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Abstract
Rotor-bearing systems play a vital role in machine tools, aero engines, and wind turbines. Generally, worn-induced degra-
dation quantities and manufacturing errors of components are the main error sources that influence the precision reliability 
of rotor-bearing systems. The current precision reliability evaluation models are focusing on several error sources in only a 
few key components without agreeable results. Therefore, a precision reliability evaluation model is proposed considering 
all time-variant error sources and random error sources. Firstly, time-variant wear models for commonly occurred degrada-
tion types in a rotor-bearing system are developed. Secondly, the constructed time-variant wear models are inserted into 
the precision model with all moving components in the rotor-bearing system using meta-action structural decomposition 
method. Finally, the time-variant stochastic process discretization method is employed to establish the precision reliability 
evaluation model, and solve the precision reliability of the rotor-bearing systems. Case investigations are carried out to verify 
the performance of the present model, which provides a more accurate precision reliability evaluation model to estimate the 
conditions of rotor-bearing systems during the service period.

Keywords Rotor-bearing systems · Precision reliability evaluation · Time-variant wear models · Random error sources · 
Meta-action

1 Introduction

Rotor-bearing systems are widely used in the transmission 
process of mechanical movement and momentum. The per-
formances of rotor-bearing systems need to meet different 
requirements in different application scenarios. Thereby, the 
performance design has always been the dominant issue in 
the stage of system development design. The randomness 
and time variability of kinematic precision can be expressed 
by a reliability index [1]. The precision reliability can be 

earmarked as an important constraint index in the research 
on tolerance allocation [2], and it is also an important basis 
for formulating maintenance strategy [3]. Consequently, it 
is necessary to establish a kinematic precision reliability 
evaluation method with more accurate performance for 
rotor-bearing systems to serve the precision design.

An effective and correct precision expression model plays 
an important role in the research of kinematic precision reli-
ability. In recent years, much attention has been paid to the 
aspect of the precision modeling theories for rotor-bearing 
systems. Tang et al. [4] introduced the stream of variation 
theory into geometric error modeling for mechanical sys-
tems, regarded each moving component as a station, and 
calculated the accumulated geometric errors according to 
the transmission sequence from the upstream station to the 
downstream station. Yang and Ding [5] represented the error 
propagation process from one component to the other differ-
ent component with a differential motion matrix, and built 
the integrated precision model of the whole kinematics chain 
by homogeneous transformation matrices. Bozca [6] calcu-
lated the transmission precision of the gear system based on 
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a state-space model. Liu et al. [7] regarded the error accu-
mulation between components as the screw motion of rigid 
bodies, and established the precision model of systems by 
screw theory and Jacobian function. Yang et al. [8] estab-
lished a six-degree-of-freedom geometric motion errors 
model of the precision rotary stage by adopting the rigid 
body hypothesis and the spatial transformation matrix. Wang 
et al. [9] proposed a transmission error model of the ball 
screw by converting manufacturing errors and installation 
errors to the errors in normal and axial direction. However, 
the assembly precision caused by the geometric errors of 
components and the transmission precision caused by the 
relative motion relationship of kinematic pairs are not dis-
tinguished in the current precision modeling methods, which 
cannot reflect the motion essence of mechanical systems. 
Moreover, there are various error sources for the complex 
system with many components which lead to the cumber-
some calculation process and inaccurate results. The main 
cause of this problem is that the error sources are not reason-
ably classified in the traditional structured decomposition 
method. From the perspective of motion modularization, 
meta-action theory [10] produces a reasonable balance in 
the subordinate relationship between components and sys-
tems. And some applications in reliability analysis have 
been carried out [11]; the advantages in failure mode and 
effects analysis have also been proved [12, 13]. Mu et al. 
[14] introduced the application of meta-action theory in the 
remaining useful life prediction on account of its advantage 
in the reflection of the interaction among the components. 
Chen et al. [15] applied meta-action theory for the reliability 
optimization design of mechanical systems. Yang et al. [16] 
presented a performance degradation prediction approach by 
combining meta-action theory with the digital twin technol-
ogy. Xiao et al. [17] further explored the motion modulariza-
tion strategy of the meta-action unit, which can reflect the 
characteristics of the mechanical systems that the function 
determined by the motion. Therefore, meta-action theory 
also lay a good foundation for the precision modeling.

The random geometric errors of components caused by the 
uncertainty of the manufacturing process are considered as 
the initial error sources affecting the precision reliability of 
rotor-bearing systems, and some meaningful research work 
on the analysis of such errors has been proposed. Huang et al. 
[18] considered the original manufacturing errors of gears 
as the random variables affecting the transmission error of 
the gear mechanism, and presented a kinematic accuracy 
reliability analysis method using the saddle-point approxi-
mation technique. Cai et al. [19] established a geometric/
kinematic error model for mechanical systems using homog-
enous transformation matrices, regarded the geometric error 
values as random quantities within the tolerance range, and 
developed an accuracy reliability analysis model based on the 
high-order moment standardization technique. Wang et al. 

[20] estimated the probability distribution of the precision 
state function for mechanical systems with random geomet-
ric errors based on the statistical fourth moment method, 
and employed the Edgeworth series to analyze the dynamic 
precision reliability. Zhang et al. [21] conducted the impor-
tance sampling method to analyze the accuracy reliability of 
mechanical systems after establishing a comprehensive error 
model affected by the random geometric errors. Yang et al. 
[22] analyzed the error propagation between parts based on 
small displacement torsor and multi-tolerance coupling, pre-
sented the assembly precision model of mechanical rotating 
systems in accordance with the Jacobian-torsor method, and 
calculated the assembly precision reliability according to the 
probability distribution of the assembly error index. Ma et al. 
[23] performed the effects of the stochastic rotor/stator gap 
caused by manufacturing on vibrational behaviors and reli-
ability of the rotor systems. In addition, there are some time-
variant error sources such as the wears on gears and bearings 
during the operation of the rotor-bearing systems. Wang et al. 
[24] calculated the wear depths of the parts by the Archard 
wear model, considered the part geometric parameters in the 
wear formula as input random variables, and constructed 
the Kriging models to predict the time-variant reliability of 
mechanical systems. Chen et al. [25] decomposed the time-
varying dynamic transmission error of the gear mechanism 
into many random variables according to the meshing period, 
thus realizing the transformation of a time-dependent reliabil-
ity solution into a time-independent reliability solution, and 
estimated the reliability based on the saddle-point approxi-
mation method. Jiang et al. [26] calculated the cumulative 
wear of gears in the gear transmission system and the mesh-
ing force and stress distribution under the influence of gear 
wear, and predicted the system dynamic reliability according 
to the gear strength degradation rule. Furthermore, stochastic 
models [27] can also be used to describe the process of per-
formance degradation, such as the gamma process model [28] 
and the Wiener process model [29], and the precision reli-
ability evaluation using the PHI2 method [30], support vector 
machine [31], response surface method [32], and the Kriging 
method [33] have been reported in literature. Unfortunately, 
to the best of our current knowledge, there are few reports 
in literature which have combined the manufacturing error 
sources with the time-variant wear sources to evaluate the 
effects on the kinematic precision reliability of rotor-bearing 
systems, and that leads to many important error items being 
ignored and the inaccuracy model.

Motivated by the above-mentioned limitations, a novel 
kinematic precision reliability modeling method is proposed 
to improve the accuracy of reliability assessment for rotor-
bearing systems in this paper. Specifically, based on the meta-
action structural decomposition method, the precision analysis 
model containing each source related to the output precision 
of rotor-bearing systems is established. When the distribution 
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of random errors and the expression of time-variant wears 
are determined, the kinematic precision reliability can be 
calculated by the time-variant stochastic process discretiza-
tion method. The remainder of this manuscript is organized 
as follows: Sect. 2 provides the time-varying wear models for 
the probably worn components in rotor-bearing systems. In 
Sect. 3, the output precision model based on the meta-action 
structural decomposition method is established. Section 4 
presents the precision reliability evaluation model consider-
ing multi-source wear degradations and random errors. The 
applicative case is reported in Sect. 5 to validate the proposed 
method. The conclusions are finally drawn in the final section.

2  Time‑variant wear models

The precision time variation and failure of rotor-bearing sys-
tems are primarily caused by the wearing of components, espe-
cially the wear occurring on gears and bearings. Therefore, 
these two types of wear are analyzed specifically and respec-
tively as follows.

2.1  Tooth thickness wear

Tooth thickness wear is the gear material continuous reduction 
process under stress. The wear quantity of the tooth profile sur-
face at a certain time can be calculated by the Archard model. 
Let V represent the wear volume of the tooth surface and s the 
relative sliding distance; then

where k is the wear coefficient, W the normal pressure on the 
contact surface, and H the hardness of the material.

By discretizing the contact area on the tooth surface into 
several contact points, the infinitesimal wear quantity of the 
arbitrary contact point at a certain time can be obtained and 
calculated as

where P represents the contact stress at the contact point.
The wear coefficient k is a parameter comprehensively 

affected by factors such as working condition, surface rough-
ness, lubrication characteristics, and material characteristics. 
According to the Janakiraman regression formula [34], it can 
be calculated as

And L =
W�

EeRe

 , G = �0Ee , S =

√
R2

�1
+R2

�2

Re

.

(1)
V

s
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s
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and �(1) , �(2) and E(1) , E(2) are Poisson ratio and elastic modulus 
of the driving and driven wheel’s material, respectively. W′ is the 
load per unit length. Equivalent radius of curvature 
Re = 1

/(
1

rb(1)
+

1

rb(2)

)
 , rb(1) , and rb(2) are the base circle radius 

of the driving and driven wheel, respectively. �0 is the pressure-
viscosity coefficient of lubricating oil (assuming it is a constant 
not affected by pressure during the wearing process). R�1 and R�2 
are the roughness of these two contact surfaces, respectively.

According to Hertz contact theory, the contact stress P can 
be solved by taking the tooth surface meshing problem of the 
driving and driven gear equivalent to the mutual extrusion 
problem of two cylinders. When these two tooth surfaces are 
in line contact under stress, a rectangular contact area is 
formed due to elastic deformation. The contact stress distribu-
tion of a certain cross section in the contact area at a certain 
time is shown in Fig. 1.where Pmax represents the maximum 
Hertz contact stress. Half width of Hertz contact area 
a =

√
4W �Re

�Ee

 and the variation range of the relative sliding dis-
tance s is [0, a].

As demonstrated in Fig. 1, the maximum contact stress 
occurs in the center of the contact area and has a decaying 
trend to both sides. Contact stress at the arbitrary contact point 
is calculated as

where the maximum contact stress Pmax = T(1)
/
B(1)rb(1) . T(1) 

is the load transmitted by the gear pair; B(1) is the tooth width 
of the driving gear. Therefore, the calculation equation of the 
single infinitesimal wear quantity can be rewritten as

When the driving wheel rotates once, the contact point of 
the tooth surface completes single wear accumulation, while 
the driven wheel completes the corresponding number of 
times of wear accumulations due to the relationship of the 

(4)P(x) =
2Pmax

�a2

√(
a2 − x2

)

(5)�h = ∫
a

0

2kT(1)

�a2B(1)rb(1)H

√(
a2 − x2

)
dx

Fig. 1  Hertz contact stress distribution

4161The International Journal of Advanced Manufacturing Technology (2023) 124:4159–4173



1 3

transmission ratio. Therefore, the wear quantity of the driv-
ing gear tooth thickness can be calculated as

The wear quantity of the driven gear tooth thickness can 
be calculated as

2.2  Bearing wear

Rolling bearings are generally composed of rolling elements, 
bearing outer ring, locking inner ring, and bearing cage. 
The roller and the raceway move relative to each other in a 
point-contact manner. A single roller not only rotates around 
its own axis, but also rolls around the bearing axis on the 
raceway, and under the force of the bearing cage, the roller 
also slides on the raceway to a certain extent. Therefore, the 
internal friction of the rolling system is a compound friction 
including rolling and sliding friction.

To facilitate the analysis and calculation, it is assumed 
that the rolling elements are uniformly worn, that is, the 
wear loss of each roller at a certain time is the same. The 
rollers move independently, and there is no radial clearance 
between the rollers and the inner and outer rings. Similar to 
the calculation of tooth thickness wear, the continuous wear 
process of bearing is firstly discretized into several infinitesi-
mal wearing moments. Assuming that the wear loss of each 
point on the contact line at each moment is the same, accord-
ing to the Archard wear model, the infinitesimal wear loss 
of the contact point at a certain moment can be calculated as

where k represents the material wear coefficient, and the 
calculation equation is the same as Eq. (3). P represents the 
contact stress at the contact point. vs represents the relative 
sliding speed. dt is the infinitesimal contact time.

Normally, the rollers contact with the outer raceway due 
to the centrifugal force Fc. The force analysis of the roller 
is shown in Fig. 2. Considering that the rotation speed ω 
is small, the influence of centrifugal force can be ignored.
where Ni represents the normal pressure exerted by the inner 
raceway on the rollers. No represents the support force of the 
outer raceway to the roller. F1

k
 and F2

k
 represent the force of 

the bearing cage. fi and fo represent the friction between the 
inner and outer raceways and the rollers, respectively.

According to Hertz contact stress distribution in Fig. 1, 
the half-width a of the contact area is discretized into m units 
with a width of Δa = a∕m . Taking the contact between the 
inner raceway and the roller as an example, the calculation 
equation of the half width of the contact area a(i,g) is

(6)Δeg(1)(t) = �hg(1) ⋅ ng(1) ⋅ t

(7)Δeg(2)(t) = �hg(2) ⋅ ng(2) ⋅ t

(8)�h = ∫
t

0

kPvsdt

where W (i,g) is the contact load. �i , �g and Ei , Eg are Poisson 
ratio and elastic modulus of the inner ring and roller mate-
rial, respectively. ri and rg are the contact curvature radius of 
the inner raceway and the roller, respectively.

Considering that the effective meshing width is much 
smaller than the meshing length, when the contact area is 
discretized into units, the slight difference in the equivalent 
curvature radius between contact units is ignored. Thus, the 
normal contact stress of the k-th unit within the half width 
of each contact area can be obtained as

Let Ri be the diameter of the inner raceway, Ro the diame-
ter of the contact point of the outer raceway, Rg the diameter 
of the rollers, Ror the diameter of the bearing rollers’ center 
circle, � = Rg

/
Ror , and n the rotational speed of the inner 

ring, and let the angular velocity of the inner ring and the 
worm gear be kept the same. Then, the revolution angular 
velocity of rollers is calculated as

The rotation angular velocity of rollers is calculated as

Since the inner ring rotates and the outer ring remains 
stationary during the motion of the rolling bearing, there 
are two pairs of friction pairs in the bearing, so the wear 
value of the bearing includes three parts: the outer ring, 
the inner ring, and the rollers. The wear values of the inner 
and outer rings are determined by the single wear value 

(9)a(i,g) =

√√√√4W (i,g)

�

(
1 − �2

i

Ei

+
1 − �2

g

Eg

)(
rirg

ri + rg

)

(10)P
(i,g)

k
= Pmax ×

√√√√
1 −

(
Δa(i,g) × k − Δa(i,g)

/
2
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)

(11)�R
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=

1

2
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(12)�r
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=
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2Rg

�(1 + �)(1 − �)

Fig. 2  Force analysis of the cylindrical roller in the load-bearing area
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and the number of rolling contact at a contact point in one 
revolution cycle. The bearing including z rollers, when 
the inner ring of the bearing makes one rotation on its  
axis,

The number of rollers in contact with the outer raceway is

Therefore, the calculation equation of the wear quantity 
of the contact point on the inner raceway is obtained as

The calculation equation of the wear quantity of the con-
tact point on the outer raceway is obtained as

For the roller, its revolution speed is nR
g
=

1

2
n(1 − �) . 

Since the roller is in contact with both the inner and outer 
raceways during one rotation, the calculation equation of 
the wear quantity of the contact point on the roller can be 
obtained as

Finally, the total wear volume of the bearing Δer(t) is 
calculated as

3  Output kinematic precision model based 
on meta‑action structural decomposition

The performance of rotor-bearing systems is often presented 
as multiple indicators, and the essential factors that form and 
affect these indicators are the geometric characteristics of the 
components. Traditional precision modeling often leads to 
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imprecise model expression due to the large number of com-
ponents, and cannot consider all the error terms that affect the 
motion. The meta-action unit (MAU) is a structural unit com-
posed of the moving part and other related components that 
ensure its correct action. Meta-action theory finds a reasonable 
balance between the dependencies of components and systems. 
Most of the components that compose the meta-action unit are 
assembled in a fixed connection, and its movement is mainly 
accomplished by plane or cylindrical contact. To solve the 
relationship between indicators and geometric error items, the 
accumulation geometric error of intra-MAU and transmission 
kinematic precision of inter-MAU are calculated separately.

3.1  Meta‑action basic concepts

The meta-action unit refers to the most basic form of motion 
in mechanical products which can accomplish motion and 

power transmission. The most common forms of motion 
in mechanical systems are the rotary motion around the 

fixed axis and the linear motion along the mating surface. 
Therefore, these two motions are defined as rotation and 
translation MAU, respectively. Rotor-bearing systems are 
composed of rotation MAUs.

M represents the transmission torque, θ the output angu-
lar displacement, ω the angular velocity, and α the angular 
acceleration, as shown in Fig. 3.

Fig. 3  Rotation meta-action unit
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MAU is the smallest granularity to accomplish an action, 
and the most basic structural unit that transmits motion and 
power in mechanical products. As is shown in Fig. 4, MAU 
consists of a power input part, middle parts, fasteners, sup-
port parts, and a power output part. The power input part 
provides the power source or receives the output power of 
the upper MAU, such as gears and screws. The role of the 
middle parts is to transmit motion and ensure the correct 
position of the power input and output parts, such as con-
necting keys, rotating shafts, locating pins, bearings, and 
bushings. Fasteners play the role of connection, tightening, 
anti-loosening, and sealing, such as screws, springs, sealing 
rings, and end caps. The boxes and bases are generally taken 
as the support parts. The power output part is used as the end 
movement or power output.

3.2  Spatial pose of the power output part in MAU

The essence of MAU is to ensure that the power output 
part completes the designed motion. In order to achieve the 
expected motion trajectory, the position and orientation errors 
of the power output part in the X, Y, Z, α, β, and γ directions 
in the space coordinate system need to be within the specified 
error range, and the geometric errors of the power input and 

output parts. The spatial error of the power output part is the 
accumulation result of machining errors, assembly errors, and 
wear of the components in MAU. During the assembly process 
of MAU, the actual pose of the power output part is offset rela-
tive to the ideal pose in the X, Y, Z, α, β, and γ directions in the 
space coordinate system, as shown in Fig. 5.

The screw theory is used to calculate the accumulation 
error between the parts in MAU. When the arbitrary point in 
the space coordinate system rotates around a unit vector � by 
an angle � , its rotation matrix can be calculated according to 
Rodrigues’ rotation equation as

where the antisymmetric matrix 
⌢

�=

⎛⎜⎜⎝

0 −�z �y

�z 0 −�x

−�y �x 0

⎞⎟⎟⎠
.

The motion of the arbitrary rigid body in the space coor-
dinate system can be regarded as a spiral motion around a 
certain vector axis. The screw-exponential product form of 
its coordinate change is expressed as

(19)e𝜃
⌢
𝜔 = � +

⌢

� sin 𝜃 +
⌢

�
2

(1 − cos 𝜃)

(20)� =

(
e�

⌢
� (� − e�

⌢
�)(𝝎 × 𝝂) + �𝝎𝝎T𝝂

0 1

)

Fig. 4  Structural conceptual 
model of the meta-action unit

Fig. 5  Space pose formation process of the power output part
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where � represents the displacement vector moving along 
the vector axis.

The pose change of the power output part in the space 
coordinate system can be decomposed into the spiral motion 
around the X, Y, and Z directions, and further decomposed 
into the movement �i(i = x, y, z) and rotation �j(j = x, y, z) 
around the X, Y, and Z axes. Considering that the error 
amount is infinitesimal relative to the geometric size of 
the part, let sin �i = �i , cos �i = 1 and ignore the high-order 
infinitesimal. Then, according to Eq. (20), the pose change 
screw expression of the power output part is obtained as

The basic fit forms in rotor-bearing systems include plane 
fit and cylindrical fit, which are shown in Fig. 6.

As shown in Fig. 6a, the plane fit constrains three degrees 
of freedom in the X, β, and γ directions, so errors in these 
three directions are also generated. Assuming that all parts 
in MAU are rigid bodies, and their contact is a rigid fit, the 
spatial errors of plane fit during the assembly process are 
represented by homogeneous coordinate transformation as

where �x ≈
E

2
 , �y ≈

E

D
 , and �z ≈

E

D
 . D represents the diameter 

of the rotating shaft and E represents the error value.

(21)�o =
�

i = x, y, z

i = x, y, z

��i��j =

⎛
⎜⎜⎜⎝

1 −�z �y �x
�z 1 −�x �y
−�y �x 1 �z
0 0 0 1

⎞⎟⎟⎟⎠

(22)�o
p
=

⎛⎜⎜⎜⎝

1 −�z �y �x
�z 1 0 0

−�y 0 1 0

0 0 0 1

⎞⎟⎟⎟⎠

As is shown in Fig. 6b, the plane fit constrains four 
degrees of freedom in the Y, Z, β, and γ directions, so errors 
in these four directions are also generated. The spatial errors 
of cylindrical fit during the assembly process are represented 
by homogeneous coordinate transformation as

where �y ≈
E

2
 , �z ≈

E

2
 , �y ≈

E

L
 , and �z ≈

E

L
 . L represent the 

length of the rotating shaft and E represents the error value.
The spatial pose of the power output part is determined by 

the geometric errors �o
i
(i = 1, 2, …, n). The error expression 

model of the power output part after assembly is

3.3  Output precision of MAU chain

According to the principle of freedom degree, the function 
of a MAU chain is generally accomplished by series struc-
tures. The MAU chain transmits power from the input end to 
the output end in the motion transmission direction (Fig. 7). 
Few rotor systems with redundant structures or dual driving 
structures are beyond the scope of this paper.

There are several motion precision indicators, such as 
indexing precision, repositioning precision, and radial 
runout, which are used to characterize the performance of 
the motion transmitted by the MAU chain. These indicators 
are obtained through the accumulation of the error com-
ponents in each direction, which are caused by the spatial 
pose of the power output part and the geometric character-
istics of the power input and output part. In this paper, the 
indexing precision reliability is selected as the performance 
evaluation index. Indexing precision is determined by the 
tooth profile error, tooth thickness error, and eccentric-
ity errors of the power input and output parts. And the 
eccentricity errors include the assembly error component 
of the power output part in the direction perpendicular to 
the rotation axis.

The tooth profile error refers to the normal distance 
between the two tooth profile lines with the smallest distance 
within the tooth width effective range on a given section 
(Fig. 8). The tooth profile error is approximately equivalent 

(23)�o
c
=

⎛⎜⎜⎜⎝

1 −�z �y 0

�z 1 0 �y
−�y 0 1 �z
0 0 0 1

⎞
⎟⎟⎟⎠

(24)�m =

n∏
i

�o
i

Fig. 6  Two fit forms in rotor-bearing systems

Fig. 7  The structural model of 
the MAU chain
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to a harmonic function of the tooth-to-tooth and total tan-
gential composite errors.

Let the gear meshing frequency be ωm and the gear rotation 
frequency be ωs; then, the tooth profile error is calculated as

Let the initial tooth thickness error of the power input part 
in MAU be ΔeI

ig
 , the tooth thickness wear be ΔeI

g
(t) , the tooth 

profile deviation be ΔeI
s
 , and the eccentricity error caused by 

the accumulated assembly error be ΔeI
ip

 . Angular velocity is 
�I
m
 , pressure angle is α. And initial phase angle �I are random 

variables that obey uniform distribution in the interval [0, 2π] . 
Let the initial tooth thickness error of the power output 

part in MAU be ΔeO
ig

 , the tooth thickness wear be ΔeO
g
(t) , the 

tooth profile deviation be ΔeO
s
 , the eccentricity error caused 

by the accumulated assembly error be ΔeO
ip

 , and the eccen-
tricity error caused by wear be ΔeO

p
(t) . Angular velocity is �O

m
 , 

pressure angle is α. And initial phase angle �O are random 
variables that obey uniform distribution in the interval [0, 2π].

Then the indexing precision of MAU is obtained as

Assuming that the rotor-bearing system is composed of n 
MAUs, then the indexing precision of the rotor-bearing system 
can be obtained as

4  The construction of kinematic precision 
reliability evaluation model

Assuming that the allowable indexing accuracy of rotor-bearing 
systems is Δe∗ , the precision reliability function of rotor-bearing 
systems is built as

(25)Δes = 0.5Δf
�

ic
sin(2��mt) + 0.5ΔF

�

ic
sin(2��st)

(26)
Δei(t)=Δe

I
ig
+ ΔeI

g
(t) + ΔeI

s
+ ΔeI

ip
sin

(
2��I

m
t + �I + �

)
+ ΔeO

ig
+ ΔeO

g
(t)+

ΔeO
s
+
(
ΔeO

ip
+ ΔeO

p
(t)
)
sin

(
2��O

m
t + �O + �

)

(27)Δe(t) =

n∑
i

Δei(t)

This function includes both the initial random error variables 
and the time-variant wear quantity. Stochastic process discre-
tization is adopted to solve the time-variant reliability question. 
Firstly, the time-variant process in a certain time interval is 
discretized into many micro time units. When the discretiza-
tion degree reaches a certain level and the influence of time 
variables on the output value is ignored, the error in a micro 
time unit approximately obeys a Gaussian distribution. In this 
way, the time-variant reliability problem is transformed into 
the random variable problem in traditional reliability research.

Assuming that the running time of a rotor-bearing system 
is [0, T], the time interval is discretized into m equal micro 
time units with step length Δt = T

m
 . Then, the random process 

vector X(t) =
(
X1(t),X2(t), ...,Xn(t)

)
 with n time-variant wear 

parameters is discretized as

Thus, the kinematic precision reliability of rotor-bearing 
systems is expressed as [35]

where g
(
Xi,Y, ti

)
 is the random performance function 

discretized from the time-variant performance function 
g(X(t),Y, t) , and Y is an l-dimensional random vector inde-
pendent of X(t).

Considering the correlation between the discrete ran-
dom vectors, the parameters are converted into independent 
standard normal distributions before solving. Based on Nataf 
transform [36], the random vectors Xi and Y in Eq. (30) are 
converted into standard normal distribution vectors Ui and 
V as follows:

where Φ−1(⋅) is the cumulative distribution inverse function 
of the standard normal distribution, and FXi,k

(⋅) and FYp
(⋅) are 

the cumulative distribution functions of random vectors Xi 
and Y , respectively.

(28)g(X(t),Y, t) =

n∑
i

Δei(t) − Δe∗

(29)Xi =
[
X1

(
ti
)
,X2

(
ti
)
, ...,Xn

(
ti
)]T

, i = 1, 2, ...,m

(30)

Ps(T) = P

{
m⋂
i=1

[
g
(
Xi,Y, ti

)
> 0, ti =

(
i −

1

2

)
Δt,Δt =

T

m

]}

(31)Ui,k = Φ−1
(
FXi,k

(
Xi,k

))
, i = 1, 2, ...,m;k = 1, 2, ..., n

(32)Vp = Φ−1
(
FYp

(
Yp
))

, p = 1, 2, ..., l

Fig. 8  One-tooth meshing error of the worm wheel
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Let g∗
(
Ui,V, ti

)
 represent the transformed performance 

function of the random vectors Ui and V ; then, the most 
probable point of the function is solved as

Thus, the calculation equation of �i , the i-th index value in 
the reliability index vector � corresponding to g∗

(
Ui,V, ti

)
 , 

is obtained as

where ( Ui,V  ) is the most probable point of the i-th perfor-
mance function g∗

(
Ui,V, ti

)
.

Using the first-order Taylor series to expand the func-
tional function g∗

(
Ui,V, ti

)
 at the most probable point, the 

reliability calculation equation of the approximate perfor-
mance function is obtained as

where �U,i =
Ui

�i
 and �V ,i =

V

�i
 are the gradient vectors of the 

random vector Ui and V , respectively.
Let Li = �i + �U,iU

T
i
+ �V ,iV

T  . Since the transformed 
random vectors Ui and V are independent standard normal 
distribution vectors, Li obeys a normal distribution with the 
expected value �i = �i and the standard deviation �i = 1 . 
Considering that the time-variant wear quantity function is 
equivalent to a Gaussian process, the correlation coefficient 
between random variables is obtained as

(33)

{
min

‖‖‖
(
U

T
i
,V

T
)T‖‖‖

s.t.g∗
(
Ui,V, ti

)
= 0

(34)�i =
‖‖‖‖
(
Ui,V

)‖‖‖‖

(35)Ps(T) = P

{
m⋂
i=1

𝛽i + �U,iU
T
i
+ �V ,iV

T > 0

}

(36)

�i,j =
Cov

(
Li, Lj

)
�Li�Lj

= Cov
(
Li, Lj

)
=

m∑
k=1

�U,i,k�U,j,kCk

(
ti, tj

)
+ �T

V ,i
�V ,j

where Ck(⋅) represents the autocorrelation function of time-
variant parameter Xk(t).

Let the correlation coefficient matrix �=
[
�i,j

]
 . Thus, using 

the first-order second-moment method to solve Eq. (30), the 
precision reliability of the rotor-bearing system is obtained as

5  Case investigations

In this section, a numerical control rotary table is taken as an exam-
ple to elaborate the proposed method in detail, as shown in Fig. 9. 
The rotary table is composed of the gear MAU, the worm shaft 
MAU, and the worktable MAU. The gear MAU provides power 
input, the worm shaft MAU transmits motion and power, and the 
worktable MAU realizes the function of indexing and positioning.

As shown in Fig. 10, the wear of the worktable MAU 
mainly occurs from the worm wheel and bearing. The struc-
tural parameters of the worm wheel are listed in Table 1; the 
structural parameters of the bearing are listed in Table 2.

According to Eqs. (3)–(6), the time-variant wear (μm/h) of 
the worm wheel is calculated as

According to Eqs. (9)–(18), the time-variant wear (μm/h) 
of the bearing is calculated as

Generally, the initial random errors of the components are 
subject to normal distribution within the tolerance range. The 
distribution information of the random errors affecting spa-
tial pose errors of the power output part during the worktable 
MAU assembly process are listed in Table 3.

The values of each random error are obtained by Monte 
Carlo simulation method [37]. Substituting these values into 

(37)Ps(T) = Φm(�,�)

Δe(w)I
g

(t) = 0.034707t

Δe(w)O
p

(t) = 0.0005063t

Fig. 9  The numerical control rotary table
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Eqs. (22–24), the spatial pose errors of the power input part and 
the power output part are calculated. The fitting joint distribution 
of error components in each degree of freedom can be obtained 
with enough sampling times. The combined distribution of the 
eccentric error of the worm wheel and worktable is as follows:

The geometric characteristic error distribution of the worm 
wheel is listed in Table 4:

According to the model in Sect. 3, the indexing precision 
of the worktable MAU is calculated as

Similarly, the indexing precision of the worm shaft MAU 
is calculated as

The probability distributions of random variables in worm 
shaft MAU are listed in Table 5.

The indexing precision of the gear MAU is calculated as

Δe
(w)I

ip
∼ N

(
4.25, 2.252

)
,Δe

(w)O

ip
∼ N

(
28.25, 6.802

)

Δe(w)(t)=Δe
(w)I

ig
+ 0.5Δf

�(w)I

ic
sin(2��(w)t) + 0.5ΔF

�(w)I

ic
sin(2��(w)t)+

0.034707t + Δe
(w)I

ip
sin

(
2��(w)t + �(w)I + �(w)

)
+

(
Δe

(w)O

ip
+ 0.0005063t

)
sin

(
2��(w)t + �(w)O + �

)

Δe(s)(t)=Δe
(s)I

ig
+ 2.9264 × 10−5t + 0.5Δf

�(s)I

ic
sin(2��(s)t) + 0.5ΔF

�(s)I

ic
sin(2��(s)t)+

Δe
(s)I

ip
sin

(
2��(s)t + �(s)I + �(s)I

)
+ Δe

(s)O

ig
+ Δe

(s)O

is
+

(
Δe

(s)O

ip
+ 0.0167t

)
sin

(
2��(s)t + �(s)O + �(s)O

)

Δe(g)(t)=Δe
(g)O

ig
+ 5.8528 × 10−5t + 0.5Δf

�(g)O

ic
sin(2��(g)t) + 0.5ΔF

�(g)O

ic
sin(2��(g)t)+

+Δe
(g)O

ip
sin

(
2��(g)t + �(g)O + �(g)

)

The probability distributions of random variables in gear 
MAU are listed in Table 6.

The indexing precision of the rotary table is calculated as

Considering that the output precision of the servo motor is 
generally fixed, the allowable indexing precision value after 
subtracting the servo motor precision is Δe∗ = 80�m . The 
numerical analysis is carried out according to the method in 
Sect. 4. According to the simulation results shown in Fig. 11, 
when the NC rotary table has been operating for 930 h, its 
kinematic precision reliability begins to decrease. The con-
fidence interval is generally 95%; when the operation time 
reaches 1255 h, the kinematic precision reliability is reduced 
to 0.95. One thousand two hundred fifty-five hours is con-
sidered as the precision life limit of the rotary table, and 
maintenance is required. In comparison with the expected 
1200-h precision life, it can be determined that the precision 
design of the NC turntable is reasonable and the proposed 
evaluation model is effective. As demonstrated in the figure, 
the curve is gentle at the initial stage of kinematic precision 
reliability decline, and the precision reliability decreases 
significantly when reaching the precision limit. This is also 
identical with the actual operation situation. Consequently, 
it shows that this method can accurately predict the precision 
life of the rotary table in the design stage.

Further, we investigate the influence of different wear 
resistances of component materials on the kinematic preci-
sion life of the rotary table. From the calculation results, it 

Δe(t) = Δe(w)(t) + Δe(s)(t) + Δe(g)(t)

Fig. 10  The structure of the worktable MAU

Table 1  Structural parameters of the worm wheel

Item Value Item Value

Poisson ratio 0.33 Axial module 2.25
Elastic modulus 1.19 × 1011 N/m.2 Surface roughness 1.6 μm
Viscosity-pres-

sure coefficient 
of lubricant

1.6819 × 10−8 
m.2/N

Base radius 0.10125 m

Torque 180 N·m Face width 0.036 m
Speed 11.1 r/min Pressure angle 15°
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Table 2  Structural parameters of the bearing

Item Value Item Value

Poisson ratio of the inner raceway material 0.288 Poisson ratio of the roller material 0.3
Elastic modulus of the inner raceway material 2.06 × 1011 N/m.2 Elastic modulus of the roller material 2.08 × 1011 N/m.2

Poisson ratio of the outer raceway material 0.28 Length of the roller 14 mm
Elastic modulus of the outer raceway material 2.10 × 1011 N/m.2 Diameter of the center circle 153 mm
Friction torque 7 N·m Number of rollers 50

Table 3  Distribution information of each random error/μm

Mating type Error Tolerance range Distribution parameters

Bearing cylindrical fit with the spindle and box Diameter of the spindle [− 10,0] N(− 5,1.34.2)
Diameter of the box hole [0,100] N(50,12.25.2)

Bearing planar fit with the spindle Flatness of the spindle shoulder [0,5] N(2.5,0.86.2)
Spindle cylindrical fit with the worktable Diameter of the spindle [− 22,0] N(− 11,2.88.2)

Diameter of the worktable hole [0,35] N(17.5,4.52.2)
Concentricity of the spindle [0,10] N(5,2.12.2)

Worktable planar fit with the bearing Perpendicularity of the worktable [0,5] N(2.5,0.82.2)
Flatness of the worktable [0,5] N(2.5,0.82.2)

Worm wheel cylindrical fit with the spindle Diameter of the spindle [− 18,0] N(− 9,2.36.2)
Concentricity of the spindle [0,10] N(5,2.25.2)
Diameter of the worm wheel hole [0,25] N(12.5,3.1.2)

Worm wheel planar fit with the spindle Perpendicularity of the worm wheel face [0,10] N(5,2.25.2)

Table 4  The geometric 
characteristic error distribution 
of the worm wheel

Error Distribution type Distribution parameters

Tooth-to-tooth tangential composite error
Δf

�(w)I

ic
/μm

Rayleigh distribution R(1.2)

Total tangential composite error
ΔF

�(w)I

ic
/μm

Rayleigh distribution R(2.6)

Tooth thickness error caused by manufacturing
Δe

(w)I

ig
/μm

Normal distribution N(0,5.72.2)

Initial phase angle of eccentricity error
�(w)/rad

Uniform distribution U(0,2π)

Table 5  The probability distributions of random variables in worm shaft MAU

Error Distribution type Distribution parameters

Tooth-to-tooth tangential composite error of gear Δf
�(s)I

ic
/μm Rayleigh distribution R(11)

Total tangential composite error of gear ΔF
�(s)I

ic
/μm Rayleigh distribution R(13)

Tooth thickness error of gear caused by manufacturing Δe(s)I
ig

/μm Normal distribution N(0,2.15.2)

Eccentric error of gear caused by assembling Δe(s)I
ip

/μm Normal distribution N(4.5,1.28.2)

Profile form error of worm shaft Δe(s)O
is

/μm Rayleigh distribution R(3.55)

Tooth thickness error of worm shaft caused by manufacturing Δe(s)O
ig

/μm Normal distribution N(0,4.36.2)

Eccentric error of worm shaft caused by assembling Δe(s)O
ip

/μm Normal distribution N(1.75,1.04.2)

Initial phase angle of eccentricity error �(s)/rad Uniform distribution U(0,2π)
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Table 6  The probability 
distributions of random 
variables in gear MAU

Error Distribution type Distribution parameters

Tooth-to-tooth tangential composite error Δf
�(g)O

ic
/μm Rayleigh distribution R(10)

Total tangential composite error
ΔF

�(g)O

ic
/μm

Rayleigh distribution R(10)

Tooth thickness error caused by manufacturing Δe(g)O
ig

/μm Normal distribution N(0,1.32.2)

Eccentric error caused by assembling Δe(g)O
ip

/μm Normal distribution N(11.25,3.02.2)

Initial phase angle of eccentricity error �(g)/rad Uniform distribution U(0,2π)

Fig. 11  Kinematic precision 
reliability of the rotary table 
with multi-source wears and 
random errors

Fig. 12  Effects of the material 
type on the kinematic precision 
reliability
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indicates that the main wears locate on the worm wheel of 
the NC rotary table. Therefore, three different grades of cop-
per are selected for simulation. Based on the results shown 
in Fig. 12, when ZCuSn10P1 is selected as the worm wheel 
material, the precision life of the rotary table is 806 h. When 
ZCuAl10Fe3Mn2 is used, the precision life increases by 
449 h. When the worm wheel is made of the ZCuAl9Fe4N-
i4Mn2, the precision life is further improved to 1682 h. 
Combined with the conversion cost of each material and the 
maintenance cost of the rotary table, the material selection 
in the design stage can be realized.

Different tolerance ranges of components also have an 
impact on the kinematic precision reliability. In order to 
reveal the influence, the assembly errors of the worm wheel 
are taken as an example; different distribution ranges of the 
worm wheel eccentric error are selected for simulation. 
According to the results shown in Fig.  13, when 
Δe

(w)O

ip
∼ N

(
19.78, 6.802

)
 , the manufacturing error of the 

components is smaller, and the precision life of the rotary 
table increases to 1300 h. When Δe(w)O

ip
∼ N

(
36.73, 6.802

)
 , 

this indicates that the manufacturing quality is relatively 
poor and leads to a reduction in precision life to 1170 h. 
Thus, the tolerance optimization design can be realized 
according to the precision demand and cost.

6  Conclusions

In this paper, a practical and effective approach for kinematic 
precision reliability evaluation of rotor-bearing systems is 
proposed innovatively. This method has advantages in the 
quantity of error terms and the accuracy of assessment 
results, and can be provided with great application poten-
tial in precision design and maintenance strategy for rotor-
bearing systems. The study contains the following:

1. A comprehensive kinematic precision model describ-
ing the mapping relationship from component geometric 
errors to the system output precision is proposed based 
on the meta-action theory and screw theory, and it can 
overcome the limitations of the traditional methods in 
the number of error sources.

2. Both the initial errors conforming to specified random 
distributions and the time-dependent wears are contained 
in the precision reliability function of rotor-bearing sys-
tems; a kinematic precision reliability evaluation model 
with multiple error sources for rotor-bearing systems is 
provided by introducing the stochastic process discretiza-
tion method.

3. An example for a numerical control rotary table is inves-
tigated to demonstrate the effectiveness of this approach. 
The simulation results obtained by changing the param-
eters of error sources show that the proposed method is 
practical and helpful to increase the precision reliability 
of rotor-bearing systems in the design phase.

However, this method only calculates the wear errors 
among the time-variant error sources; some random errors 
affected by changeable environmental factors during the 
operation of rotor-bearing systems also need to be seri-
ously considered, such as thermal errors, deformation 
errors caused by residual stress release, and runout errors 
caused by fastener loosening. In addition, different lubrica-
tion states will affect the wear rate, and the fatigue wear is 
also an important constituent part in the wear of gears. The 
influence of the above-mentioned factors on the kinematic 
precision reliability of the systems will be comprehen-
sively taken into consideration in our future investigations.
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