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Abstract

This paper summarises the recent progress of nanofluids and hybrid nanofluids in various machining processes including mill-
ing, turning, grinding and drilling. Thermophysical properties of nanofluid and hybrid nanofluid, such as viscosity, thermal
conductivity, stability and wettability, are also discussed. Results showed that thermal conductivity and viscosity of nanofluid
are strongly affected by temperature, mass volume fraction, types of nanoparticles and nanoparticle size. Thermophysical
properties of hybrid nanofluids are greater than those of nanofluids and base fluids. Scientific findings also indicated that
nanofluids and hybrid nanofluids outperform other cooling-lubrication techniques. The application of nanofluids and hybrid
nanofluids enhances the surface finish and reduces the cutting temperature, cutting force and tool wear during machining.
However, more research work is still needed to determine their applicability in practical industries, especially in the usage

of hybrid nanofluid in milling and drilling processes.

Keywords Nanofluid - Hybrid nanofluid - Cutting fluid - Cooling technique - Machining

1 Introduction

A contact of the workpiece and cutting tool will generate
heat at the contact zone during machining [1]. The rising
temperature at the contact zone will exert a negative effect
on the machining performance such as high tool wear, high
cutting force, and result in poor finishing quality. Therefore,
cooling and lubrication are extremely important in this area.
Cutting fluid, which is normally used as a coolant or lubri-
cant, is essential in machining processes [2]. According to
Samanta et al. [3], cutting fluid (water-based fluid) is used
to cool the cutting area during machining and eliminate the
unwanted effect of heat on both the workpiece and tools.
In addition, cutting fluid (oil-based fluid) also works as a
lubricant by penetrating in the chip—tool interface to reduce
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friction and prevent build-up edge formation. The cutting
fluid also helps in the chip removal from the cutting zone
and protects the machine tool against corrosion to improve
the accuracy and ease of use during machining.

Figure 1 shows the various types of cooling—lubrication
techniques, such as dry machining, wet machining, mini-
mum quantity lubricant (MQL), cryogenic cooling, nano-
fluid and hybrid nanofluid. According to Goindi and Sarkar
[4], dry machining is conducted without the assistance
of any cutting fluids. Tool wear is high in this technique
because of the effects of several wear mechanisms, such
as abrasion, adhesion and diffusion, which reduce the tool
life [5]. Furthermore, without the use of cutting fluid, chips
formed during machining processes that cannot be washed
away result in flaws on the machined surface [2].

Wet machining/flood cooling is another type of cooling—
lubrication technique that involves supplying a constant
stream of fluid to the tool work or chip—tool interface during
the machining operation [6]. Wet machining requires more cool-
ant fluid than MQL or any other cooling system. Gueli et al.
[7] investigated the machining performance of slot milling of
Inconel 718 under dry and flood cooling conditions by varying
the depth of cut and feed rate. The results indicated that the
average surface roughness of machined slots is slightly lower for
flood coolant machining compared with that of dry machining
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at a lower depth of cut and feed rate settings. However, Razak
et al. [8] analysed wet machining and revealed that nonuniform
surface roughness is formed and the final surface presents an
alternate shiny and dull area. Meanwhile, Najiha and Rahman
[9] discovered that the cutting edge is completely damaged
due to attrition and adhesion when wet machining is used with
flooded conditions.

MQL is a lubricant sprayed in a fine mist over the work-
piece surface and the cutting tool after being mixed with
compressed air [10]. Jagatheesan et al. [11] investigated
the impact of MQL in the turning process with AISI 4320
alloy steel and showed that MQL provides excellent tool and
workpiece interplay, low temperature and minimal cutting
force. These results are consistent with recent study of Sun
et al. [12], whereby milling force and cutting temperature
by using MQL decrease by 12.8% and 9.2%, respectively,
compared to that of dry milling.

Cryogenic machining is an environmentally friendly
cooling method that typically employs liquid nitrogen as
the cooling medium [13]. An external spray cooling cryo-
genic machining setup was created to spray the cryogenic
coolant at the machining zone [14]. Pusavec et al. [15]
revealed that cryogenic machining produces lower surface
roughness compared with other machining methods. Danish
et al. [16] also showed that the cryogenic—LN, system can
significantly reduce the cutting force by 32.1%, tool flank
wear by 33.3%, and total energy consumption by 18% com-
pared with dry machining conditions. Table 1 shows some
of the previous research that conducted by using different
cooling—lubrication techniques.

Nanofluids have shown higher efficiency at heat trans-
fer than conventional fluids in recent studies. Nanofluid is a
dispersion of nanometre-sized solid particles in base fluids,
such as water and oils [17]. In 2019, Sirin and Kivak [18]
reported that better surface roughness values, lower cutting
force and better tool wear are observed when hBN nanofluid

@ Springer

is used during cutting instead of MoS, and graphite nanoflu-
ids. Chakma et al. [19] discovered that machining aluminium
metal matrix nanocomposite with carbon nanotube nanofluid
significantly enhances surface quality compared with that in
dry environment. Danish et al. [20] concluded that the inter-
layer slip behaviour of graphene in sunflower oil reduces the
contact surface between the tool and workpiece and results
in improved surface morphology and machining efficiency.

Hybrid nanofluid, another type of cutting fluid, is a com-
bination of two or more nanoparticles mixed in a medium
of base fluid. In 2016, Sidik et al. [21] reported that hybrid
nanofluids present higher heat transfer performance and
thermophysical properties compared to nanofluids with
a single type of nanoparticle. Similarly, Sarkar et al. [22]
demonstrated that hybrid nanofluids present higher ther-
mal conductivity than individual nanofluids because of the
synergistic effect. The hybrid nanofluid can be produced by
suspending (i) various types of nanoparticles (two or more)
and (ii) composite nanoparticles in the base fluid.

By using different cooling—lubrication techniques in
machining, the machining performance has been exten-
sively investigated with various optimisation methods. For
example, Aslantas et al. [23] explored the multi-objective
optimisation of micro-turning process parameters, such as
cutting speed, feed rate and depth of cut, using response
surface method (RSM). The researchers revealed that opti-
mised values for surface roughness of Sa and Sz are 0.50
and 4.16 um, respectively, and the material removal rate is
239.03 mm>/min. Jamil et al. [24] also used the RSM to
design experiments for bone drilling with micro cooling
spray technique. The researchers reported that parameters of
cutting speed and feed rate highly influence temperature and
thrust force, respectively. Danish et al. [25] utilised the RSM
to develop an arithmetic model for predicting the maximum
temperature of the surface during cryogenic and dry machin-
ing of AZ31 magnesium alloy. The investigation revealed
that the cutting speed, feed rate and depth of cut present a
significant impact on the maximum temperature. Sada and
Ikpeseni [26] applied artificial neural network (ANN) and
adaptive neuro-fuzzy inference system (ANFIS) models to
predict the metal removal rate and tool wear in the turning
process of AISI 1050 steel. The researchers indicated that
ANN outperforms ANFIS techniques in terms of the accu-
racy of results. Apart from these methods, genetic algorithm
(GA) technique has also been widely used in optimisation
studies. Kabil and Kaynak [27] reported that optimisation
via GA can effectively increase the machining performance
(material removal rate, tool wear and power consumption)
of Titanium Ti-5553 alloy.

In the literatures, although many experimental and mod-
elling studies have been conducted on machining perfor-
mance using various cooling—lubrication techniques, a
comprehensive review on the use of nanofluid and hybrid
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nanofluid in the machining area is still scarce. Therefore, this
paper aims to provide a critical and comprehensive review
of the current advancements in the application of nanofluids
and hybrid nanofluids in machining, particularly in turning,
grinding, milling and drilling processes. The multi-response
optimisation studies and the mechanism of nanofluid and
hybrid nanofluid techniques for improving the machining
performance also have been explained. This paper also
discusses the thermophysical properties of nanofluids and
hybrid nanofluids, such as viscosity, thermal conductivity,
stability and wettability.

2 Nanofluid and hybrid nanofluid

The term nanofluid was first coined by Choi and Eastman
[17] at Agronne National Laboratory in the USA. Raja et al.
[59] stated that nanofluid is created from the dispersion of
nanomaterials in base fluids, such as oil and water. This
new type of heat transfer fluids has attracted considerable
research attention in the last few decades. Nanofluid is more
efficient at heat transfer than conventional cutting fluids. As
for nanoparticles, the size is 1-100 nm and the widely used
nanoparticles are metal and metal oxide nanoparticles.

Yu and Xie [60] demonstrated that nanofluid can be pre-
pared using a one- or two-step method. Base fluids are very
important in the stage of nanofluid preparation because of
special requirements of nanofluids, such as stable and even
suspension, low particle agglomeration, adequate durability,
absence of chemical change of particles or fluid, good fluid-
ity, low viscosity and high thermal conductivity [60, 61].
According to Heris et al. [62], base fluids, such as ethylene
glycol, oil and water, show poor heat transfer. Therefore,
properties should be enhanced to improve their suitability
for cutting fluids in practical metal cutting operations. Nano-
fluids have been widely used in many industry sectors as
coolant, lubricant and heat transfer agent due to their advan-
tages of high safety margin, reduced cost, reduced size of
the system and improved efficiency of heat conversion [63].

Hybrid nanofluids are considered an extension of nano-
fluids and formed by suspending two or more different

nanoparticles in a base fluid in either composite or mixture
form [22]. The benefit of hybrid nanofluid in heat transfer
enhancement is due to its synergistic effect. Hybrid nano-
fluids may present better thermal properties compared with
base fluids and nanofluids containing a single nanoparticle
[64].

Figure 2 depicts the lubrication mechanism and tribo-
chemical reaction effect of the base fluid with nanoparti-
cles. There are few mechanisms have been observed, such as
rolling, interlayer sliding, polishing, mending and protective
film. The rolling mechanism refers to nanoparticles that roll
like bearings between friction surfaces. If the shear force
applied to nanoparticles is sufficiently large to overcome
van der Waals force, then sliding between nanoparticles lay-
ers will occur and result in an interlayer sliding effect. In
terms of the polishing mechanism, nanoparticles will grind
the peaks under high pressure and speed to smoothen the
surface, reduce friction and improve surface quality. As for
mending mechanism, the occurrence of fine nanoparticles
subsides and they become adsorbed in the furrows whilst
lowering the surface roughness. In addition, nanoparticles
also adhere to the contact surface and form a physical tribo-
film, which reduces friction and wear [65].

3 Thermophysical properties of nanofluid
and hybrid nanofluid

3.1 Viscosity

Investigation of the viscosity rate is important to reveal the
fluidic behaviour of the liquid [67]. According to the pre-
vious studies, temperature significantly affects the viscos-
ity of nanofluid and hybrid nanofluid. Dardan et al. [68]
revealed that with the increment of temperature at a range
of 25-30 °C, the viscosity reduces due to the enhancement
of nanofluid movement. However, when the temperature
further increases, the movement of nanotube becomes
perpendicular to the flow direction, thereby increasing
the viscosity. Esfe et al. [69] investigated the viscosity of
ZnO-MWCNT/10w40 hybrid nanofluid at a temperature
from 5 to 55 °C with a solid volume fraction of 0.05-1%

Fig.2 Nanofluid mechanisms
formed in the cutting zone.
Reprinted from [66] with per-
mission from Elsevier
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and showed that the viscosity decreases as the temperature
increases.

Other than temperature, mass volume fraction is another
factor that influences the nanofluid and hybrid nanofluid
viscosity. Figure 3 illustrates the variations of dynamic
viscosity with nanoparticles volume fraction at different
temperatures [70]. The viscosity clearly increases with the
increase of the nanoparticle volume fraction. This result is
consistent with the findings of Ghasemi and Karimipour
[71], wherein the viscosity of CuO—paraffin nanofluid sig-
nificantly changes when the particle mass fraction is higher
than 1.5 wt%. According to Hemmat et al. [72], collisions
between nanoparticles and the base fluid caused by van der
Waals forces will increase and result in the increase of vis-
cosity when the amount of nanoparticles in a constant vol-
ume of a liquid increases.

Notably, the effect of particle size on the viscosity of
nanofluids achieves contradictory results. According to Hu
et al. [73], the relative viscosity of the nanofluid increases
with the increase of the particle size, particularly at a high
volume fraction. However, Nithiyanantham et al. [74] indi-
cated that the nanofluid with smaller particles (SiO,: 27 nm)
present higher viscosity than those with larger particles
(Si0,: 450 and 800 nm) due to the availability of larger sur-
face area. Hu et al. [73] concluded that interparticle spacing
and extent of particle aggregation, which are highly influ-
enced by nanoparticle size, are extremely important factors
in determining the viscosity of nanofluids.

The viscosity of different types of nanofluids has been
extensively investigated. For example, Kazemi et al. [75]

a5

—aA— T=30C

40 F

30F
5 F

20F

Dynamic viscosity (cP)

0 01 02 03 04 05 06 07 08 09 1
Solid volume fraction (%)

Fig. 3 Variation of dynamic viscosity to solid volume fraction at dif-
ferent temperature. Reprinted from [70] with permission from Else-
vier

@ Springer

investigated the effect of adding silica (SiO,) and graphene
(G) nanoparticles as well as their hybrid (G [30%] + SiO,
[70%]) on the viscosity of water. The researchers discovered
that the SiO,/water mono-nanofluid indicates the least rise in
viscosity amongst the three types of nanofluids at high con-
centrations. Furthermore, Shahsavar et al. [76] demonstrated
that the viscosity of CNT-Fe;O, hybrid nanofluid is nearly
28.60% higher than that of Fe;O, nanofluid. The presence
of CNT significantly affects the increase of viscosity value
on hybrid nanofluids. Ahammed et al. [77] revealed that the
viscosity of graphene—alumina hybrid nanofluid is greater
than that of the alumina nanofluid but lower than that of the
graphene nanofluid. However, Yang et al. [78] indicated that
describing the effect of particle type on viscosity is impos-
sible because viscosity values for different nanofluids vary
substantially and appear erratic.

3.2 Thermal conductivity

Thermal conductivity refers to the fluid’s ability to absorb
and disperse heat to its surrounding. Temperature signifi-
cantly affects the thermal conductivity of nanofluid and
hybrid nanofluid. According to Baby and Sundara [79] and
Madhesh et al. [80], the nanofluid’s thermal conductivity
increases as the temperature increases. Besides that, many
studies have explored the influence of nanoparticle concen-
tration on thermal conductivity. For example, Thakur et al.
[81] discovered that the thermal conductivity of SiC nanoflu-
ids improves when the nanoparticle concentration increases,
as shown in Fig. 4. Hamid et al. [82] also showed that the
thermal conductivity of TiO,-SiO, hybrid nanofluids is
higher than that of the base fluid at all concentrations and
the maximum thermal conductivity occurs at a concentra-
tion of 3.0%. This finding is consistent with data obtained
by Sajid and Ali [83], whereby the concentration of nano-
particles is directly proportional to thermal conductivity due
to the high thermal conductivity of nanoparticles. However,
other reports also claimed that there is no improvement of

(@)

0.76 4

0.75 -

0.73 4

0.72 4

Thermal conductivity(W/mk)

0.5 1
Nanoparticle concentration(wt.%)

Fig.4 Variation of thermal conductivity with concentration of SiC.
Reprinted from [81], Copyright 2020, with permission from Springer
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thermal conductivity, especially at high concentrations [84,
85]. Nfawa et al. [85] reported that the decline of thermal
conductivity above a volume concentration of 1% is attrib-
uted to the decrease of the specific area-to-volume ratio of
nanomaterials and the formation of nanoparticle clusters.

Particle size is another crucial factor that influences the
thermal conductivity of nanofluid and hybrid nanofluid. For
example, Nithiyanantham et al. [74] compared the effect of
Si0, nanoparticle size (27, 450 and 800 nm) on the thermal
conductivity of nanofluid and revealed that larger spherical-
shaped Si0O, nanoparticles have lower thermal conductivity
than smaller nanoparticles. This observation is consistent
with the findings of Loong et al. [86]. Yang et al. [78] stated
that the increase of thermal conductivity with small particles
is due to enhanced Brownian velocity and surface effect that
small particles can achieve.

Apart from the aforementioned factors, particle type also
affects the thermal conductivity of nanofluids and hybrid
nanofluid. According to Yang et al. [78], carbon nanomateri-
als (CNTs and graphene), metals (Au, Ag, Cu and Fe) and
metal oxides (CuO, Al,O3, TiO,, ZnO, SiC and SiO,) are
commonly used nanomaterials. High thermal conductivity
in nanoparticles can remarkably enhance the thermal con-
ductivity of nanofluids in general. For example, Loong et al.
[86] investigated various types of metal oxide (Al,O5, CuO,
MgO, TiO,, SiO, ZnO and ZrO,) water-based nanofluids
and discovered that the MgO nanofluid presents the best
heat transfer performance amongst these metal oxides due
to its high thermal conductivity. In addition, CNTs and gra-
phene nanomaterials are also widely known for their capa-
bility to enhance the thermal conductivity of nanofluids due
to their exceptional thermal conductivity [64]. Nasiri et al.
[87] found that single-walled CNT nanofluid demonstrated
the maximum improvement in thermal conductivity over the
base fluid. Furthermore, Das et al. [88] showed that 0.1 wt%
of graphene nanoparticles can enhance the thermal conduc-
tivity of graphene nanofluid by 29% compared with that of
deionised water.

3.3 Stability

Nanofluid stability can be affected by many factors, such
as dielectric constant of base fluid, pH value, particle size,
shape and concentration of nanofluid. Zhu et al. [89] and
Kim et al. [90] used zeta potential to examine the stability
of copper and Au—water nanofluids, respectively. Accord-
ing to Hwang et al. [91], suspended nanoparticle charac-
teristics (particle morphology and chemical structure) and
the base fluid significantly impacted the nanofluid stability.
Similarly, Suresh et al. [92] showed that the nanofluid stabil-
ity reduces with the increase of volume concentration. The
stability of the nanofluid seriously influences the machining
performance. This view is also supported by Kim et al. [93],

who found that the stability of the water-based bohemite alu-
mina nanofluid significantly depends on the particle shape.
The researchers concluded that the sedimentation of blade-
shaped particles is faster than that of platelet- and brick-
shaped particles. Poor stability was also observed with the
increase of particle concentration because the van der Waals
attractive potential dominated over the electrostatic repulsive
potential and caused the agglomeration of nanoparticles that
led to sedimentation [94]. According to Sharmin et al. [95],
0.3 vol% of carbon nanotube nanofluid can be used as an
efficient coolant to improve the surface roughness, cutting
force and tool wear because of its high stability.

3.4 Wettability

Contact angle values in the surface wettability test represent
the ability of lubricants to wet metal surfaces, and a low
contact angle value (high wettability) increases the chances
of tribo-film formation [96]. Kumar et al. [97] revealed that
the alumina—MoS, hybrid nanofluid recorded the smallest
contact angle compared with the alumina nanofluid and
base fluid. This result is consistent with those of Xie et al.
[96]. The lower contact angle of SiO,:graphene combination
nanofluids than that of pure water and graphene nanofluids
indicated that the workpiece surface is more wettable with
Si0,:graphene combination nanofluids than that with pure
water and graphene nanofluids.

According to Kumar et al. [98], physical and morpho-
logical features of nanoparticles significantly affect wettabil-
ity characteristics. Figure 5 shows that the contact angle of
hard nanoparticles, such as B,C, ZnO and Al,O;, remarkably
decreases compared with that of soft nanoparticles (WS,,
MoS, and h-BN) when added to the base fluid (DI water).

4 Nanofluid and hybrid nanofluid
in the machining process

4.1 Turning

Turning or lathe is a type of machining operation that
removes unwanted materials from the workpiece using a
single-point cutting tool to obtain the final product. A pre-
shaped material was attached to the fixture on the turning
machine and then rotated at a high-speed motion during the
lathe operation [99]. Due to the regular contact of workpiece
and cutting tool, the cutting zone generated a considerable
amount of heat and deteriorated the surface finish of the
product. Lubricants and coolants are normally supplied to
the workpiece—tool intersection to solve this issue. Various
types of nanofluids have been applied to the turning opera-
tion due to their great advantages. For example, Amrita et al.
[100] revealed that the addition of nanographite increases

@ Springer
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Fig.5 a 3D profile of refined et

silicon nitride surface and
bk contact angle between the
surface and various nanoflu-
ids. Reprinted from [98] with
permission from Elsevier

the heat carrying capacity of soluble oil, thereby improving
tool wear, surface roughness and cutting force compared
with dry and wet conditions. Saravanakumar et al. [101]
investigated the turning process with and without silver
nanoparticles under different machining conditions. The
researchers claimed that tool tip temperature can reduce with
the inclusion of 0.5 vol% of silver nanoparticles, mainly due
to the increase of thermal conductivity of the silver nano-
fluid caused by the interfacial layer between nanoparticles
and the liquid interface as well as the Brownian motion of
nanoparticles.

Su et al. [102] turned the AISI 1045 using vegetable-
based oil mixed with graphite nanoparticles through the
MQL method. The results indicated that the temperature
and cutting force remarkably reduce when the nanofluid
MQL is used. Li et al. [103] revealed that the efficiency of
cooling and lubrication enhances as the frictional force and
cutting temperature significantly reduces with the addition
of graphene oxide nanosheets into the coolant. As illus-
trated in Fig. 6, under nanofluid minimum quantity lubrica-
tion (NMQL), tool wear evidently decreased by 18.17% and

@ Springer

4.54% and surface quality improved by 55.58% and 5.48%
compared with those under dry and flood machining, respec-
tively [104].

Duc et al. [105] compared the turning performance of
MoS, and Al,O5 nanofluids on 90CrSi steel and demon-
strated that the Al,O5 nanofluid achieves better surface finish
compared with the MoS, nanofluid. Khan et al. [106] com-
pared the machining performance of Ag and Cu nanofluids
and showed that Cu-based nanolubricant produces a lower
coefficient of friction, cutting force and cutting tempera-
ture than Ag-based nanolubricants. Yi et al. [107] indicated
that the respective tool flank wear reduces by about 44.1%,
53.9% and 71.3% when 0.1, 0.3 and 0.5 wt% of graphene
oxide (GO) nanofluids are used instead of conventional
coolants (Fig. 7). MQL turning of SiC—based nanofluids
exhibited better performance than MQL turning in terms of
temperature, cutting force and surface roughness height [81].
Other important studies that utilise nanofluids in the turning
process are summarised in Table 2.

Hybrid nanofluids have been widely used as coolant in
the machining process in recent years. For example, Kumar
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Different cutting environments

et al. [97] demonstrated that the Al-MoS, hybrid nanofluid
shows a significant reduction of 7.35% in cutting force (Fz),
18.08% in feed force (Fx), 5.73% in thrust force (Fy) and
2.38% in surface roughness compared with the Al,O; mixed
nanofluid. The results showed that the reduction in cutting
force and surface roughness can be attributed to the entrap-
ment of nanoparticles in porous abrasives and tribo-film lay-
ers consisting of the Mo—S—P (molybdenum, sulphur and
phosphorus) chemical complex at the machining zone that
generates lubrication due to the continuous shearing and
alignment. Gugulothu and Pasam [108] also presented that

Fig.7 SEM image of tool flank
wear using various types of
coolant: a conventional cool-
ant b 0.1 wt.% GO coolant ¢ 0.3
wt.% GO coolant d 0.5 wt.%
GO coolant. Reprinted from
[107] with permission from
Elsevier

Different cutting environments

minimum surface roughness can be obtained using the CNT/
MoS, hybrid nanofluid compared with that of dry machining
and conventional cutting fluids. Jamil et al. [109] reported
that Al,O,—MWCNT hybrid nanofluid can reduce 8.72% of
surface roughness and 11.8% of cutting force whilst increas-
ing the tool life by 23% compared with cryogenic cooling.
Kumar and Krishna [110] examined the efficiency of CuO
and Al,O; hybrid nanofluids at various weight percentages
during the turning process of AISI 1018 steel. The findings
indicated that the combination of CuO and Al,O5 (50:50)
can reduce the surface roughness value to a maximum of
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Table 2 (continued)

Cutting tool/insert Important findings

Workpiece material

Concentration

Size (nm)

Base Fluid

Type of nanoparticles

References

Increasing the concentration

Polycrystalline cubic

Ti-6Al-4 V alloy

0.1,0.3 and 0.5 wt%

50

Graphene Oxide (GO) Rocol Ultracut Clear

Shuang et al. [121]

of GO nanofluid resulted
lower chip thickness and

boron nitride

chip compression ratio. GO

nanofluid also resulted lower

cutting temperature and surface
roughness when compared to

conventional coolant

Friction force was reduced about

PCBNO10

Titanium alloy

0.1, 0.3 and 0.5 wt%

50

Graphene Oxide (GO) Rocol Ultracut Clear

Yi et al. [122]

5.36% when 0.3 wt% GO

nanofluids was used. But, as the
concentration of GO nanofluids

increased, cutting temperature
and cutting force decreased

13.72%. Moreover, the combination of CuO and ZnO with
coconut oil can lead to a better surface finish than other syn-
theses [111]. Khan et al. [112] compared the turning perfor-
mance of AISI52100 steel using base fluid, Al,05; nanofluid
and Al-GnP hybrid nanofluid. The results revealed that the
hybrid nanofluid MQL achieves the best surface quality, cut-
ting power, MRR and tool life compared with other cutting
fluids.

4.2 Drilling

Drilling is a simple machining process that uses a spiral
fluted tool to remove the material in a circular motion to
create a hole [123]. High temperature at the cutting zone will
affect the surface quality during machining because the tip
of the drill bit begins to burn and wear [124].

Nanofluids have recently been utilised to improve the
drilling performance. For example, Chatha et al. [125]
revealed that the use of nanofluids with MQL enhances the
number of drilled holes whilst decreasing thrust forces and
drilling torques compared with the use of pure MQL, wet
and dry drilling conditions. These findings are consistent
with those of Huang et al. [126]. The researchers stated that
the use of 2 wt% of nanodiamond in micro drilling with
MQL can reduce the force, torque and burr formation around
the holes and thus increase the cutting tool life with the
reduction of force. Liew et al. [127] performed the drilling
process on titanium alloy using carbon nanofibre nanofluid.
When compared the results with those utilising pure deion-
ised water, the carbon nanofibre nanofluid produces better
surface finish and lower cutting temperature. Compared with
the coconut oil-based fluid, Muthuvel et al. [128] stated that
copper nanofluid can reduce the surface roughness and flank
wear by 71% and 53%, respectively, with the optimum set-
ting predicted via ASN-RSM.

Babu and Muthukrishnan [129] investigated the effect
of copper nanofluid under MQL condition in the drilling
of AA 5052 alloy. The results indicated that the use of cop-
per nanofluid significantly decreases the cutting tempera-
ture, tool wear and surface roughness compared with the
application of oil lubrication and dry machining. Moreover,
nanofluids under MQL generated a thin protective cover on
the machined zone and thus lowered the machining tem-
perature and friction at the tool-workpiece interface whilst
reducing the adhesion wear and chipping on the inserts.
This view is further supported by Khanafer et al. [130].
When using MQL nanofluid, the tribo-film that formed
between the cutting tool and the inner drilled hole (Fig. 8)
can reduce the rubbing action caused by the rolling effect,
thus reducing the cutting heat and burrs cut around the
circumference of the drilled hole (Fig. 9). Other important
studies that use nanofluids in the drilling process are listed
in Table 3.
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Oil droplet

g

MaQL-Nanofluid nozzle
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Fig.8 Schematic of nanofluid mist mechanisms in the drilling
zone. Reprinted from [130], Copyright 2020, with permission from
Springer

4.3 Grinding

Grinding is an abrasive machining process that is commonly
used in the finishing process for component that requires
accurate dimensional tolerances and smooth surface textures
[123]. Surface texture and precision obtained through grind-
ing are 10 times greater than those via turning or milling.
Abrasive grains come into controlled contact with the rotat-
ing wheel in a binder during the grinding process. Accord-
ing to Sanchez et al. [138], the heat generated during the
grinding operation may negatively affect the surface integ-
rity in the form of metallurgical transformations and oxida-
tion. Coolants and lubricants were used to reduce the resist-
ance within the wheel and workpiece to protect them from
unfavourable conditions, such as heat distortion, burning,
undesirable waste, tensile stress and phase transformation.
Moreover, coolants and lubricants can also wash out chips,
free the wheel surface from contaminations and thus reduce
heat generation and grinding force [139]. Tu et al. [140] con-
cluded that the use of cutting fluid in the grinding process
is an important factor to ensure that the fluid can penetrate
the contact zone and maintain its lubricating effectiveness.

Wang et al. [141] explored the temperature distribution
of 45 steel during the grinding process under four cooling

Fig.9 SEM of burr formation
using a flood b pure MQL ¢
MQL-nanofluid. Reprinted from
[130], Copyright 2020, with
permission from Springer

@ Springer

and lubrication conditions, namely, dry, MQL, nanofluid
and flood conditions. The researchers discovered that the
grinding zone temperature is significantly reduced because
of the excellent heat transfer property of nanofluids. Setti
et al. [142] demonstrated that the tangential force and grind-
ing zone temperature decrease when nanofluids are utilised.
In 2017, Li et al. [143] carried out the grinding process on
Ni-based alloy using nanofluid MQL with six different types
of nanoparticles. The CNT nanofluid presented the lowest
grinding temperature amongst the investigated nanofluids
due to its highest heat transfer coefficient. Dambatta et al.
[144] showed that forces and surface roughness decrease
significantly when SiO, nanofluid is used. According to
Wang et al. [145], nanoparticles can easily penetrate into
the sliding contact, form a protective film and convert slid-
ing friction into sliding-rolling composite friction between
grains and the workpiece (Fig. 10a). Furthermore, nanopar-
ticles can fill cavities and incomplete spaces on the work-
piece surface, repair dents on the friction surface and result
in mending effect (Fig. 10b) that can improve workpiece
surface quality. Previous studies that utilise nanofluids in
the grinding process are listed in Table 4.

Similar to nanofluids, hybrid nanofluids have also been
used in the grinding process. Zhang et al. [146] presented
that MoS,/CNT hybrid nanoparticles can significantly
improve surface quality compared with the pure nanofluid
with a single nanoparticle (Fig. 11). These findings are con-
sistent with those of Zhang et al. [147]. The study noted that
hybrid nanofluid MQL grinding is superior over pure nano-
fluid MQL grinding due to the ‘physical synergistic effect’.
Hamid et al. [82] exhibited that MoS,—WS, hybrid nanofluid
reduces the specific grinding energy and grinding force by
39% and 27%, respectively, when compared with deionised
water; meanwhile, the hybrid nanofluid also reduces chip-
ping layer depth and surface roughness by 86% and 41%,
respectively, compared with flood grinding.

4.4 Milling

The milling process is operated by removing the chip with
rotational and multi-teeth tool on a fixed workpiece [123].
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Fig. 10 a Protective films and b mending effect of nanoparticles in
grinding. Reprinted from [145] with permission from Elsevier

Many studies on the use of nanofluids in the milling process
have demonstrated significant improvement in machining
performance. For example, Kim et al. [168] indicated that
the hBN nanofluid MQL with chilly CO, gas can produce
better surface finish and reduce the coefficient of friction and
tool wear. Their findings are supported by Kim et al. [169],
and the results showed that chilly CO, gas with only 0.1
wt% of nanodiamond nanofluid in MQL can reduce milling
forces and coefficient of friction. According to Sirin and
Kivak [18], hBN nanofluid can obtain better surface rough-
ness, lower cutting force and improved tool wear compared
with the MoS, and graphite nanofluid. The machined surface
with graphene nanofluid MQL can also produce a smoother
surface without adhesion and large furrows compared with
machining under dry and gas conditions [170]. The sum-
mary of previous studies that utilise nanofluids in the milling
process is presented in Table 5.

Researchers have also attempted to examine the mill-
ing machining performance using hybrid nanofluids. Sahid
et al. [171] revealed that the combination of cutting param-
eters and MQL-hybrid nanocoolant is critical in attaining

Fig. 11 SEM image of work-
piece using different machining
conditions. Reprinted from
[146] with permission from
Elsevier

a) Pure nanofluid

enhanced surface roughness, satisfactory material removal
rate and reduced tool wear. Jamil et al. [172] reported that
due to the tribo-film formation of Al,O;-MWCNT hybrid
nanofluid, variable-sized nanoparticles function as spacers to
reduce the severity of tool rubbing on the workpiece surface,
fill microvoids on the workpiece surface and function as ball
bearing in the rolling action. As a result, tool life and surface
finish can be improved.

5 Optimisation of machining performances
under nanofluid and hybrid nanofluid

Many research papers have been published demonstrating
the effectiveness of optimisation techniques for machin-
ing process under nanofluid and hybrid nanofluid. For
example, Chakma et al. [19] utilised the Taguchi orthogo-
nal array design to optimise the turning parameters of an
aluminium metal matrix nanocomposite. The researchers
discovered that high cutting speeds and low feed rates
can significantly improve the surface quality when car-
bon nanotube nanofluid is used. Liew et al. [186] carried
out multi-response optimisation in turning D2 steel using
the Taguchi-RSM integration method. The experimental
results revealed that a cutting speed of 144.58 m/min, feed
rate of 0.14 mm/rev and usage of carbon nanofiber nano-
fluid as coolant produce the optimal tool wear and surface
finish.

Besides that, in the milling of Inconel 718, Barewar
et al. [187] incorporated the Taguchi grey relational anal-
ysis (TGRA) to investigate the effect of cutting speed,
feed rate and machining environment (Ag/ZnO hybrid
nanofluid-MQL, dry and MQL) on the surface roughness
and cutting temperature. They concluded that at the cut-
ting speed of 30 mm/min, feed rate of 0.036 mm/tooth
and Ag/ZnO hybrid nanofluid-MQL cutting environ-
ment, multi-response—optimised machining performance
can be achieved. Jamil et al. [172] also reported that by
using Taguchi method, the desirability function attempts
to obtain a balanced operating level to achieve minimal

Best surface

Lager furrow

b) MoS; and CNT hybrid nanofluid

@ Springer
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energy consumption, enhanced surface quality and high
material removal rate in the milling of Ti—-6Al-4 V alloy
when hybrid nanofluids Al,0,-MWCNTs is added.

Furthermore, Junankar et al. [188] used multi criteria deci-
sion-making hybrid approach to optimise the turning param-
eters under CuO and ZnO nanofluid-MQL. They found that
CuO nanofluid showed better enhancement by reducing the
surface roughness and machining temperature as compared to
Zn0 nanofluid. Huang and Chen [189] used ANN and TGRA
to develop a highly accurate micro drilling predictive model
and reported that the parameter combination for predicting
the optimal micro drilling force and torque deviated from the
experiment results by just 0.44% and 1.24%, respectively.
Garg et al. [132] revealed that genetic programming (GP) has
performed better than the ANFIS model on the thrust force
and material removal rate in micro drilling process.

6 Challenges and future works

On the basis of previous studies, maintaining the stability of
nanofluids and hybrid nanofluids remain challenging in actual
application despite their ability to improve the machining per-
formance compared with conventional fluids. The stability of
nanofluid was mainly affected by the agglomeration and the
formation of large clusters of suspended particles [94]. The
nanoparticle agglomeration causes not only the settlement and
clogging of micro channels but also a reduction in the thermal
conductivity of nanofluids [60]. Therefore, surfactants have
been used to enhance the stability of nanofluid [60]. Although
the addition of surfactant can effectively enhance nanoparti-
cle dispersibility, surfactants may cause some problems. For
example, the addition of surfactants may contaminate heat
transfer media; produce foam during the heating process
[190] and likely degrade the viscosity, thermal conductivity
and chemical stability of nanofluids when an excessive amount
of surfactant is added [191]. Therefore, the stability of nano-
fluid and hybrid nanofluid requires further investigation. The
machinist should use a stirrer or ultrasonic vibration in the
coolant tank to assist the machining process and ensure excel-
lent output when nanofluids or hybrid nanofluids are used as
coolant in machining. The stirrer or ultrasonic vibration of
nanofluids may help disperse nanoparticles in the suspension
and avoid sedimentation during the machining process.

In addition to the stability issue of nanofluids, high produc-
tion cost is another major factor that may hinder the practical
industrial application of nanofluids and hybrid nanofluids. The
entire procedure adds to the overall cost because it requires the
appropriate selection of nanoparticles, natural extracts, equip-
ment and hardware [192]. Hence, the researcher or machinist
may consider using a green nanofluid that contains eco-friendly
nanoparticles to reduce the cost. The use of green nanofluids as

@ Springer

coolant in machining combined with optimum machining param-
eters that affect the process should be investigated further.

7 Conclusion

An overview of various cooling—lubrication techniques as
well as the use of nanofluids and hybrid nanofluids in turn-
ing, milling, grinding and drilling processes is presented in
this study. Thermal conductivity and viscosity of nanofluids
and hybrid nanofluids are strongly affected by the tempera-
ture, mass volume fraction, nanoparticle size and type. The
majority of experimental studies revealed that nanofluids
and hybrid nanofluids can achieve better machining perfor-
mance than other cooling—lubrication techniques due to their
heat transfer and lubrication capabilities. The formation of a
tribo-film, the sliding—rolling action and the mending effect
of nanoparticles are the main mechanisms that contribute to
the improvement of surface finish and reduction of cutting
temperature, tool wear and cutting force during machin-
ing with nanofluids and hybrid nanofluids. Multi-response
optimisation using various optimisation techniques such as
Taguchi, RSM and ANN is useful to predict the optimum
parameters for enhancing the machining efficiency under
nanofluid and hybrid nanofluid cutting environment.
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