy that takes the motion time as the optimiza-
tion goal was proposed in [4, 5]. In [6], Hashemian et al. 

proposed to utilize the reparameterization technique which 
expresses the relationship between the motion path param-
eter of the flank machining toolpath and the system time 
variable by an optimal transfer function to minimize the total 
jerk of the tool’s motion. Compared with these optimiza-
tion strategies, the S-shaped feedrate profile does not require 
iterative optimization while satisfying the physical limits, 
so it is widely used in the field of robotics. An S-shaped 
feedrate scheduling approach was proposed for the NURBS 
interpolator to ensure the continuity of acceleration and con-
trol the range of jerk in [7, 8]. Ni et al. [9] also developed a 
bidirectional adaptive feedrate scheduling method based on 
the S-shaped ACC/DEC algorithm for high-speed twp-axis 
machining. Though the S-shaped method is widely used in 
smooth feedrate scheduling because of its simplicity and 
smoothness, the conventional S-shaped feedrate profile usu-
ally cannot deal with all the conditions, e.g., the target dis-
placement is too short. In this case, the robot cannot reach 
the ending velocity from the starting velocity even by accel-
erating or decelerating with the max acceleration and jerk. 
To address this issue, this paper proposes a bidirectional 
velocity scanning scheme to overcome this drawback of the 
S-shaped feedrate profile.

Another big challenge is the calculation error that consists of  
two parts: the error caused by the inaccurate estimation of the  
arc length, and the truncation error caused by Taylor expansion  
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[10, 11]. With these errors, it is difficult to achieve highly pre-
cise and integral parametric planning. Many studies have been  
carried out in this field. A high-order polynomial spline was  
utilized to fit the relationship of arc length and the curve param-
eter in [12]. A quartic equation-based interpolation method was  
proposed in [13], which works well in reducing feedrate fluctua-
tion. Lo proposed a feedback parametric interpolation method, 
which approximates the desired point iteratively [14]. A real-
time predictor–corrector interpolator was proposed by Tsai and 
Chen which can guarantee that the feedrate command error is 
within a specified tolerance [15]. Besides, a feedback inter-
polator with arc-length compensation and feedback correction 
was developed by Zhao et al. in [16, 17], which achieves good 
efficiency and accuracy. In this paper, an interpolation method 
is proposed based on the S-shaped profile with arc length pre-
diction and feedback correction.

The process of the proposed method is as follows. Firstly, 
the NURBS curve is partitioned into several continuous 
blocks, and the speed at the junctions is generated based on 
the limitation of the maximum tangential acceleration, the 
maximum velocity, the chord error tolerance, etc. Then, a 
bidirectional velocity scanning is employed to calculate the 
ultimate feedrate at the junctions between the blocks. After-
ward, the Simpson rule and the adaptive-corrected method 
proposed in this study are utilized to estimate the arc length 
of each NURBS sub-curve. Finally, the NURBS parameter 
u is calculated through Taylor’s expansion.

The main contributions of this paper are summarized as 
follows:

•	 A bidirectional velocity scanning scheme is proposed to 
deal with the case of too short target displacement of 
S-shaped feedrate profile.

•	 An interpolation feedrate interpolator based on S-shaped 
profile with arc length prediction and feedback correction 
is proposed to ensure precise and integral NURBS curve 
planning.

The rest of this paper is organized as follows. In Sect. 2, 
the background including the definition of the NURBS 
curve, the derivatives of the NURBS curve, the curvature of 
the NURBS curve, and the method to calculate its arc length 
are briefly introduced. Then, a complete feedrate scheduling 
scheme for the NURBS curve is introduced in Sect. 3. In 
Sect. 4, experiments are conducted on a 6-DOF industrial 
robot system, and the conclusions are presented in Sect. 5.

2 � Background

2.1 � Definition of a NURBS curve

A NURBS curve C(u) can be defined as follows:

where {Pi} indicates the control points; {wi} indicates the 
corresponding weights of {Pi} ; (n + 1) is the number of  
control points; p is the degree of a NURBS curve;  
{Ni,p(u)} indicates the B-spline basis functions of the p-th 
degree defined on the non-uniform knot vector 
U = {u0, u1,… , um} = {a,… a

⏟⏟⏟
p+1

, up+1,… , um−p−1, b,… b
⏟⏟⏟

p+1

} ; 

(m + 1) is the number of knots. Generally, it is assumed  
that a = 0 , b = 1, and wi > 0 for all i . The degree p , the 
number of control points (n + 1), and the number of knots 
(m + 1) satisfy m = n + p + 1.

The B-spline basis functions {Ni,p(u)} of the p-th degree 
are recursively defined as follows:

In this paper, the knot vector is derived following the 
Rosenfeld method [18]:

where li is the straight-line distance between the (i − 1)-th con-
trol point and i-th control point, and L is the sum of l1, l2,… , ln . 
Moreover, when 

{
wiPi

}
 and {wiQ} are represented as the con-

trol points, two B-spline curves A(u), B(u) can be defined as:

where Q is a constructed vector. It has the same dimension as 
the Pi , and all elements of Q are 1. Then, the NURBS curve 
Eq. (1) can be rewritten as:

where Bst(u) represents the first term of vector B(u).

(1)C(u) =

n∑
i=0

Ni,p(u)wiPi

n∑
i=0

Ni,p(u)wi

(2)Ni,0(u) =

{
1 ui ≤ u < ui+1
0 otherwise

(3)
Ni,0(u) =

u−ui

ui+p−ui
Ni,p−1(u) +

ui+p+1−u

ui+p+1−ui+1
Ni+1,p−1(u)

i = 0, 1,⋯ , n

(4)U =

⎧
⎪⎪⎨⎪⎪⎩

0,⋯ , 0
⏟⏟⏟

p+1

,
l1 + l2

L
,
l1 + l2 + l3

L
,⋯ ,

n−2∑
i=1

li

L
, 1,⋯ , 1
⏟⏟⏟

p+1

⎫⎪⎪⎬⎪⎪⎭

(5)A(u) =

n∑
i=0

Ni,p(u)wiPi

(6)B(u) =

n∑
i=0

Ni,p(u)wiQ

(7)C(u) =
A(u)

Bst(u)
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2.2 � Curvature of a NURBS curve

For a NURBS curve of the p-th degree, it has derivatives of 
the d-th order where d ≤ p . According to Eq. (7), the first- 
and second-order derivatives of a NURBS curve, i.e., C�

(u) 
and Cε(u) , can be evaluated as follows:

As shown in Eqs. (5) and (6), A(u) and B(u) can be treated 
as two different B-spline curves. Assuming that Hi = wiPi , the 
k-order derivatives of B-spline curve A(u) can be written as:

where k  is the order of derivatives, and U<k>
=

{0,… 0
⏟⏟⏟
p−k+1

, up+1,… , um−p−1, 1,… , 1
⏟⏟⏟
p−k+1

}.

Similarly, B<k>(u) can be obtained. Therefore, C�

(u) and 
C��(u) can be calculated based on A<k>(u) and B<k>

st
(u) . Then, 

the curvature of a NURBS curve is calculated, as shown in 
Eq. (12).

2.3 � Arc length of a NURBS curve

The arc length s(u) of a NURBS curve C(u) over parameter 
interval [ui, ui+1] is defined as:

where ‖C�

(u)‖ is the norm of the first-order derivative C�

(u).
In this study, a numerical integration method, i.e., the 

Simpson rule, is adopted to approximately estimate the arc 
length of a NURBS curve. S(ui, ui+1) represents the approxi-
mate arc length of the NURBS curve C(u) on the interval 
[ui, ui+1] , and it can be calculated by:

(8)C
�

(u) =
A

�

(u) − C(u)B
�

st
(u)

Bst(u)

(9)C
��

(u) =
A

��

(u) − 2C
�

(u)B
�

st
(u) − C(u)B

��

st
(u)

Bst(u)

(10)A<k>(u) =

n−k∑
i=0

Ni,p−k(u)H
<k>
i

(11)H<k>
i

=

{
Hi, k = 0

p−k+1

ui+p+1−ui+k
(H<k−1>

i+1
− H<k−1>

i
), k > 0

(12)� =
‖C�(u) × C��(u)‖

‖C�(u)‖3

(13)s(u) =
∫

ui+1

ui

‖‖‖C
�

(u)
‖‖‖du

(14)

s(ui, ui+1) =
(ui+1 − ui)

6

[
s
�

(ui) + 4s
�

(
ui+1 + ui

2
) + s

�

(ui+1)

]

However, the direct calculation of the Simpson rule will 
cause approximation error in the numerical result. The issue 
can be addressed by bisecting the parameter interval [ui, ui+1] 
into two equal sub-intervals, which is called the composite 
Simpson rule. Then, Eq. (14) is repeatedly applied over each 
subinterval:

Assuming that � is the tolerance for the parameter inter-
val, we have:

If the condition in Eq. (16) cannot be satisfied, the two 
subintervals in Eq. (15) will be divided into two subinter-
vals again. The loop repeats until Eq. (16) holds for each 
subinterval. Finally, the sum of the arc lengths of all subin-
tervals is the real length of the arc. In this study, fs(a, b) 
is defined as the iteratively calculated arc length between 
a and b.

2.4 � NURBS parameter and curve interpolation

The second-order Taylor’s expansion is widely used to estab-
lish the relationship between the NURBS parameter and the 
arc length. It is shown as follows:

where ui is the curve parameter when t = ti , and Ts is the 
sampling period. After derivation, it can be rewritten as 
follows:

where V(t) and A(t) are the desired velocity and acceleration 
of the NURBS curve, respectively.

3 � S‑shaped feedrate scheduling based NURBS 
interpolator

In this section, the division of the curve into several blocks 
by using the curvatures is introduced in Sec 3.1. Then, the 
S-shaped feedrate profile is introduced briefly in Sect. 3.2. In 

(15)
s(ui,

ui + ui+1

2
, ui+1) = s(ui,

ui + ui+1

2
) + s(

ui + ui+1

2
, ui+1)

(16)
[
s(ui,

ui + ui+1

2
, ui+1) − s(ui, ui+1)

]/
10 < 𝛿

(17)ui+1 = ui +
du

dt

||||t=ti
⋅ Ts +

d2u

dt2

||||t=ti
⋅

T2
s

2

(18)

ui+1 = ui +
V(ti)

||C�
(ui)

||
⋅ Ts +

1

||C�
(ui)

||(
A(ti) −

C
�

(ui) ⋅ C
��

(ui)

||C�
(ui)

||3
V2(ti)

)
⋅

T2
s

2
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Sect. 3.3, the precise calculation of the arc length of blocks 
and NURBS parameter is described.

3.1 � Critical points and curve segmentation

In NURBS curves, the sharp corners with large curvature 
can undermine the dynamic performance of high-speed 
machining. Thus, it is critical to segment each block at the 
key points that are commonly referred to as sharp corners. 
The feedrate velocity over the candidate points can be cal-
culated based on the two constraints of chord error and cen-
tripetal acceleration [19].

Constrained by the chord error, the feedrate should satisfy 
Eq. (19):

where �i is the curvature at the i-th interpolation point; �max 
is the maximum chord error, and Ts is the sampling period.

Constrained by the centripetal acceleration, the feedrate 
should also satisfy Eq. (20):

where Acmax is the maximum centripetal acceleration, so the 
restricted feedrate vR

i
 can be expressed as follows:

where Vmax is the allowable max feedrate of the actuator.
Ultimately, the critical points are found from the can-

didate points, where vR
i
 is less than the feedrate command. 

Based on these critical points, the NURBS curve can be split 
into several continuous blocks.

3.2 � S‑shape velocity profile and bidirectional scanning

3.2.1 � S‑shaped feedrate profile

The S-shaped feedrate profile consisting of seven phases is 
shown in Fig. 1. The expressions of S-shaped velocity, accel-
eration, and jerk in seven phases are summarized in Table 1. 
The symbols ti(i = 1, 2,… , 7) represent the time parame-
ters.where vs and ve are the starting and ending velocities, 

(19)vi ≤
2

Ts

√
1

�2
i

− (
1

�i
− �max)

2

(20)vi ≤

√
Acmax

�i

(21)vR
i
= min{

2

Ts

√
1

�2
i

− (
1

�i
− �max)

2,

√
Acmax

�i
, Vmax}

respectively; Am is the allowable maximum acceleration, and 
Jm is the maximum jerk of the actuator.

As the change of target displacement, initial velocity, end 
velocity, maximum acceleration, and jerk, there are 17 types 
of the S-shape feedrate profile. It is critical to formulate an 
S-shape feedrate profile basic function that can deal with all 
17 cases. The velocity and acceleration profiles of the 17 
cases are provided in the Appendix. A more detailed formula 
expression of the 17 types S-shape feedrate profile is given 
by Sencer et al. in [4].

3.2.2 � Bidirectional velocity scanning

If the target displacement is too short but the velocity cal-
culated by Eq. (21) is big, the system cannot reach the 

 
Fig. 1   The S-shaped feedrate profile with seven sections

Table 1   Expressions for the S-shaped feedrate profile

t J(t) a(t) v(t)

t1 J
m

J
m
t1 v

s
+

1

2
J
m
t
2

1

t2 0 A
m

v1 + A
m
t2

t3 −J
m

A
m
− J

m
t3 v2 + A

m
t3 −

1

2
J
m
t
2

3

t4 0 0 v3

t5 −J
m

−J
m
t5 v4 −

1

2
JJ

m

t6 0 −A
m

v5 − A
m
t6

t7 J
m

−A
m
+ J

m
t7 v6 − A

m
t7 +

1

2
J
m
t
2

7
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ending velocity from the starting velocity even by acceler-
ating or decelerating with the max acceleration and jerk. 
Besides an S-shape feedrate profile basic function that can 
deal with all 17 cases, a bidirectional velocity scanning 
scheme (forward velocity and backward velocity scanning) 
is also needed to correct the starting or ending velocity in 
these cases.

Forward velocity scanning  In this case, vs < ve , where vs 
and ve are the starting and ending velocities, respectively. 
According to the 7-segment S-shape velocity profile, the 
minimum acceleration time ta and displacement sa required 
for the velocity from vs to ve in the pure acceleration stage 
can be expressed as:

Assume that s is the target displacement. If s < sa , then 
the velocity cannot reach ve within this displacement, and 
the ending velocity needs to be revised. As shown in Eq. 
(23), v�

max
 is the maximum velocity that can be reached 

within the displacement s.

Backward velocity scanning  In this case, vs > ve . Simi-
larly, the minimum deceleration time td and displacement sd 
required for the velocity from vs to ve in the pure deceleration 
stage can be expressed as:

If s < sd , the velocity cannot reach ve within this displace-
ment, and the starting velocity needs to be revised. As shown 
in Eq. (25), v�

max
 is the maximum velocity that can be decel-

erated to ve within the displacement s.

Figure 2 illustrates the examples of forward and backward 
velocity scanning, where the red curves and blue curves 

(22)

{
ta =

√
ve−vs

J

sa = ta(ve + vs)

(23)(v
�

max
+ vs) ⋅

√
v
�

max
− vs

J
− s = 0

(24)

{
td =

√
vs−ve

J

sd = td(ve + vs)

(25)(v
�

max
+ ve) ⋅

√
v
�

max
− ve

J
− s = 0

indicate the original planning trajectory and the updated 
after velocity scanning, respectively.

3.3 � The high‑precision NURBS interpolator

The Simpson bisection iterative algorithm can obtain the 
accurate arc length of each block after multiple itera-
tions. Unfortunately, due to the truncation error of the 
Taylor expansion, the calculated parameter u usually 
cannot be accurately planned to 1. Therefore, the actua-
tor cannot completely track the NURBS curve. To han-
dle this problem, this paper proposes an iteration algo-
rithm to calculate the block displacement with NURBS 
parameter u as the optimization target. The algorithm is 
as follows:

Assume that the number of breakpoints is n . Then, the 
number of blocks is (n + 1) , and the arc length of blocks 
is s0, s1,⋯ , sn . Denote the total arc length of the NURBS 
curve as S . SH and SL satisfy the inequality SH > S > SL , 
and ΔS = SH − SL.

Firstly, the Simpson bisection iterative algorithm is used 
to calculate the arc length of each block. The velocities and 
accelerations of blocks can be calculated using the S-shape 
feedrate profile. Then, with these velocities and accelera-
tions, the NURBS parameter u can be calculated by Eq. (18). 
Usually, the NURBS parameter u cannot meet the precision 
requirement due to the truncation error. Thus, SH and SL are 
modified by a dichotomy searching, and the arc length of 
each block is modified according to Eq. (26). The loop will 

(a) Forward scanning (b) Backward scanning

Fig. 2   Bidirectional velocity scanning. a Forward scanning. b Back-
ward scanning
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not break until the NURBS parameter u satisfies the preci-
sion requirement.

The whole algorithm is described in Algorithm 1:where 
Δl is a small offset, and eps is the accuracy tolerance. They 
are set to 5mm and 0.000005 in this paper, respectively.

4 � Simulation and experimental results

4.1 � Simulation results and analysis

In this study, the butterfly-shaped curve is taken as our 
NURBS test curve. The degree, control points, knot vectors, 
and weight vectors of the NURBS curve are given as follows:

(26)si = si + ΔS ⋅ fs(ui−1, ui)
/
SL

The degree: p = 3.
The control points (mm): P = [(533.2, 52.0), (534.3, 

52.0), (534.8, 49.4), (535.5, 44.8), (548.3, 51.2), (556.5, 
58.4), (569.3, 66.9),( 584.7, 63.6), (579.2, 47.1), (573.3, 
39.7), (571.1, 30.3), (562.2, 33.6), (570.6, 28.3), (568.2, 
20.2), (562.0, 15.3), (566.4, 4.6), ( 559.7, 9.1), (558.6, 
14.3), (554.8, 8.3), (548.9, 12.4), (542.9, 16.7), (538.7, 
21.9), (534.4, 36.2), (535.7, 24.8), (538.5, 19.6), (533.2, 
14.8), (528.0, 19.6), (530.8, 24.8), (532.1, 36.2), (527.7, 
21.9), (523.6, 16.7), (517.6, 12.4), (511.7, 8.3), (507.9, 
14.3), (506.8, 9.12), (500.1, 4.69), (504.5, 15.3), (498.3, 
20.2), (495.8, 28.3), (504.3, 33.6), (495.4, 30.3), (493.0, 
39.6), (487.4, 47.2), (481.8, 63.6),( 497.2, 66.9), (509.9, 
58.4), (518.2, 51.2), (531.0, 44.8), (531.7, 49.4), (532.2, 
52.0),(533.2, 52.0)].

The knot vector: U = [0, 0, 0, 0, 0.008161, 0.018293, 
0.049457, 0.073221, 0.106681, 0.140978, 0.178852, 
0.199462, 0.220485, 0.241155, 0.262784, 0.281181, 
0.298390, 0.323584, 0.341160, 0.352734, 0.368200, 
0.383845, 0.399920, 0.414476, 0.446994, 0.471980, 
0.484841, 0.500412, 0.515823, 0.528684, 0.553670, 
0.586251, 0.600671, 0.616746, 0.632392, 0.647858, 
0.659389, 0.676880, 0.701893, 0.719102, 0.737562, 
0.759375, 0.780046, 0.800961, 0.821519, 0.859257, 
0.893554, 0.926833, 0.950760, 0.981924, 0.992057, 1.0, 
1.0, 1.0, 1.0].

The weight vector: W =[1.0000, 1.0000, 1.0000, 1.2000, 
1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 
2.0000, 1.0000, 1.0000, 5.0000, 3.0000, 1.0000, 1.1000, 
1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 
1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 
1.0000, 1.1000, 1.0000, 3.0000, 5.0000, 1.0000, 1.0000, 
2.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 
1.0000, 1.2000, 1.0000, 1.0000, 1.0000].

To describe the test curve as accurately as possible, the 
curve including 100,001 sampling points with a sampling 
spacing Δu = 0.00001 is shown in Fig. 3a. The curvature 
curve corresponding to the sampling points is shown in 
Fig. 3b. As shown in Fig. 3b, the curvature threshold � is set 
as to 0.25, and 19 curvature extreme points can be selected. 
According to the constraints of chord error and centripetal 
acceleration, the critical points are found from the sampling 
points, and they are also shown in Fig. 3a as black dots. The 
maximum velocity at each critical point can be determined 
by Eq. (21).

The interpolator parameters used for the butterfly-shaped 
test curve are listed in Table 2.

The Simpson iterative algorithm and the method pro-
posed in this paper are used to calculate the arc length 
of each block. The calculation results obtained by the 
Simpson iterative algorithm are as follows: s0 = 0.585141 , 
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s1 = 5.348356,   s2 = 89.180639 ,  s3 = 21.120720  ,  s4 =

8.898868 , s5 = 8.896570 , s6 = 4.699582 , s7 = 29.888507,   
s8 = 11.498431,  s9 = 5.799827 , s10 = 5.699825 , s11 = 11.487612 , 
s12 = 29.917852 ,  s13 = 4.698810 ,  s14 = 8.897285,   s15 = 8.798869,   
s16 = 21.084886,  s17 = 89.210446,  s18 = 5.431492,  s19 =
0.467329 . The total arc length of the NURBS curve  
is S = 371.611046 . The calculation results obtained 
by the method proposed in this paper are as fol-
lows: s0 = 0.585740 ,  s1 = 5.353978,   s2 = 89.243448 , 
s3 = 21.142144  ,  s4 = 8.908179  ,  s5 = 8.907302  , 
s6 = 4.704525  ,  s7 = 29.912613  ,  s8 = 11.511162  , 
s9 = 5.805811  ,  s10 = 5.705704  ,  s11 = 11.500059  , 
s12 = 29.942049  ,  s13 = 4.703753  ,  s14 = 8.908096

,   s15 = 8.808009 ,   s16 = 21.106301,   s17 = 89.273012

, s18 = 5.437201, s19 = 0.467807 . The total arc length is 
S = 371.991906.

It can be found that for compensating the truncation 
error, the arc length of each block calculated by the pro-
posed method in this paper increases little compared with 
that calculated by the Simpson iterative algorithm. The 
arc length of the first and last block is all too short for the 
S-shaped feedrate profile, so this study corrects the velocity 
of these junctions through the bidirectional velocity scan-
ning scheme. Figure 4 shows the velocity, acceleration, and 
jerk curves of the S-shaped feedrate profile calculated by 
our method. The ending velocities obtained by the Simp-
son iteration method and our method are 0.0043165 mm∕s 
and 0.00042 mm∕s , respectively. Obviously, our proposed 
method achieves better accuracy. The NURBS parameter u 
of the two methods can be calculated by Eq. (18). As shown 
in Fig. 5a, the parameter u obtained by the two methods is 
basically the same, i.e., 0.998752 and 0.999993.

As shown in Fig. 6, the method based on the Simpson 
iteration algorithm leaves a small blank space at the end of 
the NURBS curve that cannot be executed. By contrast, the 
method proposed in this study obtains the NURBS curve 
precisely. Figure 5b shows the iterative process of calcu-
lating the total arc length of the NURBS curve using the 
method proposed in this paper. It is found that the ideal 
situation is reached immediately after 10 iterations, and the 
whole process takes less than 2.5 s. It indicates that the pro-
posed algorithm improves the NURBS interpolation preci-
sion for offline trajectory planning.

(a) Butterfly-shaped NURBS curve (b) Curvature of the test NURBS curve

Fig. 3   The butterfly-shaped curve, critical points, and curvature. a Butterfly-shaped NURBS curve. b Curvature of the test NURBS curve

Table 2   Test parameters of the interpolations

Parameters Symbols Units

Interpolator period T
s

1ms

Chord error tolerance �max 0.0005mm

Maximum tangential acceleration A
tmax 2000mm2∕s

Maximum centripetal acceleration A
cmax 3000mm2∕s

Maximum jerk Jmax 20000mm3∕s

Maximum velocity Vmax 100mm∕s

Arc-length tolerance �
l

0.000001
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Fig. 4   NURBS parameter u and 
the arc length

(a) (b)

(a) Velocity curve (b) Acceleration curve (c) Jerk curve

Fig. 5   The scheduled curves of the method proposed in this paper. a Velocity curve. b Acceleration curve. c Jerk curve
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4.2 � Experimental results

Corresponding to the simulation tests, the butterfly-
shaped curve is drawn by a real industrial robot. As shown 
in Fig. 7, the experiment was implemented on a 6-DOF 
ROKAE (XB7) light-weight industrial robot, and a carbon 
pen was installed on the wrist of the robot. Meanwhile, 
the existing commercial motor drive of the ROKAE was 
utilized to control the joint position. The task-level and 
intermediate-layer computation was run on a 64-Bit Linux-
based real-time controller equipped with an Intel Core-i7 
CPU with 8 GB memory. The controller communicates 
with the motor drive via the EtherCAT protocol at a sam-
pling rate of 1 kHz.

The butterfly-shaped NURBS curve drawn by the 6-DOF 
industrial robot is shown in Fig. 8. As shown in the video of 
the attachment, the robot runs smoothly and stably through-
out the execution process.

5 � Conclusion

This paper proposes a high-precision S-shaped feedrate 
scheduling scheme for the NURBS interpolator. It consists 
of curve segmentation, bidirectional velocity scanning, 
and NURBS curve interpolation. Meanwhile, an interpo-
lation method is proposed based on Taylor’s expansion 
with arc length prediction and feedback correction. This 
method effectively improves the accuracy of NURBS curve 
planning.

(a) Simpson iteration method (b) The method of this paper

Fig. 6   Comparison of NURBS curves. a Simpson iteration method. b The method of this paper

Fig. 7   The Experiment platform

Fig. 8   Experimental result of butterfly-shaped curve

2593The International Journal of Advanced Manufacturing Technology (2022) 121:2585–2595



1 3

Appendix. Seventeen cases of S‑shaped 
velocity profile

(a) (b) (c) (d)

(e) (f) (g) (h)

(l)(i) (j) (k)

(m) (n) (o) (p) (q)

2594 The International Journal of Advanced Manufacturing Technology (2022) 121:2585–2595



1 3

Author contribution  Lijin Fang: conceptulization, methdology, writing– 
original draft. Guanghui Liu: software, data curation, validation, writing– 
review and editing. Qiang Li: supervision, writing–review and editing. 
Hualiang Zhang: supervision, writing–review and editing.

Funding  This research was supported by the Central Leading Local  
Science and Technology Development Foundation of Liaoning Province  
under Grant No.2021 JH6/10500132, and in part by the “DEXMAN”  
project (Project number: 410916101) funded by the Deutsche Forschun- 
gsgemeinschaft (DFG, German Research Foundation).

Availability of data and material  The datasets used or analyzed dur-
ing the current study are available from the corresponding author on 
reasonable request.

Code availability  The code during the current study is available from 
the corresponding author on reasonable request.

Declarations 

Ethics approval  Not applicable.

Consent to participate  Not applicable.

Consent for publication  All authors agree to publish the paper.

Competing interests  The authors declare no competing interests.

References

	 1.	 Chen C, Chen S (2019) Synchronization of tool tip trajectory 
and attitude based on the surface characteristics of workpiece for 
6-DOF robot manipulator. Robot Comput Integr Manuf 59:13–27

	 2.	 Ji S, Lei L, Zhao J, Lu X, Gao H (2021) An adaptive real-time 
NURBS curve interpolation for 4-axis polishing machine tool. 
Robot Comput Integr Manuf 67:102015

	 3.	 Qiao Z, Liu Z, Hu M, Liu L, Hu W, Ding Y (2019) A space cut-
ter compensation method for multi-axis machining using triple 
NURBS trajectory. Int J Adv Manuf Technol 103:3969–3978

	 4.	 Sencer B, Altintas Y, Croft E (2008) Feed optimization for five-
axis CNC machine tools with drive constraints. Int J Mach Tools 
Manuf 48:733–745

	 5.	 Beudaert X, Pechard P, Tournier C (2011) 5-Axis tool path 
smoothing based on drive constraints. Int J Mach Tools Manuf 
51:958–965

	 6.	 Hashemian A, Bo P, Barton M (2020) Reparameterization of ruled 
surfaces: toward generating smooth jerk-minimized toolpaths for 
multi-axis flank CNC milling. Comput Aided Des 127:102868-

	 7.	 Lin M, Tsai M, Yau H (2007) Development of a dynamics-based 
NURBS interpolator with real-time look-ahead algorithm. Int J 
Mach Tools Manuf 47:46–62

	 8.	 Du X, Huang J, Zhu L (2015) A complete S-shape feed rate 
scheduling approach for NURBS interpolator. J Comput Des Eng 
2(4):206–217

	 9.	 Ni H, Zhang C, Ji Shuai HuT, Chen Q, Liu Y (2017) A bidi-
rectional adaptive feedrate scheduling method of NURBS inter-
polation based on S-shaped ACC/DEC algorithm. IEEE Access 
6:63794–63812

	10.	 Ji S, Hu T, Huang Z, Zhang C (2020) A NURBS curve interpola-
tor with small feed rate fluctuation based on arc length prediction 
and correction. Int J Adv Manuf Technol 111:2095–2104

	11.	 Liu M, Huang Y, Yin L, Guo J, Shao X, Zhang G (2014) Develop-
ment and implementation of a NURBS interpolator with smooth 
feedrate scheduling for CNC machine tools. Int J Mach Tools 
Manuf 87:1–15

	12.	 Heng M, Erkorkmaz K (2010) Design of a NURBS interpolator 
with minimal feed fluctuation and continuous feed modulation 
capability. Int J Mach Tools Manuf 50(3):281–293

	13.	 Liu H, Liu Q, Zhou S, Li C, Yuan S (2015) A NURBS interpola-
tion method with minimal feedrate fluctuation for CNC machine 
tools. Int J Adv Manuf Technol 78:1241–1250

	14.	 Lo CC (1997) Feedback Interpolators for CNC Machine Tools.  
J Manuf Sci Eng 119:587–592

	15.	 Tsai M-C, Cheng C-W (2003) A real-time predictor-corrector 
interpolator for CNC machining. J Manuf Sci Eng 125(3):449–460

	16.	 Zhao H, Zhu LM, Han D (2013) A parametric interpolator with 
minimal feed fluctuation for CNC machine tools using arc-length 
compensation and feedback correction. Int J Mach Tool Manuf 
75:1–8

	17.	 Wang T, Zhang Y, Dong J, Ke R, Ding Y (2019) NURBS inter-
polator with adaptive smooth feedrate scheduling and minimal 
feedrate fluctuation. Int J Precis Eng Manuf 21(2):273–290

	18.	 Gordon W, Riesenfeld R (1974) B-spline curves and surfaces[J]. 
Comput Aided Geom Des 23(91):95–126

	19.	 Du D, Liu Y, Guo X, Yamazaki K, Fujishima M (2010) An accu-
rate adaptive NURBS curve interpolator with real-time flexible 
acceleration/deceleration control. Robot Comput Integr Manuf 
26:273–281

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

2595The International Journal of Advanced Manufacturing Technology (2022) 121:2585–2595


	A high-precision non-uniform rational B-spline interpolator based on S-shaped feedrate scheduling
	Abstract
	1 Introduction
	2 Background
	2.1 Definition of a NURBS curve
	2.2 Curvature of a NURBS curve
	2.3 Arc length of a NURBS curve
	2.4 NURBS parameter and curve interpolation

	3 S-shaped feedrate scheduling based NURBS interpolator
	3.1 Critical points and curve segmentation
	3.2 S-shape velocity profile and bidirectional scanning
	3.2.1 S-shaped feedrate profile
	3.2.2 Bidirectional velocity scanning

	3.3 The high-precision NURBS interpolator

	4 Simulation and experimental results
	4.1 Simulation results and analysis
	4.2 Experimental results

	5 Conclusion
	References


