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Abstract
Predicting chatter stability in a micro-milling operation is challenging since the experimental identification of the tool-tip 
dynamics is a complicated task. In micro-milling operations, in-process chatter monitoring strategies can use acoustic emis-
sion signals, which present an expressive rise during unstable cutting. Several authors propose different time and frequency 
domain metrics for chatter detection during micro-milling operations. Nevertheless, some of them cannot be exploited 
during cutting since they require long acquisition periods. This work proposes an in-process chatter detection method for 
micro-milling operation. A sliding window algorithm is responsible for extracting datasets from the acoustic emissions using 
optimal window and step packet sizes. Nine statistical-based features are derived from these datasets and used during train-
ing/testing phases of machine-learning classifiers. Once trained, machine learning classifiers can be used in-process chatter 
detection. The results assessed the trade-off between the number of features and the complexity of the classifier. On the one 
hand, a Perceptron-based classifier converged when trained and tested with the complete set of features. On the other hand, a 
support vector classifier achieved good accuracy values, false positive and negative rates, considering the two most relevant 
features. A classifier’s output is derived at every step; therefore, both proposals are suitable for in-process chatter detection.

Keywords  Micro-end milling · Machine Learning (ML) classifiers · Acoustic Emission (AE)

1  Introduction

Micro-milling manufacturing operations exploit reduced-
sized end mills (tool) at high rotational speeds for producing 
complex-shaped components. Consequently, the dynamics 

and the cutting coefficients vary due to the elastoplastic 
behavior of the workpiece’s material and the required high-
speed values [1]. In addition, chip thickness variation can 
occur for a specific combination of process parameters due 
to the modulations left on the surface during the succes-
sive cuts (as illustrated in Fig 1). This complex interaction 
yields large forces and displacements that can promote chat-
ter. This self-exciting vibration affects the surface finishing 
and reduces the tool life, affecting productivity.

Some authors have proposed modeling strategies aiming 
to monitor and predict this instability. For instance, Afazov 
et al. [2], and Jin and Altintas [3] proposed different chat-
ter modeling approaches considering nonlinearities in the 
micro-milling cutting forces and damping process, respec-
tively. Recently, Lu et al. [4] included the centrifugal forces 
and gyroscopic effects caused by the high-speed rotation of 
the micro-milling spindle in their modeling strategy, aiming 
for a more realistic representation of this phenomenon. Due 
to the variation of the dynamics, Graham et al. [5] presented 
two novel robust chatter stability models considering uncer-
tain parameters. Recently, Mamedov [6] revised different 
modeling techniques related to the micro-milling process. 
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One can conclude from the proposed models modeling the 
dynamics of a micro-milling process is a challenging task.

Therefore, model-free alternatives for monitoring and 
predicting the occurrence of chatter have also been inves-
tigated since a proper selection of cutting parameters can 
ensure a chatter-free cut [1]. These alternatives require the 
use of dedicated instrumentation as dynamometers, accel-
erometers, cameras, and microphones. Moreover, the moni-
toring and predicting strategies should adequately process 
the data acquired by these devices. For instance, Chen et al. 
[7] exploited Support Vector Machines (SVM) for detect-
ing chatter using image features captured by a camera. This 
method is highly influenced by noise; therefore, it requires 
extensive data treatment, which might jeopardize its in-
process applicability. The online chatter detection method 
proposed [8] involves the use of piezoelectric actuators to 
excite the system externally. Despite its accuracy, the use 
of external actuators is a significant drawback in this pro-
posal. Li et al. [9], and Yuan et al. [10] used accelerometers 
for measuring the vibration signals during the machining 
process. A shift of the dominant frequency components 
and a sharp vibration amplitude can be perceived during 
chatter occurrence. Due to these phenomena, Li et al. [9] 
used a dimensionless chatter indicator based on revolution 
root-mean-square (RMS) values for evaluating the stabil-
ity of the micro-milling process. Alternatively, Yuan et al. 
[10] proposed a novel chatter-detection method based on 
wavelet coherence functions for the same evaluation. The 
authors concluded that the wavelet coherence functions of 
two orthogonal acceleration signals are sensitive enough for 
chatter detection.

Acoustic emissions (AE), illustrated in Fig. 1, are the 
most common data during chatter detection in micro-milling 
operations. Inasaki [11] discussed the advantages of the AE 
sensor for tool condition monitoring highlighting its feasibil-
ity regarding sensor mounting and signal processing. These 
signals contain information about vibrations, tool-workpiece 

contact, surface integrity, and topography [12]. Other assets 
are that the required instrumentation is a non-invasive, low-
cost alternative [13]. Due to these characteristics, it does not 
modify the system dynamics.

In this way, time- and frequency-domain metrics using 
AE-signals aiming for chatter detection in micro-milling 
operations have been proposed. Filippov et al. [14] inves-
tigated AE and acceleration signals, concluding that the 
power spectrum signal is an appropriate metric for moni-
toring the fast-occurring changes in the cutting process sta-
bility. Ribeiro et al. [12] evaluated the time-domain metric 
proposed, namely chatter indicator, by Li et al. [9] using 
AE signals instead of acceleration data, concluding that 
this indicator is not directly applicable for this set of data. 
Therefore, Ribeiro et al. [12] proposed a metric based on the 
AE RMS values and evaluated it for two grain-sized materi-
als during chatter-free and chatter cuts. Figure 2 shows the 
micro-milling experiments. Unfortunately, neither discus-
sions nor evaluations of the required period for the data used 
to derive the metric are presented, jeopardizing any con-
clusion about the metric applicability for in-process chatter 
detection. Li et al. [15] claimed that fast Fourier transform 
and the time-domain RMS value of AE signals could be 
effectively used for detection of chatter in the robotic mill-
ing process. Still, no conclusions can be directly drawn for 
micro-milling operations.

Due to the complexity of the dynamics involved in the 
micro-milling process, machine learning algorithms can 
be helpful for chatter detection since they have been suc-
cessfully employed as classifiers. Inasaki [11] discusses 
the application of the artificial neural network (ANN) for 
identifying chatter in the machining processes using AE 
signals. Recently, Wang et al. [16] employed an unsuper-
vised machine learning-based method for chatter detection in 
milling operations using time- and frequency-domain met-
rics based on AE, acceleration, and bending signals. The 
authors concluded that the signal fractal dimension is the 
best time-domain feature for training an accurate classifier. 

Fig. 1   Illustration of successive cuts

Fig. 2   Micro-milling machining experiments [12]

7294 The International Journal of Advanced Manufacturing Technology (2022) 120:7293–7303



1 3

Regarding micro-milling operations, [17] used SVM for pre-
dicting the surface roughness, demonstrating the potential of 
these techniques. This work investigates the use of machine 
learning-based classifiers for chatter detection in micro-
milling operations. We can indicate the most appropriate 
features and classifiers for in-process detection through this 
investigation. These classifiers require strategies with low 
computation effort; therefore, only time-domain features 
are investigated. Moreover, an optimizer exploits a sliding 
window strategy to acquire time-domain signals, maximize 
the classifier accuracy, and minimize false positive/negative 
rates.

This article is organized as follows. Section 2 presents 
some concepts regarding the machine learning-based clas-
sifiers exploited in this work: the Perceptron and the SVM. 
Both classifiers are supervised learning algorithms requiring 
data from the different classes during the training phase. 
Section 3 details the proposed in-process chatter detection 
technique. The authors investigated the performance of the 
proposed classifiers for two different materials: COSAR 
and UFG (workpiece in Fig. 2). Figure 2 shows the experi-
mental setup, and details about this experimental campaign 
are given in Sect. 4. The results of this investigation are 
presented and discussed in Sect. 5. Finally, conclusions are 
drawn in Sect. 5.

2 � Machine learning‑based classifiers

Machine learning-based classifiers are capable of sepa-
rating different data classes. For the sake of illustration, 
Fig. 3 shows the separability of two datasets character-
ized by two features, F1 and F2 . While Fig. 3(a) illustrates 
linearly separable (LS) sets, Fig. 3(a) shows nonlinearly 
separable (NLS) ones. On the one hand, a straight line is 
capable of separating the datasets in Fig. 3(a), demonstrat-
ing that these are LS. LS can be classified by simple strat-
egies which require fewer computation resources. There 

are several techniques for linear separation such as linear 
programming, artificial neural networks (ANN), Fisher’s 
linear discriminant method, among others [18]. On the 
other hand, the datasets illustrated in Fig. 3(b) cannot be 
separated by a straight line since they are NLS. Therefore, 
these NLS require other strategies, such as Multi-Layer 
Perceptron and SVM-based classifiers.

The chatter detection methodology proposed in this 
work employs two machine learning-based classifiers: the 
Perceptron, an ANN-based classifier often used to classify 
LS, and the SVM, which presents a satisfactory perfor-
mance NLS.

In this work, nine features extracted from the data-
sets are used to compose input vector �i ∈ ℝ

N where N 
is the number of selected features used by the classifiers, 
i = 1… n , and n is the number of evaluated sets extracted 
by the sliding window algorithm. In other words, these 
vectors contain statistical features extracted from the AE 
signals acquired during the micro-milling of two work-
pieces with other sized-grain materials (COSAR and 
UFG).

2.1 � ANN‑based classifier: the perceptron

The use of less complex machine learning algorithms, 
such as Perceptron, is often possible to classify two 
classes of samples. The Perceptron is a supervised learn-
ing algorithm used in binary classifications. This learning 
algorithm converges in a finite number of iterations for 
LS. The user can explore this fact to verify the datasets’ 
linear separability since the Perceptron does not converge 
for NLS. Furthermore, the use of this supervised machine 
learning algorithm brings a computational advantage over 
the others because it is simple to be implemented [18].

The threshold function is used for classification to map 
the inputs �i ∈ ℝ

N to a single binary value, as illustrated 
in Fig. 4:

(1)f (�) =

{
1 if P�

T
⋅ �i + Pb > 0,

0 otherwise,

(a) (b)

Fig. 3   Class separability: a linearly separable and b nonlinearly sepa-
rable sets Fig. 4   Illustration of a Perceptron-based classifier
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where P� ∈ ℝ
N is the weighting vector, Pb is the bias.

2.2 � Support Vector Machine (SVM)

SVM consists of a supervised method of machine learning 
widely used in problems involving classification. This algo-
rithm aims to find a hyperplane, also known as hard-margin, 
that differentiates the data classes. For example, Fig. 5 shows 
two classes illustrated by circles and stars separated by a 
hyperplane. These classes are allocated in the plot according 
to two features, F1 and F2 . The points closest to the hyper-
plane are called support vectors. Mathematically, the hyper-
plane can be described as:

where � and b are the coefficients to be found during the 
training phase aiming the maximization of the distances 
between the hyperplane and the support vectors [19]. This 
distance is illustrated as the total margin in Fig. 5. This opti-
mization problem can be described as:

where the bias b and the scalar yi defines if the set �i belong 
to a specific class.

Some scenarios in the described algorithm cannot achieve 
satisfactory results. In these scenarios, the datasets are not 
separable by a hyperplane, and some techniques can obtain 
better results, namely: Kernel functions soft-margin SVM.

Kernel functions exploit an adimensional transformation 
for the input sets. Due to this transformation, the classes 

(2)�
T
⋅ �i + b = 0,

(3)
min
�, b

�
T
⋅ �i

subject to yi(�
T
⋅ �i + b) ≥ 1

became linearly separable. Several Kernel functions are 
proposed in the literature, for instance, linear, polynomial, 
RBF Kernel functions [20]. This work investigates the soft-
margin SVM considering the RBF Kernel function. Con-
sidering two input vectors, �a ∈ ℝ

n and �b ∈ ℝ
n , the RBF 

Kernel function is calculated by:

where the term � controls the flexibility of the function.
On the other hand, the soft-margin SVM modifies the 

maximum penalty value imposed for margins violations. 
This can be posed as a multiobjective problem aiming the 
maximization of the distances between the hyperplane and 
the support vectors, and the minimization of the misclas-
sification error. This error can be quantified by taking into 
account the distance between the misclassified points to the 
margins, di in Fig. 5(b). Using the weighted sum method, 
this multiobjective problem can be posed as:

where i = 1… n and the parameter C, denoted as the box 
constraint, controls the trade-off between maximizing the 
margin and minimizing the number of misclassified points. 
An optimization approach can be used for choosing an 
appropriate value of C. This work uses soft-margin SVM 
with RBF Kernel function.

3 � Methodology

This section describes our proposal for classifying the occur-
rence of chatter, an in-process chatter detection technique. 
Based on the inputs, � , machine learning-based classifiers 
should present a binary classification: chatter-free and chat-
ter cuts. In other words, there are only two possible outputs 
for these classifiers. Our proposal should be as simple as 
possible, enabling in-process classification; therefore, it uses 
only time-domain signals. Moreover, to keep the generality 
of the proposal, only statistical features are extracted from 
these signals. According to the literature, these features, 
described in Table 1, are usually correlated with the occur-
rence of chatter.

These features are derived for time intervals, denoted 
as windows, with w data points. The algorithm shifts this 
window by a step of s data points as illustrated in Fig. 6 
(arbitrary values are used in this illustration). This sliding 
window algorithm extracts n windows. The statistical fea-
tures are derived for each window yielding the input vectors, 
�j ∈ ℝ

n , where j = 1… 9 , as Table 1.

(4)K(�a, �b) = e−�‖�a−�b‖
2

.

(5)
min
�, b

�
T
⋅ �i + C

n∑

i=1

di

subject to yi(�
T
⋅ �i + b) ≥ 1 − di

Fig. 5   Illustration of a soft-margins SVM-based classifier
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Figure 7 shows the matrix of data used for the training of 
the classifiers considering arbitrary values. For each window 
(as shown in Fig. 6), nine features are extracted ( �j ∈ ℝ

n , 
where j = 1… 9 as described in Table 1). The output vector 
�

�

M is associated with binary classification, i.e., the output 
values can be 0 or 1, depending on the event the occurrence 
of chatter. The value of �

�

M
(i) = 0 for data acquired during 

a free-chatter cut and �
�

M
(i) = 1 for data acquired during a 

chatter cut. The index M is related to the workpiece’s mate-
rial. A classifier should be trained for each material.

In this work, two sets of features are used as inputs: 
Features’ Set 1 and Features’ Set 2. Features’ Set 1 takes 
into account all the extracted features described in Table 1. 
Therefore, �Set1

i
= [�1(i) �2(i) …�9(i)] . Features’ Set 2 only 

considers two selected features, named �∗
1
 and �∗

2
 . There-

fore, �Set2
i

= [�∗
1
(i) �∗

2
(i)] . Batista et al. [21] proposed that 

the selected features should be strongly correlated with the 
desired output of the classifier ( ��

�
 ) and also weakly related 

to each other. They can be numerically evaluated by:

where M is the material, j = 1… 9 , �M
j

 is the Pearson cor-
relation between the �j and expected classifier outputs �M

c
 , 

and �j =
∑9

k=1
�jk where �jk is the Pearson correlation 

between the features �j and �k . The features with the two 
highest zM

j
 values are selected to be used by the classifiers, 

the �∗
1
 and �∗

2
.

The performance of the classifiers can be improved by 
using optimal values for the window and step (see Fig. 6). 
The optimal values of the window ( w∗ ) and step ( s∗ ) are 
found by maximizing the function:

where lw and ls are the lower bounds and uw and us are the 
upper bounds of the decision variables. A Differential Evolu-
tion (DE) optimizer was applied to Eq. 7 and the results are 

(6)zM
j
= �

M
j
− �j

(7)
[w∗, s∗] = argmax (ACC − FNR − FPR)

wM
j
∈[lw,uw],sM

j
∈[ls,us]

Table 1   Selected Statistical Features

Number (j) Feature ( �j)

1 Coefficient of variation of signal amplitude
2 RMS value of signal amplitude
3 Highest absolute value
4 Standard deviation of signal amplitude
5 Harmonic Average of signal amplitude
6 Average of signal amplitude
7 Variance of signal amplitude
8 Range between highest and the

Lowest value of the signal amplitude
9 Entropy of the signal

Fig. 6   Feature extraction using the sliding window algorithm and 
illustration of the input vectors �j where j = 1… 9

Fig. 7   Set of points used for training and testing classifiers
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discussed in the next section. Moreover, Accuracy (ACC), 
False Positive Rate (FPR), and False Negative Rate (FNR) 
are derived as:

where TP and TN are the true positive and true negative 
classifications, while FP and FN are the false positive and 
true negative ones, i.e., the misclassifications. These indi-
cators are also used for evaluating the classifiers. If these 
performance indicators are satisfactory, we consider that the 
algorithms have converged.

The proposal considers the division of the data set, 
obtained by applying the sliding window algorithm, into 
a set that will be applied in the training phase and another 
that will be applied in the testing phase. For this purpose, 
the sets were randomly divided in the proportion 80-20%, 
respectively. In summary, Algorithm 1 shows the steps of 
the proposed technique considering both Features’ Sets.

4 � Experimental data

Ribeiro et al. [12] carried out an experimental campaign for 
acquiring AE data from a micro-milling operation during 
chatter-free and chatter cuts. Therefore, the reader can find 
more details about this campaign in [12]. Hereafter, the most 
relevant aspects of this campaign are summarized regarding 
the proposal of ML-based classifiers.

(8)ACC =
TP + TN

TP + TN + FP + FN
,

(9)FPR =
FP

FP + TN
, and

(10)FNR =
FN

FN + TP
,

Figure 2 depicts the experimental setup: a workpiece, an 
AE sensor, and the tool-holder. An adapted CNC milling 
machine Romi D800 with a position accuracy of 1 µm was 
responsible for the machining operations. These micro-milling 
operations exploited the sloth-cutting strategy. This cutting 
strategy removes material considering the entire tool diameter 

Fig. 8   Time domain AE signal from micro-milling of COSAR in 
a Ch1, b Ch2, c Ch3 and d Ch4
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as the cutting width; therefore, the process can manufacture 
micro-channels with the tool diameter width.

The authors of this work manufactured four micro-channels 
(Ch1, Ch2, Ch3, and Ch4) using a 1-mm-diameter carbide 
endmill tool with two flutes. The channels are 26 mm long and 
1 mm in width. The machining operator adjusted the cutting 

parameters to a 125 m/min cutting speed, 3µm/tooth feed, 100 
µm depth of cut, and 1.0 mm width of cut. The tool’s flexibil-
ity and runout were not considered in the analysis, given that 
they did not influence the cutting dynamic. The feed marks 
measured by the 3D confocal OLS 4100 Olympus microscope 
on the slot floor reached 3 µm/tooth as programmed in the 
machining center. The endmill-workpiece engagement with 
low chip load and depth of cut decreased significantly such 
dynamic effect during the micro-milling.

The dimensions of the workpieces were 8 ×26× 60 mm. We 
investigated two materials: (COSAR) biphasic low-carbon 
steel with a grain size of 11 µm, and (UFG) ultra-fined grain 
COSAR-60 with a grain size of 0.7 µm. Due to differences in 
their microstructure, the most relevant features for detecting 
chatter could be different, requiring the training of different 
classifiers for each material.

The AE signals were acquired during the machining pro-
cesses by a piezoelectric acoustic emission (AE) commercial 
sensor with a dynamic response up to 1 MHz (see Fig. 2). A 
high-pass filter conditioned these signals with a 250 Hz cutoff 
and an amplification of 35 dB. A NI PCI-6251 board at the rate 
of 1.25 MHz was responsible for acquiring this data. These sig-
nals acquired during the micro-milling operations are depicted 
in Figs. 8 and 9. The occurrence of chatter is indicated in these 
figures. Chatter-free cuts are illustrated with the green color, 
while chatter cuts with the red color, as illustrated in Fig. 7.

5 � Results

Both Perceptron-based and SVM-based classifiers should 
detect the occurrence of chatter ��

M
= 1 , where M indicates 

the COSAR ( M = COSAR ) and UFG ( M = UFG ). These 
classifiers were trained and tested using Matlab. The output 
of these classifiers should be null otherwise (chatter-free 
cut). The data used during the training and testing phases 
are shown in Figs. 8 and 9. The number of data points 
for chatter or chatter-free cuts and the different materials 
is described in Table 2. These data are divided randomly 
between the training and the testing sets. 80% of this data is 
used in the training phase, while 20% in the testing phase.

Two features sets are investigated in this work. Features’ 
Set 2 only considers two features, [�∗

1
�
∗
2
] . These features, 

described in Table 3, obtained the highest zM
j

 values given by 

Fig. 9   Time domain AE signal from micro-milling of UFG in a Ch1, 
b Ch2, c Ch3 and d Ch4

Table 2   Number of data points for each event (chatter or chatter-free 
cuts) and materials

Number of points

Material Chatter Non-Chatter

COSAR 2254322 1502101
UFG 1878602 1850139

7299The International Journal of Advanced Manufacturing Technology (2022) 120:7293–7303
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Eq. 6. This proposal obtained different relevant features for 
each material. Feature 2, the RMS value of signal amplitude, 
is the most relevant feature for both materials. This relevance 
indicates that this might be an important feature for other 
materials as well. The second most relevant features are 
Feature 3, the highest absolute value, and Feature 7, the 

variance of signal amplitude, for COSAR and UFG, 
respectively.

We derived Perceptron and SVM-based classifies 
according to the proposal given by Algorithm 1. An impor-
tant asset of this proposal is the use of optimal values for 
the sliding window algorithm. In this work, DE algorithm 

Table 3   Features with the 
highest zM

j
 values given by Eq. 6

Material Classifier �
∗
1

�
∗
2

COSAR Perceptron 2 3
SVM-RBF 2 3

UFG Perceptron 2 7
SVM-RBF 2 7

Table 4   Optimal values of step and window

�
∗
1

�
∗
2

�
∗
1
 .... �∗

9

Material Classifier w∗ s∗ w∗ s∗

COSAR Perceptron 3945 500 2558 500
SVM-RBF 3826 500 4717 500

UFG Perceptron 3033 500 2558 500
SVM-RBF 3740 500 3864 500

Fig. 10   ACC-FNR-FPR (Eq. 7) values for randomly selected step and 
window values

Table 5   Classifiers’ performance for both events and for COSAR 
material

Classifier Features’ 
Sets

Accuracy 
(%)

FPR (%) FNR (%) Time (ms)

Perceptron [�∗
1
�
∗
2
] 54.6 0 47.6 8.4

[�1 �2 …�9] 100.0 0 25.0 4.5
SVM-

RBF
[�∗

1
�
∗
2
] 99.1 0 0 344.9

[�1 �2 …�9] 99.8 1.2 1.0 394.3

Table 6   Classifiers’ performance for both events and for UFG mate-
rial

Classifier Features’ 
Sets

Accuracy 
(%)

FPR (%) FNR (%) Time (ms)

Perceptron [�∗
1
�
∗
2
] 80.2 0 28.6 18.3

[�1 �2 …�9] 100.0 0 0 6.8
SVM-

RBF
[�∗

1
�
∗
2
] 97.2 2.84 2.8 708.7

[�1 �2 …�9] 96.2 3.49 3.16 30.5

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
Feature 2

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Fe
at

ur
e 

3

Chatter-free
Chatter

Miclassified points

Fig. 11   Nonlinearly Separable Classes—COSAR Material

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85
Feature 2

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Fe
at

ur
e 

7

Chatter-free
Chatter

Misclassified point

Misclassified point

Fig. 12   Nonlinearly Separable Classes—UFG Material
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found the window ( w∗ ) and step ( s∗ ) values that maxi-
mize Eq. 7. Table 4 gives these optimal values regarding 
the exploited set of features and the classifier. Figure 10 
shows objective function values for 400 randomly selected 
decision variables. This figure demonstrates that a proper 
choice for window and step values can yield better classi-
fiers’ performance. These optimal values should be used 
during the data processing being an important assessment 
for the industrial viability of the proposal.

The classifiers’ performance is summarized in Tables 5 
and 6 for the COSAR and UFG, respectively.

Considering Features’ Set 2, [�∗
1
�
∗
2
] , Perceptron does not 

converge for both materials. This lack of convergence indi-
cates that these sets are not linearly separable. One observes 
this fact in Figs. 11 and 12. The chatter and chatter-free cuts’ 
classes and the straight line derived by the Perceptron are 
depicted in both figures. However, this straight line cannot 
separate the classes as some points cross the straight line 

Fig. 13   Illustration of the 
in-process chatter detection 
strategy: Perceptron-based 
classifier’s output for the Ch4 of 
COSAR material
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invading the other class area. However, perceptron converges 
for the Features’ Set 2, [[�1 �2 …�9]] , achieving an accu-
racy of 100 %.

SVM-based classifiers achieved good performance 
indexes for both Features’ Sets. For COSAR, the SVM 
parameters were C = 950.52 and � = 2937.64, and UFG, C 
= 26.96 and � = 8376.4.

These results are undoubtedly revealing since the two 
strategies performed adequately: 

1.	 One can spend some computational effort selecting rel-
evant features and exploit a more complex classifier: the 
SVM-based classifier; or

2.	 One can spend no computational effort selecting features 
and exploit a simpler classifier: the Perceptron-based 
classifier.

Figure 13 illustrates the in-process chatter detection strat-
egy using a Perceptron-based classifier’s output for the data 
acquired during the cutting process of Ch4 of the COSAR 
workpiece. A classifier’s output is expected at every step; 
therefore, the proposal is suitable for in-process chatter 
detection. AE data have been acquired during this cutting 
process during chatter and chatter-free cuts. Two images of 
the surface topography considering both cutting conditions 
are also shown in Fig. 13, demonstrating the occurrence of 
chatter during the first part of the process.

A significant drawback is a necessity of acquiring data 
for the training phase. However, it is important to highlight 
that the classifiers were trained with a small dataset, usually 
available in industrial environments.

6 � Conclusions

In this work, we investigated the use of machine learning-
based classifiers for chatter detection in micro-milling opera-
tions using acoustic emission signals. Data from chatter and 
chatter-free cuts were acquired during the micro-milling of two 
workpieces of COSAR and UFG using a sloth-cutting strategy.

These data are processed using a sliding window strategy 
that divides the complete set into several data packets. Statisti-
cal features are derived from these packets. Two case studies are 
investigated: (1) a features’ set composed of nine features and 
(2) a features’ set composed of the two most relevant features. 
The most relevant features should be strongly correlated with the 
desired output of the classifier. Moreover, optimal parameters 
for the sliding window strategy are found using a DE optimizer.

These data are used for training and testing two super-
vised machine learning classifiers: a Perceptron-based clas-
sifier and an SVM-based classifier. The former converges if 
the classes are linearly separable, while the latter considers 
misclassifications.

Through this investigation, one can conclude that the RMS 
value of the amplitude signal can be a relevant feature for 
detecting chatter. Nevertheless, this choice is dependent on 
the material under investigation. The time-domain signals 
should be acquired and processed according to the optimal 
window and step values for maximizing the classifiers’ per-
formance. A classifier’s output is derived at every step; there-
fore, the proposal is suitable for in-process chatter detection.

A trade-off between the number of features and the com-
plexity of the classifiers was identified. Perceptron-based 
classifiers converged for both materials using the nine pro-
posed statistical features. While SVM-based classifiers can 
adequately detect chatter using only the two most relevant 
features or the larger set of features.

This work exploits supervised machine learning clas-
sifiers using time-domain data. However, the training 
phase of these classifiers requires AE data from chatter 
and chatter-free cuts, which might cause undesired dis-
ruption. Therefore, unsupervised methods should also be 
investigated since they only need AE data from chatter-
free cuts. Thus, the use of unsupervised classifiers could 
enhance the usability of the proposal. Moreover, industrial 
data, described in time and frequency domain, should also 
be exploited, promoting other ways of detecting chatter.
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