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Abstract
Until now, most integrated geometric error models of five-axis machine tools ignore the influence of the backlash, which does 
affect the machining accuracy for complex curved workpieces. This paper proposes a piecewise geometric error modeling 
and compensation method to reduce the influence from the backlash and other error sources in five-axis machine tools, only 
based on the measurement of distance variation in the tool end. By utilizing the local product of exponentials (POE) formula, 
kinematic errors are lumped into initial poses’ deviations, and joint twists retain their nominal values. In this way, extra 
orthogonalization and normalization of joint twists are not required throughout the identification process, thus promoting 
the model’s accuracy. In addition, the damping factor is introduced in the identification process to cater for the kinematic 
error model with redundant parameters, which guarantees the robustness of the least square method in the presence of noisy 
data. To improve the accuracy of bidirectional motion of the tilting table, the kinematic error model is further revised to 
be piecewise, where the gear backlash is naturally integrated into deviations of initial poses, depending on the rotational 
direction. The simulation and experimental results demonstrate the effectiveness and superiority of the proposed method.
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1 Introduction

The five-axis machine tool, which includes two rotational 
axes on top of its three-axis counterpart [1], has become 
core equipment for processing parts with complex curved 
surface  [2]. However, due to the existence of geometric 
errors, the machining accuracy is greatly reduced [3, 4]. In 
general, geometric errors can be classified as position inde-
pendent geometric errors (PIGEs) and position dependent 
geometric errors (PDGEs) [5]. PIGEs are caused by inaccu-
rate assembly of machine parts, such as joint misalignments 
and angular offset, which can be approximately treated as 
constants. PDGEs are mainly from imperfect manufacturing 
of machine parts, such as bending of guideways and backlash 
of gears [6]. PIGEs are the main factors affecting the quality 

of machining parts [7], while PDGEs caused by gear back-
lash degrade the accuracy of reciprocating motion of machine 
tools significantly [8]. Hence, modeling and compensating 
geometric errors are essential to improve machining accuracy 
of five-axis machine tools [9–11].

Until now, various methods have been developed to model 
the geometric error, which include homogeneous transfor-
mation matrix (HTM) method [12, 13], Denavit-Hartenberg 
(D-H) convention [14] and screw theory [15]. Though HTM 
method is widely used in the calibration of machine tools, 
kinematic error terms need to be measured by the laser inter-
ferometry system [16], which is time-consuming. Meanwhile, 
the geometric error model obtained by D-H convention is not 
continuous when axes of consecutive joints are nearly parallel. 
In recent decades, the global product of exponentials (POE) 
formula based on the screw theory is used to model geometric 
errors of five-axis machine tools [17, 18]. It describes the coor-
dinates of joint twists in a global frame. However, additional 
errors are induced during the orthogonalization and normaliza-
tion of joint twists throughout the identification process. Such 
errors may be reduced by utilizing the global POE based on 
the common perpendicular line transformation [19], which, 
however, complicates the identification procedures [20].
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Unlike global POE formula, the local POE formula 
is to express the coordinates of joint twists in the local 
frames [21, 22]. As the kinematics errors are lumped into 
deviations of initial poses of local frames, the joint twists 
are set at their nominal values throughout identification pro-
cess. This not only greatly simplifies the calibration model, 
but also avoids above orthogonalization and normalization 
process [23, 24]. As it is difficult to obtain the tool pose for 
five-axis machine tool, the geometric error model based on 
the pose information as in [21] is not directly applicable. In 
contrast, the distance variation is easy to be measured by the 
double ballbar [18, 19, 25]. Hence, it is worthy to deduce 
the error model based on local POE formula related to the 
distance information. General methods include Extended 
Kalman Filter (EKF) algorithm [26] and the Gauss-Newton 
iteration method [18, 19, 27] are proposed to identify the 
geometric error parameters [20]. However, complex iden-
tification process limits the application of EKF method. If 
Gauss-Newton iteration method is used for parameter iden-
tification, they may not converge in the presence of large 
noise due to the existence of redundant parameters in the 
kinematic error model. Therefore, it is still a challenge to 
propose a concise and robust identification method for the 
geometric error.

The geometric error can be effectively compensated by 
utilizing the inverse kinematics of the calibrated model. 
Analytical models are deduced for compensating PIGEs [18] 
or both PIGEs and PDGEs [28] based on global POE for-
mula. Such approaches may bring calculation error, as the 
geometric premise of Paden-Kahan subproblems may not be 
applicable for actual machine tools. Hence, linearized mod-
els that regard geometric errors and joint displacement incre-
ments as linear are developed for compensating PIGEs [29, 
30]. Besides PIGEs, PDGEs have also been taken into 
consideration [31]. One typical PDGE is the error caused 
by gear backlash [32]. The gear backlash may lead to the 
steady-state offset, affecting the machining accuracy of com-
plex curved surface in reciprocating motion [33]. Such error 
can be effectively reduced by using high-precision transmis-
sion parts, which, however, rises the cost sharply [34]. The 
mathematical model of the backlash has been built to reveal 
its nonlinear behavior [35]. However, it is time-consuming 
to measure such error existing in every axis of the machine 
tools by laser interferometers [36], and the fitting process 
for such a data-driven model is tedious too [37]. Thus, it is 
desirable to compensate the PDGEs induced by backlash 
without prior modeling process.

In this paper, a geometric error model of five-axis machine 
tools is established based on the local POE formula, where 
only the distance measurement from the workpiece to the 
tool is utilized. Compared with the recent modeling methods 
based on the global POE formula [17, 18], orthogonalization 
and normalization of joint twists are avoided throughout the 

identification process by assuming joint twists retain their 
nominal values. This gives a more accurate model. To prevent 
the divergence of redundant kinematic error parameters in the 
presence of large measurement noise as mentioned in [22], an 
iterative least squares method with damping factor is proposed. 
In addition, to compensate the error caused by gear backlash 
without tedious nonlinear modeling process as in  [35], a 
piecewise kinematic error compensation method is proposed 
accordingly to the motion directions of rotational axes. This 
also improves the efficiency of backlash-induced error com-
pensation compared with such error is compensated by using 
the laser interferometer in [36]. The simulation and experiments 
prove the effectiveness and superiority of the proposed method.

The description of various symbols used in this work is 
shown in Table 1.

2  Kinematics model based on the local POE 
formula

As the prerequisite of subsequent model-based compensation 
of kinematic error, the kinematics model of serial five-axis 
machine tools based on the local POE formula is introduced 
in this section.

2.1  Introduction of the local POE formula

Consider an n-link series chain system, two adjacent links i − 1 
and i are connected by joint i as shown in Fig. 1, such a combi-
nation is called dyad. After the joint i rotates the angle �i , the 
position and orientation of the local frame {i} with respect to 
(w.r.t.) the local frame {i − 1} is expressed as

where Ti−1,i(0) describes the initial pose of frame {i} w.r.t. 
frame {i − 1} , 𝜉i represents the twist of joint i expressed in 
frame {i} , and �i is the ith joint displacement.

According to the definition of matrix logarithm, there exists 
at least an element of ĥ ∈ se(3) for a given T ∈ SE(3) such that 
Ti−1,i(0) = eĥi , where SE(3) is a special Euclidean group, and 
se(3) is the Lie algebra of SE(3). Hence, Ti−1,i(0) is written as

where Ri−1,i(0) and pi−1,i(0) are the initial orientation and 
position of frame {i} w.r.t frame {i − 1} , eĥi is the initial pose 
of frame {i} w.r.t frame {i − 1} . Remarkably, the initial pose 
of frame {i − 1} w.r.t. frame {i} is written as Ti,i−1(0) = eĥi−1.

The element of se(3) is represented by a general matrix as

(1)Ti−1,i(𝜃i) = Ti−1,i(0)e
𝜉i𝜃i ,

(2)Ti−1,i(0) =

[
Ri−1,i(0) pi−1,i(0)

0 1

]
= eĥi ,

(3)𝜉 =

[
�̂� v

0 0

]
∈ R4×4,
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where the axis of rotation is � = [�x,�y,�z]
T ∈ R3×1 , 

�̂� ∈ se(3) is denoted as the skew-symmetric matrix of � , 
v = [vx, vy, vz]

T = −� × q ∈ R3×1 demonstrates the spatial 
position of the axis, q ∈ R3×1 is an arbitrary point on the 
axis. 𝜉 can be transformed into � by the operator ∨ , and the 
inverse operator ∧ can change � into 𝜉 , as given in Appen-
dix Joint twist. For the twist � = (v;�) of a revolute joint, 
‖�‖=1,�Tv = 0 . For the twist � = (v;0) of a prismatic joint, 
� = 0, ‖v‖ = 1.

2.2  Nominal forward kinematics model

The nominal forward kinematics model is utilized to 
obtain the tool pose � in workpiece frame {w} when the 
joint displacements � in the base frame {b} are given. As 
shown in Fig. 2, the AC table-tilting five-axis machine tool 

is selected as the example to demonstrate the modeling 
process based on the local POE formula. Remarkably, the 
following modeling method is also applicable to other 
types of machine tools.

For our 5-axis machine tool, there are 2 joints in the work-
piece side and 3 joints in the tool side. By setting the machine 
frame {m} as the base frame {b} , two open kinematic chains 
are formed as shown in Fig. 3. The prerequisite of using the 
local POE formula is to define the local frames. One of the 
advantages of the local POE formula is that local frames can 
be arbitrarily defined in their respective links. Therefore, to 
make the initial poses of adjacent local frames as simple as 
possible, the conventions that set the local frames of the AC 
table-tilting five-axis machine tools are given as

• The origin of frame {b} is fixed at the tool tip, and the 
origins of frame {w} , the tool frame {t} and frames {x} , 
{y} and {z} are set to coincide with the origin of frame 
{b} . The origins of local frames {a} and {c} in two rota-
tional axes are set to coincide with their intersection. 
This gives initial positions of adjacent local frames.

• The orientations of other local frames are set to be the 
same as that of frame {b} . This gives initial orientations 
of adjacent local frames.

To match the theory in Sect. 2.1, the index of frame {b} is 
denoted as 0. The indexes of frames in the open chain that is 
from frame {b} to frame {t} are positive, otherwise, the indexes 
of frames are negative. Therefore, as shown in Fig. 3, we can 
denote i ∈ {−3,−2,−1, 0, 1, 2, 3, 4} ≜ {w, c, a, b, y, x, z, t} . In 
this way, the kinematics model of frame {t} w.r.t. frame {b} 
is given as

Table 1  Nomenclature

Symbols Description

Tb,w,Tb,t kinematics model of frame {w} and frame {t} with respect to frame {b}
Tw,t,T

c
w,t
,Ta

w,t
nominal, calibrated and actual kinematics models of frame {t} with respect to frame {w}

� ,�c nominal and calibrated tool pose
p, r nominal position and orientation of the tool
� , h joint twists, initial poses
�, �c, �a nominal, calibrated and actual joint displacements
��, �h, �� deviations of �, h and �
pw, pt positions of the tool in the workpiece frame and the tool frame
rw, rt orientations of the tool in the workpiece frame and the tool frame
y, yp, yd pose error, position error and distance variation of the tool between nominal and actual models
J, Jp, Jd Jacobian matrix in terms of initial poses related to y, yp and yd
yc, yc

p
pose error, position error of the tool between nominal and calibrated models

Jc, Jc
p

Jacobian matrix in terms of joint displacements related to yc and yc
p

dp, dr mean position error and mean orientation error of the tool
� the parameter vector of PIGEs
� the increment of joint displacements

Fig. 1  Pose relationship between any two adjacent joints
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Similarly, the kinematics model of frame {w} w.r.t. frame 
{b} is given by

(4)
Tb,t = T0,1(0)e

𝜉y𝜃yT1,2(0)e
𝜉x𝜃xT2,3(0)e

𝜉z𝜃zT3,4(0)

= eĥye𝜉y𝜃yeĥxe𝜉x𝜃x eĥze𝜉z𝜃z eĥt ,

(5)
Tb,w = T0,−1(0)e

𝜉a𝜃aT−1,−2(0)e
𝜉c𝜃cT−2,−3(0)

= eĥae𝜉a𝜃aeĥce𝜉c𝜃ceĥw .

Combining (4) and (5), the nominal forward kinematics 
model of AC table-tilting five-axis machine tool is expressed 
as

where � = (�x, �y, �z, �a, �c) are denoted as the joint displace-
ments in frame {b} . The twist coordinates � and the vectors 
of the initial pose hj are given by

where j ∈ {w, c, a, y, x, z, t}.
Hence, the tool pose � = [pw;rw] in frame {w} is

where pw ∈ R3×1 , rw ∈ R3×1 are denoted as the position 
and the orientation of the tool in frame {w} , respectively. 
pt = [0, 0, 0]T is the position of the tool in frame {t} , and 
rt = [0, 0, 1]T is the orientation of the tool in frame {t}.

2.3  Actual kinematics for the five‑axis machine tool

Due to the existence of kinematic errors, the tool poses can-
not be accurately obtained by the nominal kinematics model 
with the nominal joint displacements. The errors may due to 
the deviations of joint twists, initial poses and joint displace-
ments [21], such deviations are denoted as �� , �h , and �� , 
respectively. The actual kinematics of AC table-tilting five-
axis machine tool is expressed as Ta

w,t
= f (�a, ha, �a) , where 

(∙)a denotes the actual value of the respective variable (∙).

2.3.1  Actual joint twists �a

To analyze factors of PIGEs in joint twists, the following 
procedures are proposed in [38] to construct five actual axes 
�a , where � ∈ {x, y, z, a, c}.

Firstly, as the direction of xa-axis is set to be coincided with 
the direction of the x-axis, there is no error in xa-axis. Whereas 
the ya-axis is not perpendicularity to the x-axis, there is an 
angular error �zy around z in the plane determined by x- and 
y-axes. For za-axis, there are two angular errors include �xz 
around x-axis and �yz around y-axis.

Additionally, aa - or ca-axes has two angular error compo-
nents. As the aa-axis can rotate �ya around y-axis and rotate �za 
around z-axis, the angular errors exists for the ca-axis including 
�xc around x-axis and �yc around y-axis. Nominally, the a-axis 
and the c-axis intersect perpendicularly. However, the aa-axis 
and the ca-axis may not intersect due to the installation error. 

(6)
Tw,t(𝜃) = e−ĥwe−𝜉c𝜃ce−ĥc e−𝜉a𝜃ae−ĥa eĥye𝜉y𝜃yeĥxe𝜉x𝜃x eĥz e𝜉z𝜃z eĥt ,

�x = (1, 0, 0, 0, 0, 0)T , �y = (0, 1, 0, 0, 0, 0)T ,

�z = (0, 0, 1, 0, 0, 0)T , �a = (0, 0, 0, 1, 0, 0)T ,

�c = (0, 0, 0, 0, 0, 1)T , hj = (xj, yj, zj, 0, 0, 0)
T ,

(7)
[
pw rw
1 0

]
= Tw,t(�)

[
pt rt
1 0

]
,

Fig. 2  3D model of AC table-tilting five-axis machine tool

{ }

WorkpieceTool

ℎ

ℎ

ℎ
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ℎ

ℎ

Kinematics
chain

{ }
{ }

{ }

{ }

{ }
{ }

{ }

ℎ

∈ {−3,−2,−1, 0, 1, 2, 3, 4} ≜ { , , , , , , , }

Fig. 3  Kinematics chain of AC table-tilting five-axis machine tool
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Taking the aa-axis as the reference, the ca-axis has a distance 
deviation �yc along the direction of y-axis.

Remarkably, ‖�� + ���‖ = 1 , and (�� + ���)
T (v�+

�v�) = 0 for revolute joints. ‖v� + �v�‖ = 1 for the prismatic 
joints [19]. Therefore, the actual twists of revolute and pris-
matic joints �a

�
= (va

�
;�a

�
) are constructed as

2.3.2  Actual initial poses ha and joint displacements �a

The initial pose matrix in the entire kinematic chain as shown 
in Fig.  3 is eĥj . Denote �hj ≜ (�xj, �yj, �zj, ��j, ��j, ��j)

T 
to be the deviations of the initial pose, so the actual initial 
pose matrix is expressed as eĥ

a
j = eĥj e

̂𝛿hj . In addition, denote 
�� ≜ (Δ�x,Δ�y,Δ�z,Δ�a,Δ�c) to be the deviation between 
the nominal and actual joint displacements, so the actual joint 
displacements are given as �a = � + ��.

3  Modeling and parameter identification 
of kinematic errors

3.1  Basic ideas

By differentiating the forward kinematic model T = f (�, h, �) , 
and right-multiplying T−1 , the model of kinematic errors is 
obtained as

For such an error model, there are 13 error parameters in 
the ith dyad, that is, 6 in �i , 6 in hi , and 1 in �i . That makes 
the parameters in the kinematic error model be highly redun-
dant, which increases the complexity of the error model in 
the identification process. Since the error of a screw can 
be expressed as the error in terms of its initial pose by the 
adjoint transformation [39], as given in Appendix Adjoint 
transformation. Hence, to simplify (8), kinematic error terms 
in the ith dyad are assumed to be lumped into hi , while �i and 
�i retain their nominal values during the entire calibration 
process [21]. This yields,

�a
x
= (1, 0, 0, 0, 0, 0)T ,

�a
y
= (− sin �zy, cos �zy, 0, 0, 0, 0)

T ,

�a
z
= (sin �yz,− sin �xz cos �yz, cos �xz cos �yz, 0, 0, 0)

T ,

�a
a
= (0, 0, 0, cos �ya cos �za, sin �za,− sin �ya cos �za)

T ,

�a
c
= (�yc cos �xc cos �yc, 0,−�yc sin �yc, sin �yc,

− sin �xc cos �yc, cos �xc cos �yc)
T .

(8)�T ⋅ T−1 =

(
�f

��
�� +

�f

�h
�h +

�f

��
��

)
T−1.

(9)�T ⋅ T−1 =
�f

�h
�h ⋅ T−1,

The purpose of parameter identification is to find a set of 
suitable parameters �h to minimize the difference between 
the estimated end pose from the calibrated model and the 
actual end pose by measurement, i.e.

3.2  Modeling of kinematic errors

The kinematic error model is derived based on the forward 
kinematics model of the AC table-tilting five-axis machine 
tool in (6).

3.2.1  Kinematic error model based on pose error

As the propose of error modeling is to identify param-
eters of kinematic errors that are lumped into the initial 
pose hj , we can take the partial derivative of (6) w.r.t. ĥj , 
∀j ∈ {w, c, a, y, x, z, t} , yielding

By multiplying of both sides of (11) by T−1
w,t

 , the kinematic 
error model of the five-axis machine tool is obtained as

Meanwhile, according to the matrix logarithm formula 
defined on SE(3),

where Tw,t is the nominal kinematics model, and Ta
w,t

 is the 
actual kinematics model of the five-axis machine tool. In 
this way, (12) is given in the form of matrix multiplication as

(10)min
‖‖‖‖�T ⋅ T−1 −

�f

�h
�h ⋅ T−1

‖‖‖‖
2

.

(11)

𝛿Tw,t = − e−ĥw𝛿ĥwe
−𝜉c𝜃ce−ĥc e−𝜉a𝜃ae−ĥa eĥye𝜉y𝜃y

eĥxe𝜉x𝜃x eĥz e𝜉z𝜃z eĥt − e−ĥwe−𝜉c𝜃ce−ĥc𝛿ĥc

e−𝜉a𝜃ae−ĥa eĥye𝜉y𝜃yeĥxe𝜉x𝜃x eĥze𝜉z𝜃z eĥt+

⋯ + e−ĥwe−𝜉c𝜃ce−ĥc e−𝜉a𝜃ae−ĥa eĥye𝜉y𝜃y

eĥxe𝜉x𝜃x eĥz e𝜉z𝜃z eĥt𝛿ĥt,

(12)

(
𝛿Tw,tT

−1
w,t

)∨

= [−e−ĥw𝛿ĥwe
ĥw]∨ − [e−ĥwe−𝜉c𝜃c

e−ĥc𝛿ĥce
ĥce𝜉c𝜃ceĥw ]∨ +⋯+

[e−ĥwe−𝜉c𝜃ce−ĥc ⋯ eĥt𝛿ĥte
−ĥt

⋯ eĥce𝜉c𝜃ceĥw]∨

= − Ade−ĥw 𝛿hw − Ade−ĥw e−𝜉c𝜃c e−ĥc

𝛿hc +⋯ + Ade−ĥw e−𝜉c𝜃c e−ĥc⋯eĥt

𝛿ht.

(13)
(
�Tw,tT

−1
w,t

)∨

= log
(
Ta
w,t
T−1
w,t

)∨

,
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w h e r e  gw = e−ĥw ;gc = e−ĥwe−𝜉c𝜃ce−ĥc ;gt = e−ĥwe−𝜉c𝜃ce−ĥc 
⋯ e

ĥ
t . (14) is indeed a linear equation as

where y = log
(
Ta
w,t
T−1
w,t

)∨

∈ R6×1 is the pose error vector of 
the tool, J = [−Adgw ,−Adgc ,⋯ ,Adgt ] ∈ R6×42 is the Jaco-
bian matrix in terms of initial poses related to y, 
� =

[
�hT

w
, �hT

c
,⋯ , �hT

t

]T
∈ R42×1 is the parameter vector of 

PIGEs.

3.2.2  Kinematic error model based on position error

Due to the insufficient resolution and limited range of orien-
tation measurement, it is difficult to obtain the actual pose 
of the tool by the laser tracker. By contrast, the double ball-
bar is frequently used to obtain the dynamic accuracy of 
machine tools, and it measures the distance variation along 
its axial direction. Therefore, the error model in (15) can 
be converted to its counterpart solely based on the distance 
variation. In the following part, the kinematic error model 
based on the position information is firstly derived, and it 
is further converted to the model solely based on distance 
variation.

According to (7), the transformation from pw to pt is 
given by

where (∙̄) = [(∙);1] . In addition, by differentiating both sides 
of (16),

where 𝛿(∙̄) = [𝛿(∙);0].
Since the tool frame is fixed at the tool tip, pt is the 

position of the tool tip in frame {t} , i.e. pt = [0, 0, 0]T  , 
�pt = [0, 0, 0]T , and (17) is obtained as

As 
(
�Tw,tT

−1
w,t

)
∈ se(3) , it can be written as a twist 

𝜉 =
[
�̂� v; 0 0

]
 . Remarkably, 

(
�Tw,tT

−1
w,t

)∨

= � = [�;v] . 
So (18) is rewritten as

(14)
log

(
Ta
w,t
T−1
w,t

)∨

= [−Adgw ,−Adgc ,⋯ ,Adgt ]

⋅

[
�hT

w
, �hT

c
,⋯ , �hT

t

]T
,

(15)y = J ⋅ �,

(16)p̄w = Tw,tp̄t,

(17)𝛿p̄w = 𝛿Tw,tp̄t + Tw,t𝛿p̄t,

(18)
𝛿p̄w = 𝛿Tw,tp̄t =

(
𝛿Tw,tT

−1
w,t

)
Tw,tp̄t

=

(
𝛿Tw,tT

−1
w,t

)
p̄w.

(19)𝛿p̄w = 𝜉p̄w =

[[
I3 − p̂w

]
𝜉

0

]
.

Combining (13)~(19), the position-based error model is 
given as

where yp = �pw = pa
w
− pw ∈ R3×1 is the position error of the 

tool, pa
w
 and pw are the actual and nominal positions of the 

tool in frame {w} , Jp =
[
I3 −p̂w

]
⋅ J ∈ R3×42 is the Jacobian 

matrix in terms of initial poses related to yp.

3.2.3  Kinematic error model based on distance variation

To accommodate the distance measurement, the position 
error of the tool should finally be projected along the axial 
direction of the double ballbar. Therefore, the kinematic 
error model based on the distance variation is given by

where yd = rd ⋅ yp ∈ R1 is the distance variation measured 
by the double balllbar at one point, Jd = rd ⋅ Jp ∈ R1×42 
is the gradient in terms of initial poses related to yd , 
rd = [rdi rdj rdk] is the unit vector of axial direction of the 
ballbar in frame {w}.

3.3  Identification of parameters in the kinematic 
error model

For any type of five-axis machine tools, there are (m + 1) 
links from the machine frame to the workpiece, while there 
are (n + 1) links from the machine frame to the tool, where 
m + n = 5 . Therefore, to identify the parameters in the kin-
ematic error model, the total number of measurement points 
M should satisfy

And (21) is expanded as

where

To obtain the parameter vector of kinematic errors � , the 
Gauss-Newton iteration algorithm is used. However, due to the 
existence of redundant error parameters in the kinematic error 
model, singularity problems of the Jacobian matrix may be 
encountered in the identification process [22]. This degrades 
the robustness of the conventional algorithm, especially when 
the measurement data are corrupted by large noisy data. To 
solve this problem, an iterative least square method with damp-
ing factor is proposed. So � is identified by

(20)yp = Jp ⋅ �,

(21)yd = Jd ⋅ �.

(22)M > 6(m + 1) + 6(n + 1).

(23)Yd = Jd ⋅ �,

Yd = [yd1, yd2,⋯ , ydM]
T ∈ RM×1,

Jd = [JT
d1
, JT

d2
⋯ JT

dM
]T ∈ RM×42.
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where � denotes the damping factor, which is in the range of 
0.0001 ∼ 1 . � can be selected as � = � ⋅max{diag(JT

d
Jd)} , 

where � is depended on the order of magnitude of the error 
data [40]. The initial parameter vector � is set to be zero. 
And the initial pose eĥj is updated by

where s = −1 if the motion axis is on the kinematic chain 
from the machine frame to the workpiece, otherwise, s = 1 . 
�hj ≜ (�xj, �yj, �zj, ��j, ��j, ��j)

T is the parameter vector of 
PIGEs.

The above steps are repeated iteratively until the norm 
of the distance variation ‖Yd‖ is less than the threshold � . 
Ultimately, the calibrated initial pose eĥc is given by

Therefore, the calibrated kinematics model Tc
w,t

 is also 
updated as

The calibrated tool pose �c = [pc
w
;rc
w
] in frame {w} is

where pcw and rc
w
 are the calibrated position and orientation 

of the tool, respectively. The identification process is sum-
marized in Fig. 4.

3.4  Piecewise model for backlash compensation

It is noteworthy that the earlier kinematic error model 
can effectively cover the PIGEs, which, however, neglect 
the PDGEs. The backlash-induced error is one of major 
PDGEs. Due to the existence of the gear backlash, the con-
touring accuracy will degrade when the tool tip performs 
reciprocating motion for milling complex curved surface. In 
general, 80% geometric errors are from rotational axes [29]. 
Hence, to simplify the follow-up compensation process, 
only the backlash-induced error in rotational axes is con-
sidered, such error in translational axes is ignored. Remark-
ably, the backlash takes place when the motion directions 
change, and it can be considered as a form of initial pose 
deviation of the joints. Hence, a piecewise calibrated kin-
ematics model is proposed according to the directions of 
rotation of A and C axes to additionally compensate the 
backlash-induced error.

(24)� = (JT
d
Jd + �I)−1JT

d
Yd,

(25)e
ĥnew
j = e

ĥold
j es𝛿ĥj ,∀j ∈ {w, c, a, y, x, z, t},

(26)eĥ
c

=

[
eĥ

c
w , eĥ

c
c , eĥ

c
a , e

ĥc
y , eĥ

c
x , eĥ

c
z , eĥ

c
t

]
.

(27)
Tc
w,t
(𝜃) = e−ĥ

c
we−𝜉c𝜃ce−ĥ

c
c e−𝜉a𝜃ae−ĥ

c
ae

ĥc
y e𝜉y𝜃yeĥ

c
x

e𝜉x𝜃x eĥ
c
z e𝜉z𝜃z eĥ

c
t ,

(28)
[
pc
w
rc
w

1 0

]
= Tc

w,t

[
pt rt
1 0

]
,

For the AC table-tilting five-axis machine tools in Fig. 2, 
the rotation range of A and C axes are �a ∈ [−90◦, 90◦] and 
�c ∈ [0◦, 360◦] . Denote 𝜃(∗)(k) = 𝜃(∗)(k + 1) − 𝜃(∗)(k) , where 
(∗) ∈ {a, c} , �(∗)(k) and �(∗)(k + 1) are the kth and (k + 1) th 
joint displacements of (∗)-axes. Therefore, the forward and 
reverse motions of (∗)-axes is represented by 𝜃(∗)(k) > 0 and 
𝜃(∗)(k) < 0 , respectively. According to the knowledge of per-
mutations and combinations, 4 subdomains named ARCF, 
AFCF, ARCR and AFCR in the domain are obtained, where 
“A” and “C” stand for axes’ names, “R” and “F” stand for 
reverse and forward motions. In each subdomain, we can 
obtain a vector of distance variation Yd

 when the meas-
urements are taken in M points. By utilizing (24), 4 sets 
of � are identified in 4 subdomains. Ultimately, follow-
ing (25)~(27), the piecewise calibrated kinematics model 
Tc
w,t in its domain is given by

where Tc1
w,t

 , Tc2
w,t

 , Tc3
w,t

 and Tc4
w,t

 are 4 calibrated kinematics mod-
els in ARCF, AFCF, ARCR and AFCR, respectively.

To evaluate the calibration results of the machine tools, 
the mean position error dp and mean orientation error dr in 
each subdomain are defined as

(29)Tc
w,t

=

⎧
⎪⎪⎨⎪⎪⎩

Tc1
w,t

𝜃a(k) < 0, 𝜃c(k) > 0, (29a)

Tc2
w,t

𝜃a(k) > 0, 𝜃c(k) > 0, (29b)

Tc3
w,t

𝜃a(k) < 0, 𝜃c(k) < 0, (29c)

Tc4
w,t

𝜃a(k) > 0, 𝜃c(k) < 0. (29d)

Fig. 4  Procedure for kinematic errors identification
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where M represents the total number of measured points, 
pa
w
 and ra

w
 are the actual position and orientation of the tool 

in frame {w}.

4  Kinematic error compensation

The calibrated model can be used for the compensation of 
the kinematic errors. However, as the numerical control (NC) 
system of the five-axis machine tool is not opened for user, 
its kinematic parameters cannot be directly modified. Instead, 
we firstly solve the inverse kinematics of the calibrated model, 
so that the calibrated joint displacements are obtained. Ulti-
mately, the kinematic error compensation is achieved by input-
ting the calibrated joint displacement to the NC system.

4.1  Inverse kinematics of the calibrated model

Due to the existence of manufacturing and assembly errors, the 
condition of perpendicularity or intersection between transla-
tion or rotational axes of the five-axis machine tool may be 
violated. In this case, solving the inverse kinematic problem 
by decomposing it into Paden-Kahan subproblems as in [18] 
will bring the calculation error. Instead, the numerical method 
based on screw theory is developed [41].

Similar to (13), the deviations between the nominal kin-
ematics model Tw,t and the calibrated kinematics model Tc

w,t 
can be expressed in a first-order approximation as

where yc = [yc
p
;yc

r
] ∈ R6×1 denotes the pose error of the tool 

between the calibrated and nominal models, yc
p
 and yc

r
 denote 

the position and orientation error of the tool, respectively.
To make the tool reach the desired pose, the calibrated joint 

displacements 
�c

 needs to be obtained. Take the derivative of 
Tc
w,t w.r.t. �� , ∀� ∈ {x, y, z, a, c} , as

(30)dp =
1

M

M∑
k=1

‖‖‖p
a
w
(k) − pc

w
(k)

‖‖‖,

(31)dr =
1

M

M∑
k=1

‖‖‖r
a
w
(k) − rc

w
(k)

‖‖‖.

(32)yc =
[
�Tc

w,t
⋅ (Tc

w,t
)−1

]∨
= log

(
Tw,t(T

c
w,t
)−1

)∨

,

(33)

𝛿Tc
w,t

= − e−ĥ
c
we−𝜉c𝜃c𝜉c𝛿𝜃ce

−ĥc
ce−𝜉a𝜃ae−ĥ

c
ae

ĥc
y e𝜉y𝜃y

eĥ
c
x e𝜉x𝜃x eĥ

c
z e𝜉z𝜃z eĥ

c
t − e−ĥ

c
we−𝜉c𝜃ce−ĥ

c
c

e−𝜉a𝜃a𝜉a𝛿𝜃ae
−ĥc

ae
ĥc
y
c
e𝜉y𝜃yeĥ

c
x e𝜉x𝜃x eĥ

c
z e𝜉z𝜃z

eĥ
c
t +⋯ + e−ĥ

c
we−𝜉c𝜃ce−ĥ

c
c e−𝜉a𝜃ae−ĥ

c
ae

ĥc
y

e𝜉y𝜃yeĥ
c
x e𝜉x𝜃x eĥ

c
z e𝜉z𝜃z𝜉z𝛿𝜃ze

ĥc
t .

Multiply both sides of (33) by (Tc
w,t
)−1 , we have

where

Combining (32)~(34), a linear matrix equation is given as

where Jc is the Jacobian matrix in terms of joint displace-
ments related to yc , � is the increment of the joint displace-
ments � , and

However, (35) is overdetermined, so there is no analytical 
solutions in general. This problem is addressed by utiliz-
ing the error model based on pure position information as 
in [41]. Similar to (16)~(20), the position error of the tool 
yc
p
 between the calibrated and nominal models is given by

where yc
p
= pc

w
− pw ∈ R3×1 , p

c
w is the position of the 

tool calculated from the calibrated kinematics model, 
Jc
p
=
[
I3 −p̂c

w

]
⋅ Jc ∈ R3×5 is Jacobian matrix in terms of  

joint displacements related to yc
p
.

The increment � of joint displacements is obtained by the 
iterative least square method as follows

The calibrated joint displacements of five axes are 
updated by �c

new
= �c

old
+ � . Next, �c

new
 are substituted into 

the calibrated kinematics model in (27). In this way, yc
p
 and 

Jc
p
 can be recalculated. The final calibrated joint displace-

ment �c is obtained when ‖yc
p
‖ is less than the threshold �.

(34)

[
�Tc

w,t
(Tc

w,t
)−1

]∨
= − Adfc�c��c − Adfa�a��a

+ Adfy�y��y + Adfx�x��x + Adfz�z��z,

fc = e−ĥ
c
we−𝜉c𝜃c ,

fa = e−ĥ
c
we−𝜉c𝜃ce−ĥ

c
c e−𝜉a𝜃a ,

fy = e−ĥ
c
we−𝜉c𝜃ce−ĥ

c
c e−𝜉a𝜃ae−ĥ

c
ae

ĥc
y e𝜉y𝜃y ,

fx = e−ĥ
c
we−𝜉c𝜃ce−ĥ

c
c e−𝜉a𝜃ae−ĥ

c
ae

ĥc
y e𝜉y𝜃yeĥ

c
x e𝜉x𝜃x ,

fz = e−ĥ
c
we−𝜉c𝜃ce−ĥ

c
c e−𝜉a𝜃ae−ĥ

c
ae

ĥc
y e𝜉y𝜃yeĥ

c
x e𝜉x𝜃x eĥ

c
z e𝜉z𝜃z .

(35)yc = Jc ⋅ � ,

Jc =
[
−Adfc�c,−Adfa�a,Adfy�y,Adfx�x,Adfz�z

]

∈ R6×5,

� =
[
��c, ��a, ��y, ��x, ��z

]T
∈ R5×1.

(36)yc
p
= Jc

p
⋅ � ,

(37)� =

(
(Jc

p
)TJc

p

)−1

(Jc
p
)T ⋅ yc

p
,
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4.2  Procedure of piecewise kinematic error 
compensation

To further deal with the kinematic error caused by gear 
backlash to enhance the machining accuracy, the model-
based piecewise error compensation is performed by uti-
lizing the piecewise model in (29). First, we design a tool 
path, which is composed of a series of tool pose data �(�) 
in frame {w} , where � ∈ {1, 2,⋯N} is the index of points 
on the contour. Based on these data, the nominal joint dis-
placements �(�) are obtained by solving inverse kinematics 
of nominal model from the reference [18].

To utilize the piecewise calibrated model to compensate the 
backlash-induced error, the signs of 𝜃a(𝜅) and 𝜃c(𝜅) are used 
to determine the corresponding subdomain. In this way, the 
calibrated sub-model is selected from the piecewise model Tc

w,t
 

in (29). Subsequently, the calibrated joint displacement �c(�) 
in each subdomain is numerically solved by the procedures in 

Sect. 4.1, with �(�) as the initial value. Ultimately, �c(�) is used 
as the input of the NC system, and the geometric error com-
pensation is achieved. By lumping the error caused by backlash 
into the initial poses in dyads, we can compensate the kinematic 
error due to gear backlash without directly modeling it.

To evaluate the effectiveness of the piecewise kinematic 
error compensation, the mean position error dpc is defined as

where N is the total number of the points on the contour.
The procedure of the piecewise kinematic error compen-

sation is summarized in Fig. 5.

5  Simulation

To show the effectiveness and robustness of the calibration 
method based on the error model derived from local POE 
formula, the simulation verification is conducted. In this sec-
tion, only the compensation of PIGEs is performed, while 
the compensation of hybrid PIGEs and PDGEs is given in 
the coming experiments.

5.1  Preset values of kinematic errors

In the kinematic model point of view, kinematic errors may 
due to the deviations of initial poses h, joint twists � and 
joint displacements � . They need to be preset for simulating 
the actual kinematics. The values of deviations of twists of 
the revolute and prismatic joints are set as in Table 2, while 
the preset deviations on the initial poses and joint displace-
ments of five axes are given in Table 3.

5.2  Parameter identification and kinematic error 
compensation

To observe the convergence of kinematic error model’s 
parameters in identification process, a test trajectory is 
designed firstly by referring to NC codes of QC20-W ball-
bar from Renishaw official website. Subsequently, 100 sets 

(38)dpc =
1

N

N∑
�=1

‖‖‖p
c
w
(�) − pw(�)

‖‖‖,

Fig. 5  Procedure for piecewise kinematic error compensation

Table 2  The deviations of twists of the revolute and prismatic joints

Items �zy (µrad) �xz (µrad) �yz (µrad) �ya (µrad)

Values 63 −21 39 45

Items �za (µrad) �xc (µrad) �yc(µrad) �yc (µm)

Values 43 72 −67 6.2
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of joint displacements in NC codes are selected, and they 
are substituted into the nominal kinematics model and the 
actual kinematics model with the preset �� , �h and �� . 
In this way, the distance variation data in simulation are 
obtained by (13) and (21). In addition, uniformly distrib-
uted noise within [0, 10−5] m is added to the above data, 
and then they are used for parameter identification by the 
procedures in Fig. 4. To evaluate the complexity of this 
algorithm, the time complexity index is utilized, and the 
algorithm takes about 2.2 seconds to run once on a com-
puter with the brand of ThinkPad E480. The mean posi-
tion error dp is used as the evaluation index of algorithm 
convergence. As shown in Fig. 6, the parameter identifica-
tion based on the Gauss-Newton method fails to converge. 
When the least square method with a damping factor � is 
used, dp converges to a stable value which is in the same 
order of magnitude as that of the injected noise. The iden-
tified parameter vector � is shown in Table 4. This shows 
the robustness of the proposed identification method.

The calibrated kinematic model in the form of (27) is 
obtained after the parameter identification is conducted. 
To compare it with the simulated actual kinematics model, 
another 100 sets of joint displacements are selected. As 
shown in Fig. 7a–c, the x-, y-, and z-coordinates of the 
tool tip in frame {w} predicted by the calibrated kinematics 
model are basically consistent with those from the actual 
kinematics model, and the prediction errors are in the 

same order of magnitude as the injected noise as shown 
in Fig. 7d–f. Therefore, we can conclude that the cali-
brated kinematics model based on the local POE formula 
is accurate.

Remarkably, when the PDGEs are absent, the uni-
fied kinematic error model is sufficient. As described in 
Sect. 4.1, using the iterative least squares method based on 
the position information, the increment � of joint displace-
ments is solved. As shown in Fig. 8, the mean position 
error dpc is reduced to zero when the final calibrated joint 
displacement �c is taken as the updated input in Sect. 4.1. 
This validates the effectiveness of model-based error 
compensation.

5.3  Calibration results based on local and global 
POE formulas

To compare the calibration results based on the global POE 
formula, the initial conditions of two calibration models based 
on the local and the global POE formulas should be set to the 
same. �� are set to be consistent with that in [18], while �h 

Table 3  The deviations of initial poses and joint displacements

Dyad �h = (�v;�w) (µm, µrad) ��

c
→

w (0, 2, 2, −20, 0, 0) /
a
→

c (0, 2, 2, −20, 0, 0) 35 µrad
b
→

a (2, 0, 2, 20, 20, 20) 35 µrad
b
→

y (2, 2, 2, 20, 20, 20) 2 µm
y→x (2, 0, 2, 20, 20, 20) 1 µm
x→z (2, 2, 2, 20, 20, 20) 2 µm
z→t (2, 2, 2, 20, 20, −20) /
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Fig. 6  Comparison about mean position errors when the conventional 
and proposed methods are used

Table 4  Identified 42 
components of � based on 
the preset kinematic errors in 
simulation

Component of � �xw �yw �zw �xc �yc �zc �xa

Value (µm) 13 18 −3 −3 −1 −3 −3
Component of � �ya �za �xy �yy �zy �xx �yx

Value (µm) −1 −5 −3 −1 5 −3 −1
Component of � �zx �xz �yz �zz �xt �yt �zt

Value (µm) −5 −3 −1 −5 −3 −1 −5
Component of � ��w ��w ��w ��c ��c ��c ��a

Value (µrad) −1 1 3 56 −3 3 56
Component of � ��a ��a ��y ��y ��y ��x ��x

Value (µrad) −8 −7 56 −8 −7 27 −8
Component of � ��x ��z ��z ��z ��t ��t ��t

Value (µrad) 25 27 6 0 0 0 0
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and �� are set as zero. After injecting the uniformly distrib-
uted noise within [0, 10−6] m, the results of convergence of the 
performance index by two models are compared. As shown in 
Figs. 9 and 10, the kinematic error model derived by the local 
POE formula gives better identification results compared with 
the model derived by the global POE formula, in terms of both 
the mean position error dp and the mean orientation error dr. 
The main reason is that the orthogonalization and normaliza-
tion of joint twists are not required throughout the identifica-
tion process, as they always keep their nominal values through-
out entire calibration process by assuming geometric errors are 

lumped into the deviations of initial poses. Thereby, no extra 
quantization error is introduced.

6  Experimental validation

In order to further verify the effectiveness of the proposed 
method, the experiments are conducted on an AC table-
tilting five-axis machine tool prototype, as shown in Fig. 11. 
Remarkably, low machining accuracy may be encountered 
due to the lack of pre-calibration on such a prototype.
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6.1  Data acquisition

In this experiment, QC20-W ballbar is used to measure 
the distance variation between the ball of the tool end and 
the ball of the workpiece end during the operation of the 
machine tool. The sensor resolution of the ballbar is 0.1 
µm, the measuring range of the ballbar is ±1.0 mm, and its 
maximum sampling rate is 1000 Hz. The distance variation 
data are transmitted via Bluetooth in real time. Ultimately, 
they are recorded to the Ballbar Trace software installed on 
the computer.

Following the conventions described in Sect. 2.2, the 
initial local frames are assigned in Fig. 12. Operate the 
control handle to make the workbench be perpendicular to 
the z-axis, and make the ball in the tool end coincide with 
the ball in the workpiece end. Set such configuration as the 
home position of five-axis machine tool. Subsequently, the 
initial positions of adjacent local frames are measured by a 
dial indicator. For detailed information, please refer to the 

explanation of Pr3031 ∼ Pr3033 in SYNTEC CNC Param-
eters Manual. Finally, the measured initial positions can 
be used to replace the nominal initial positions that are not 
given in the operating manual of the machine tool. In this 
way, the initial poses are given as

where all units are SI.
Rewrite the NC codes used in simulation by utilizing 

the above initial poses. If the Rotated Tool Center Point 
(RTCP) function were turned on, the distance between the 
tool ball and the workpiece ball could be guaranteed as a 
constant. However, the RTCP function of the NC system 
of the experimental prototype is not given for cost saving 
purpose. Hence, to equivalently achieve the RTCP function, 
we need to correct the displacements of the origin of frame 
{w} caused by the motions of the rotational axes during post 
data processing phase. The corrections along x, y, and z axes 
are given by

hw = [0.1585,−0.0029, 0.073858, 0, 0, 0]T

hc = [0,−0.00003, 0.000495, 0, 0, 0]T

ha = [−0.1585, 0.00293,−0.073363, 0, 0, 0]T

hy = hx = hz = ht = [0, 0, 0, 0, 0, 0]T

(39)
[
d�x, d�y, d�z, 1

]T
= Tb,w(�a, �c) ⋅ [0, 0, 0, 1]

T
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Fig. 10  Mean orientation error using local and global POE formulas
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Fig. 11  The experimental setup for the calibration of five-axis 
machine tool

Fig. 12  The layout of local frames when the five-axis machine tool is 
in home position
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where d�x, d�y and d�z are the corresponding corrections of 
translational axes in the NC codes, Tb,w(𝜃a, 𝜃c) = e

ĥ
ae

𝜉𝜃
ae

ĥ
c

e
𝜉𝜃

ce
ĥ
w.

The NC codes are composed of 7204 groups of joint dis-
placements, and the test method is in accordance with BK4 
of ISO 10791-6 [42]. According to the nominal forward 
kinematics model in (6), we can get the coordinates of 7204 
tool tip points in frame {w} . Figure 13 shows the trajectory 
of the tool tip with a constant distance L = 100 mm. The 
sensitive direction of the ballbar is parallel to its telescope 
bar. To set the QC20-W ballbar correctly, we can refer to 
the procedures in Renishaw official website. After inputting 
the NC codes to the machine tool, the distance variation is 
measured by the ballbar, as shown in Fig. 13. Remarkably, 
the profile errors of the ballbar can be integrated into devia-
tions of initial poses.

6.2  Parameter identification and compensation 
of piecewise model

For ease of references, the proposed method in this paper is 
named as AC-FR method. As shown in Table 5, the entire 
trajectory is divided into 4 segments according to the direc-
tions of rotation of A and C axes, which corresponds to 4 
associated subdomains ARCF, AFCF, ARCR, and AFCR 
in  (29) respectively. To obtain the piecewise calibrated 
kinematic models, 100 sample points are selected in each 
subdomain to identify the corresponding error parameters � 
in (24) by following the procedures in Fig. 4. Table 6 shows 
42 components of � including 21 position errors and 21 
orientation errors. These errors are sufficient to describe the 
kinematic model of five-axis machine tool. Ultimately, the 
piecewise calibrated kinematics model in (29) is used to 
perform the piecewise kinematic error compensation.

To show the superiority of the proposed method, two 
methods named C-FR method and No-FR method are used 
as the comparisons. C-FR method refers to the kinematic 
error modeling method that only the forward and reverse 
motions of the C axis are considered. So that a piecewise 
calibrated kinematics model with 2 subdomains is built 
for compensation. No-FR method is the method without 
considering the influence of the directions of rotation, so 
that a unified kinematic error model is built within the 
workspace.

Fig. 13  The trajectory with L = 100 mm and associated distance vari-
ation

Table 5  Partitions of trajectories according to the rotational direc-
tions of A and C axes

Segments A axis C axis

ARCF 75◦ →15
◦

0◦ →180
◦

AFCF 15◦ →75◦ 180◦ →360◦

ARCR 75◦ →15◦ 360◦ →180◦

AFCR 15◦ →75◦ 180◦ →0◦

Table 6  Identified 42 
components of � based on the 
experimental data with AC-FR 
method

Component of � �xw �yw �zw �xc �yc �zc �xa

Value (µm) −16 34 −167 −28 −107 −167 −28
Component of � �ya �za �xy �yy �zy �xx �yx

Value (µm) −21 23 −28 −21 23 −28 −21
Component of � �zx �xz �yz �zz �xt �yt �zt

Value (µm) 23 −28 −21 23 −28 −21 23
Component of � ��w ��w ��w ��c ��c ��c ��a

Value (µrad) −2 25 5 −48 38 5 −50
Component of � ��a ��a ��y ��y ��y ��x ��x

Value (µrad) 44 14 −50 44 14 −39 44
Component of � ��x ��z ��z ��z ��t ��t ��t

Value (µrad) 9 −39 39 0 0 0 0
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Subsequently, 200 sample points are selected to evaluate 
the predicted results using above three methods. As shown 
in Fig. 14a–c, by using AC-FR method, the predicted dis-
tance variation is more consistent with the actual distance 
variation, compared with the results from C-FR and No-FR 
methods. In addition, from Fig. 14d–f, the mean prediction 
errors using AC-FR, C-FR and No-FR methods are given as 
6.20×10−6 m, 1.25×10−5 m and 1.75×10−5 m, respectively. 
Hence, we can conclude that a more accurate calibrated kin-
ematics model is obtained for compensation with the pro-
posed AC-FR method.

Following the procedures in Fig. 5, the piecewise kin-
ematic error compensation is conducted. Table 7 shows 
the part of NC codes before compensation, while Table 8 

is modified NC codes obtained with AC-FR method 
respectively. Input the entire modified NC codes to the 
five-axis machine tool, the distance variation after com-
pensation is measured by the double ballbar. The method 
that drives the tool tip without kinematic error compen-
sation is named as uncompensated method. We can see 
that the distance variation data are closer to zero with the 
AC-FR method from Fig. 15. As shown in Fig. 16, the 
maximum and the median of the distance variation data 
with AC-FR method are smaller; this shows that the pro-
posed method can perform more accurate and consistent 
contouring. Compared with uncompensated method, the 
maximum of the distance variation by AC-FR method is 
decreased by 64.4%, while its counterparts by C-FR and 
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Fig. 14  Predicted distance variation versus actual distance variation, (a) from AC-FR, (b) from C-FR, (c) from No-FR; the corresponding pre-
diction error, (d) from AC-FR, (e) from C-FR, (f) from No-FR

Table 7  Part of NC codes before compensation. (unit for X, Y, Z: 
mm, unit for A, C:

◦
)

X Y Z A C

0.0000 −44.0232 41.0652 75.0000 0.0000
0.1213 −44.0749 40.8723 75.0000 0.0730
0.2434 −44.1266 40.6783 75.0000 0.1460
0.3642 −44.1800 40.4827 75.0000 0.2200
0.4858 −44.2324 40.2910 74.9990 0.2930
0.6061 −44.2841 40.0970 74.9990 0.3660

Table 8  Part of NC codes after compensation. (unit for X, Y, Z: mm, 
unit for A, C: ◦)

X Y Z A C

0.1979 −44.1563 41.1418 74.9993 0.0008
0.3196 −44.2080 40.9488 74.9993 0.0722
0.4419 −44.2597 40.7548 74.9993 0.1452
0.5630 −44.3132 40.5592 74.9993 0.2192
0.6849 −44.3656 40.3675 74.9983 0.2922
0.8055 −44.4173 40.1736 74.9983 0.3652
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No-FR methods are reduced by 48.9% and 44.2% respec-
tively. Such results demonstrate that the proposed piece-
wise kinematic error compensation method can improve 
the accuracy of bidirectional contouring in the presence 
of gear backlash on the rotational axes.

To validate the generality of the piecewise kinematic 
error compensation based on local POE formula, a com-
pensation experiment is performed along another trajectory. 
First, Table 9 shows part of NC codes composed of five axes 
motion commands. Input entire NC codes to the machine 

tool, we can obtain the trajectory of the tool tip that tends 
to maintain a constant distance L = 150 mm between the 
ball in the tool end and the ball in the workpiece end, as 
shown in Fig. 17. Subsequently, data of the distance varia-
tion measured from the trajectory with L = 100 mm are used 
to obtain the piecewise calibrated kinematics model with 
AC-FR method. Finally, this piecewise calibrated kinemat-
ics model is used to compensate the trajectory with L = 150 
mm. From Fig. 18, it is found that the maximum of the dis-
tance variation is reduced by 69.5% after compensation. This 
verifies the effectiveness of the piecewise kinematic error 
compensation method within a large workspace.

Fig. 15  Compensation results 
in 4 segments of the trajec-
tory. (a) from ARCF; (b) from 
AFCF; (c) from ARCR; (d) 
from AFCR
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Fig. 16  Boxplot for compensation results from three methods in auto-
validation with L = 100 mm

Table 9  Part of NC codes for the trajectory of the tool tip with a con-
stant distance L =150 mm. (unit for X, Y, Z: mm, unit for A, C: ◦)

X Y Z A C

0.0000 −31.0822 89.3617 75.0000 0.0000
0.1828 −31.1339 89.1688 75.0000 0.0730
0.3669 −31.1856 88.9743 75.0000 0.1460
0.5492 −31.2395 88.7787 75.0000 0.2200
0.7328 −31.2924 88.5870 74.9990 0.2930
0.9146 −31.3441 88.3925 74.9990 0.3660
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7  Conclusion

In this paper, by utilizing the local POE formula, we 
develop a geometric error modeling method for AC table-
tilting five-axis machine tool based on distance variation 
of the ballbar. It strictly fits the kinematic constraints of 
joint twists by retaining their nominal values throughout 
the calibration process, thus improving modeling accuracy 
compared with that based on the global POE formula. To 
cater for calibration model with redundant parameters, an 
iterative least squares method with a damping factor is uti-
lized to identify the parameters of kinematic errors. This 
ensures the convergence of the algorithm in the presence 
of large noisy data. To further reduce the error caused by 
the backlash during bidirectional motions of the tilting 

table, the above kinematic error model is further revised to 
be piecewise. The gear backlash is naturally integrated into 
the deviations of initial poses in kinematic error model, 
so that compensation of the gear backlash is eventually 
achieved without directly modeling it. Simulation and 
experimental results show the effectiveness and general-
ity of the proposed method.

Appendix

Joint twist

Define � =

[
v

�

]
∈ R6×1 to be the twist coordinates of the 

twist 𝜉 , the operator ∨ can extract the 6-dimensional vector 
from a twist 𝜉 , and the inverse operator ∧ can form a twist 𝜉 
from a 6-dimensional vector � . They are represented as 
follows

Adjoint transformation

The adjoint transformation of g = (p,R) ∈ SE(3) on 
� ∈ se(3) is

When the twist 𝜉 is represented by a 6-dimensional vector 

� =

[
v

�

]
 , the adjoint transformation of g on � is
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Acknowledgements The authors would like to thank M.Eng. Jingbo 
Luo (Ningbo Institute of Materials Technology & Engineering, Chinese 
Academy of Sciences) for his advice on this paper.

Author contributions Hongyu Wan: conceptualization, methodology, 
formal analysis, investigation, methodology validation, visualization, 
writing original draft; Silu Chen: conceptualization, formal analysis, 
methodology, clarify the logic of the manuscript, standardized writing; 
Tianjiang Zheng: conceptualization, methodology, methodology vali-
dation; Dexin Jiang: investigation, visualization, methodology valida-
tion; Chi Zhang: methodology, funding acquisition, writing — review 
and editing; Guilin Yang: conceptualization, funding acquisition, writ-
ing — review and editing.

[
𝜉
]∨

=

[
�̂� v

0 0

]∨
= 𝜉 =

[
v

𝜔

]
, [𝜉]∧ = 𝜉.

Adg(𝜉) = g ⋅ 𝜉 ⋅ g−1 =

[
R p

0 1

] [
�̂� v

0 0

] [
R p

0 1

]−1
.

Adg𝜉 =

[
R p̂R

0 R

] [
v

𝜔

]
.

Fig. 17  Two different trajectories of the tool tip in the workpiece 
frame for the cross validation experiment

AC-FR Uncompensated AC-FR Uncompensated
   ( L=100 mm auto-validation)

-0.2

-0.1

0

0.1

D
is

ta
nc

e 
va

ria
tio

n 
[m

m
]

 ( L=150 mm cross-validation)

Fig. 18  Boxplot for compensation results with AC-FR method

3002 The International Journal of Advanced Manufacturing Technology (2022) 121:2987–3004

https://doi.org/10.1007/s00170-022-09178-0


1 3

Funding The research project was funded by the National Natural 
Science Foundation of China (Grant Nos. 51875554, 92048201), 
and Ningbo Science and Technology Innovation Key Projects (Grant 
Nos. 2018B10069, 2018B10026, and 2020000107).

Data availability All data that support the findings of this study are 
available from the corresponding author upon reasonable request.

Code availability The paper has no associated software.

Declarations 

Ethics approval All procedures performed in studies involving human 
participants were in accordance with the ethical standards of the insti-
tutional and/or national research committee and with the 1964 Helsinki 
declaration and its later amendments or comparable ethical standards.

Consent to participate Informed consent was obtained from all indi-
vidual participants included in the study.

Consent for publication The authors declare to consent to the publica-
tion of this paper.

Conflict of interest The authors declare no competing interests.

References

 1. Ahmed A, Wasif M, Fatima A, Wang L, Iqbal SA (2021) Deter-
mination of the feasible setup parameters of a workpiece to maxi-
mize the utilization of a five-axis milling machine. Front Mech 
Eng 0 

 2. Zhao D, Bi Y, Ke Y (2017) An efficient error compensation 
method for coordinated CNC five-axis machine tools. Int J Mach 
Tools Manuf 123:105–115

 3. Ramesh R, Mannan M, Poo A (2000) Error compensation 
in machine tools - a review: Part I: Geometric, cutting-force 
induced and fixture-dependent errors. Int J Mach Tools Manuf 
40(9):1235–1256

 4. Zhu S, Ding G, Qin S, Lei J, Zhuang L, Yan K (2012) Integrated 
geometric error modeling, identification and compensation of 
CNC machine tools. Int J Mach Tools Manuf 52(1):24–29

 5. Wu H, Zheng H, Li X, Wang W, Xiang X, Meng X (2020) A 
geometric accuracy analysis and tolerance robust design approach 
for a vertical machining center based on the reliability theory. 
Measurement 161:107809 

 6. Maeng S, Min S (2020) Simultaneous geometric error identification 
of rotary axis and tool setting in an ultra-precision 5-axis machine 
tool using on-machine measurement. Precis Eng 63:94–104

 7. Lee KI, Yang SH (2013) Robust measurement method and 
uncertainty analysis for position-independent geometric errors 
of a rotary axis using a double ball-bar. Int J Precis Eng Manuf 
14(2):231–239

 8. Shi S, Lin J, Wang X, Xu X (2015) Analysis of the transient back-
lash error in CNC machine tools with closed loops. Int J Mach 
Tools Manuf 93:49–60

 9. Alessandro V, Gianni C, Antonio S (2015) Axis geometrical 
errors analysis through a performance test to evaluate kinematic 
error in a five axis tilting-rotary table machine tool. Precis Eng 
39:224–233

 10. Guo S, Mei X, Jiang G (2019) Geometric accuracy enhancement 
of five-axis machine tool based on error analysis. Int J Adv Manuf 
Technol 105(1):137–153

 11. Li Q, Wang W, Zhang J, Shen R, Li H, Jiang Z (2019) Meas-
urement method for volumetric error of five-axis machine tool 
considering measurement point distribution and adaptive identi-
fication process. Int J Mach Tools Manuf 147:103465

 12. Fan J, Tao H, Pan R, Chen D (2020) An approach for accuracy 
enhancement of five-axis machine tools based on quantitative 
interval sensitivity analysis. Mech Mach Theory 148:103806

 13. Wan H, Chen S, Liu Y, Zhang C, Jin C, Wang J, Yang G (2021) 
Non-geometric error compensation for long-stroke cartesian robot 
with semi-analytical beam deformation and gaussian process 
regression model. IEEE Access 9:51910–51924

 14. Li X, Wang H, Lu X, Liu Y, Chen Z, Li M (2017) Neural network 
method for robot arm of service robot based on DH model. 2017 
Chinese Automation Congress (CAC), p 3273–3277

 15. Fu G, Fu J, Xu Y, Chen Z (2014) Product of exponential model 
for geometric error integration of multi-axis machine tools. Int J 
Adv Manuf Technol 71(9–12):1653–1667

 16. Lee JC, Lee HH, Yang SH (2016) Total measurement of geometric 
errors of a three-axis machine tool by developing a hybrid tech-
nique. Int J Precis Eng Manuf 17(4):427–432

 17. Yang J, Altintas Y (2013) Generalized kinematics of five-axis 
serial machines with non-singular tool path generation. Int J Mach 
Tools Manuf 75:119–132

 18. Yang J, Mayer J, Altintas Y (2015) A position independent geo-
metric errors identification and correction method for five-axis 
serial machines based on screw theory. Int J Mach Tools Manuf 
95:52–66

 19. Qiao Y, Chen Y, Yang J, Chen B (2017) A five-axis geometric 
errors calibration model based on the common perpendicular line 
(CPL) transformation using the product of exponentials (POE) 
formula. Int J Mach Tools Manuf 118:49–60

 20. Liu Y, Wan M, Xiao QB, Zhang WH (2019) Identification and 
compensation of geometric errors of rotary axes in five-axis 
machine tools through constructing equivalent rotary axis (ERA). 
Int J Mech Sci 152:211–227

 21. Chen IM, Yang G, Tan CT, Yeo SH (2001) Local POE 
model for robot kinematic calibration. Mech Mach Theory 
36(11–12):1215–1239

 22. Chen G, Wang H, Lin Z (2014) Determination of the identifiable 
parameters in robot calibration based on the POE formula. IEEE 
Trans Rob 30(5):1066–1077

 23. Yang X, Wu L, Li J, Chen K (2014) A minimal kinematic model 
for serial robot calibration using POE formula. Robot Comput 
Integr Manuf 30(3):326–334

 24. Sun T, Lian B, Yang S, Song Y (2020) Kinematic calibration of 
serial and parallel robots based on finite and instantaneous screw 
theory. IEEE Trans Rob 36(3):816–834

 25. Xiang S, Altintas Y (2016) Modeling and compensation of volu-
metric errors for five-axis machine tools. Int J Mach Tools Manuf 
101:65–78

 26. Nguyen HN, Zhou J, Kang HJ (2015) A calibration method for 
enhancing robot accuracy through integration of an extended 
Kalman filter algorithm and an artificial neural network. Neuro-
computing 151:996–1005

 27. Xu P, Cheung BC, Li B (2019) A complete, continuous, and mini-
mal product of exponentials-based model for five-axis machine 
tools calibration with a single laser tracker, an R-test, or a double 
ball-bar. J Manuf Sci Eng 141(4)

 28. Liu Y, Wan M, Xing WJ, Xiao QB, Zhang WH (2018) General-
ized actual inverse kinematic model for compensating geometric 
errors in five-axis machine tools. Int J Mech Sci 145:299–317

3003The International Journal of Advanced Manufacturing Technology (2022) 121:2987–3004



1 3

 29. Lei W, Hsu Y (2003) Accuracy enhancement of five-axis CNC 
machines through real-time error compensation. Int J Mach Tools 
Manuf 43(9):871–877

 30. Tsutsumi M, Tone S, Kato N, Sato R (2013) Enhancement of geo-
metric accuracy of five-axis machining centers based on identifica-
tion and compensation of geometric deviations. Int J Mach Tools 
Manuf 68:11–20

 31. Tarng Y, Kao J, Lin Y (1997) Identification of and compensa-
tion for backlash on the contouring accuracy of CNC machining 
centres. Int J Adv Manuf Technol 13(2):77–85

 32. Ebrahimi M, Whalley R (2000) Analysis, modeling and simulation 
of stiffness in machine tool drives. Comput Ind Eng 38(1):93–105

 33. Chandrasekar P, Srinivasan K (2020) Inferential based measure-
ment of backlash in servo system. Materials Today: Proceedings

 34. Stryczek R (2016) A metaheuristic for fast machining error com-
pensation. J Intell Manuf 27:1209–1220

 35. Yang X, Lu D, Zhang J, Zhao W (2017) Analysis on steady-state 
vibration induced by backlash in machine tool rotary table. Proc 
Inst Mech Eng C J Mech Eng Sci 231(22):4163–4171

 36. Li Z, Wang Y, Wang K (2017) A data-driven method based on 
deep belief networks for backlash error prediction in machining 
centers. J Intell Manuf 1–13

 37. Slamani M, Nubiola A, Bonev IA (2012) Modeling and assess-
ment of the backlash error of an industrial robot. Robotica 
30(7):1167–1175

 38. Abbaszadeh-Mir Y, Mayer J, Cloutier G, Fortin C (2002) Theory 
and simulation for the identification of the link geometric errors 
for a five-axis machine tool using a telescoping magnetic ball-bar. 
Int J Prod Res 40(18):4781–4797

 39. Li C, Wu Y, Löwe H, Li Z (2016) POE-based robot kinematic 
calibration using axis configuration space and the adjoint error 
model. IEEE Trans Rob 32(5):1264–1279

 40. Madsen K, Nielsen HB, Tingleff O (2004) Methods for non-linear 
least squares problems. Technical Report

 41. Chen IM, Yang G, Kang IG (1999) Numerical inverse kinematics 
for modular reconfigurable robots. J Robot Syst 16(4):213–225

 42. ISO 10791-6 (2014) Test conditions for machining centers–Part 6: 
Accuracy of speeds and interpolations. https:// www. iso. org/ stand ard/  
46440. html

Publisher’s Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

3004 The International Journal of Advanced Manufacturing Technology (2022) 121:2987–3004

https://www.iso.org/standard/46440.html
https://www.iso.org/standard/46440.html

	Piecewise modeling and compensation of geometric errors in five-axis machine tools by local product of exponentials formula
	Abstract
	1 Introduction
	2 Kinematics model based on the local POE formula
	2.1 Introduction of the local POE formula
	2.2 Nominal forward kinematics model
	2.3 Actual kinematics for the five-axis machine tool
	2.3.1 Actual joint twists 
	2.3.2 Actual initial poses  and joint displacements 


	3 Modeling and parameter identification of kinematic errors
	3.1 Basic ideas
	3.2 Modeling of kinematic errors
	3.2.1 Kinematic error model based on pose error
	3.2.2 Kinematic error model based on position error
	3.2.3 Kinematic error model based on distance variation

	3.3 Identification of parameters in the kinematic error model
	3.4 Piecewise model for backlash compensation

	4 Kinematic error compensation
	4.1 Inverse kinematics of the calibrated model
	4.2 Procedure of piecewise kinematic error compensation

	5 Simulation
	5.1 Preset values of kinematic errors
	5.2 Parameter identification and kinematic error compensation
	5.3 Calibration results based on local and global POE formulas

	6 Experimental validation
	6.1 Data acquisition
	6.2 Parameter identification and compensation of piecewise model

	7 Conclusion
	Acknowledgements 
	References


