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Abstract
Recently, with the advance in information technology, pure data-driven approaches such as machine learnings have been 
widely applied in status diagnosis. However, the accuracy of those predictions strongly relies on the original data, which 
largely depends on the selected sensors and signal features. Furthermore, for unsupervised machine learning schemes, 
although it could avoid the concern of labeling in training, it lacks a quantified evaluation of the prediction results. These 
concerns significantly limit the effectiveness of modern machine learning and thus should be investigated. Meanwhile, ball 
bearings are fundamental key machine elements in rotating machinery and their condition monitoring should be critical for 
both quality control and longevity assessment. In this paper, by utilizing ball bearing failure diagnosis as the main theme, the 
flow of feature selection and evaluation, as well as the evaluation flow for multiple failure diagnosis, is developed for access-
ing the status of bearings in their imbalance, lubrication, and grease contamination levels based on unsupervised machine 
learning. The experimental results indicated that with proper feature selection, the failure identification could be more 
definite. Finally, a novel model based on the second norm to quantify the classification level of each cluster in hyperspace 
is proposed as the measure for unsupervised machine learning as the basis for performance evaluation and optimization of 
unsupervised machine learning schemes and should benefit related machine reliability evaluation studies and applications.
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1  Introduction

Quality control of machine components is vital for the whole 
system performance and subsequent product assurance. Tra-
ditionally, such a plan is usually executed by either constant 
service loading- or constant service time-based schedul-
ing [1–3] in past decades. Although such an approach has 
been proven highly effective based on the upkeep results 
of past decades, it gradually loses its advantage in modern 
equipment and manufacturing management due to differ-
ent business model and product characteristics. Thus, new 
paradigms to replace the existed scheduled maintenance are 
currently taking place. With the expeditious development of 
modern sensory and communication technologies, Industry 
4.0 paradigm is currently adapted to enhance productivity 
and reduce manufacturing costs [4]. For production quality 

concerns, the spirit of Industry 4.0 also alters the traditional 
scheduled maintenance approach into predictive mainte-
nance manner by analyzing signals from embedded sensors 
using big data and machine learning [5].

Among all machine elements, ball bearing, which can be 
found virtually in any movable mechanisms, is one of the 
most commonly used fundamental components. Its status 
directly impacts the associated machine and even manufac-
ture quality assurance. Therefore, its reliability assessment, 
failure characteristics, and life predictions have been widely 
investigated during the past decades [6–8]. Due to its impor-
tance, generality, and relatively rich domain knowledge, it is 
therefore an ideal platform for developing associated failure 
characterization schemes and machine learning–based pre-
diction as the initial effort to realize general diagnosis and 
status prediction schemes in generalized machine elements.

Bearings may have their particular signatures during 
service [9] and could reflect their reliability and remain-
ing life based on a rational flow including the following: 
signal data collection, feature extraction, and finally con-
dition assessments with signal processing routes such as 
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short-time-Fourier-transform (STFT), empirical mode 
decomposition (EMD), Hilbert-Huang transform (HHT) 
[10], and continuous wavelet transform [11]. In addition, uti-
lizing fundamental physical knowledge in actual diagnosis 
occasions is also common. For example, Schoen et al. [12] 
monitored motor bearing failures by examining the stator 
current. Elasha et al. [13] utilized acoustic emission for diag-
nosing bearing faults. Furthermore, in real services, bearing 
failures could contain multiple causes and their responses 
could be similar. As a result, this implies that hiring multiple 
transducers for proper fault detection is critical since it is 
possible to integrate multiple information to provide a more 
precise diagnosis. However, in practice, such a procedure 
strongly depends on the coupling level and the experience of 
the investigator. Meanwhile, virtually, all physical models to 
describe the causality relationship between causes and con-
sequences are one-to-one mapping. This further increases 
the challenge to obtain reliable diagnosis based on the above 
physical domain knowledge–based diagnosis.

On the opposite, with recent rapid advancements in com-
puter science, data-driven approaches such as big data and 
artificial intelligent (AI) become practical choices for fault 
classifications in diagnosis. A number of machine learning 
schemes [14–16] such as neural network [17] and support 
vector machines (SVM) [18] has been hired for damaged 
bearing diagnosis [17, 18] but the performances were not 
sufficient as expected, possibly attributed to improper selec-
tion of trained features. Furthermore, AI schemes addressed 
above are essentially supervised learning models, where the 
data for training must be properly labeled through consider-
ate experimental plan, which could be unrealistic in practical 
use. In response of this fact, unsupervised learning methods 
are now widely used since their nature without the need of 
labeling. Particularly, autoencoder [19–21], a dimensionality 
reduction and information reconstruction scheme, has been 
applied in various aspects ranged from speech and pattern 
recognition [22, 23], cyber security [24], to fault diagno-
sis of rolling bearings [19, 20, 25] for data classifications. 
By such a procedure, data dimensions could be effectively 
reduced for systematically classification.

However, the accuracy of pure data-driven based diag-
nosis largely depends on the selected sensors and indexes 
[26]. Improper selection could result in a waste invest-
ment, excessive training data, and poor accuracy and even 
the possibility of misjudgment. It is recommended that the 
selection of sensors and indexes should have strong back-
ground in related domain knowledge. However, to the best 
of our knowledge, virtually all previous data-driven based 
machine status works ignored this issue and concentrated on 
the development of status prediction based on their selected 
sensors/indexes.

Previously, the above concerns have been proposed by us 
[27] and using wear of miller cutter as the test platform by 

hiring using typical supervised machine learning scheme 
artificial neural network (ANN) to examine and dem-
onstrate those matters. The experimental and analysis 
results supported the arguments. That is, one should select 
proper sensors and signatures based on domain knowledge 
or experiments to optimize the performance of chosen 
machine learning schemes. Here we like to further address 
the concern and develop a rational flow to cover unsuper-
vised machine learning by using journal bearings as the test 
platform. In addition, although it does not require on data 
labeling, unsupervised scheme usually cannot have a quanti-
fied evaluation on evaluating clustering. This could result in 
certain ambiguity. Here, a performance index based on the 
separation level of clusters in hyperspace would be proposed 
and evaluated as the first step to quantify the prediction per-
formance of unsupervised machine learning schemes. To the 
best of our knowledge, there are no similar works reported 
to address the above two issues.

Motivated by the above arguments, this paper is therefore 
to evaluate the effect of sensor and feature selections on the 
prediction performance of unsupervised machine learning 
schemes and to propose a rational approach to quantify the 
performance in event clustering by utilizing ball bearing 
status diagnosis as the test platform. Autoencoder scheme 
is selected as the primary unsupervised machine learning 
scheme to be investigated in this work and it is expected that 
analysis using more advanced schemes would be explored 
in the future.

Figure 1 shows the overall investigation flow for realiz-
ing the abovementioned goals. The first task is to establish 
a general purpose ball bearing test platform with multiple 
sensors installed for collecting necessary data. Here imbal-
ance, lubrication level, and contamination of lubricants are 

Fig. 1   Investigation flow and the expected outcomes of this work
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selected as the major investigation factors. After establishing 
a testbed installed with multiple transducers for collecting 
essential information, various time and frequency domain 
indexes are extracted. Those indexes are then evaluated 
to select appropriate features to determine their effective-
ness. Next, unsupervised machine learning, specifically 
the autoencoder scheme, is adapted to decrease the feature 
dimensions and then for visualizing the reduced features on 
a three-dimensional hyperspace for performance evaluation. 
In addition, k-means [28], a classification model, would also 
be adapted to classify the trained results. Based on the setup, 
one can then evaluate the effectiveness of selecting proper 
sensor index. Meanwhile, a model proposed by us would be 
used to quantify the performance of clustering and diagnosis 
of the used unsupervised machine learning here. Finally, an 
integrated diagnosis flow is proposed by considering infor-
mation from cases with a systematic analyzing process.

The abovementioned investigation flow and preliminary 
results have been presented in conference [29]. In this work, 
based on our preliminary demonstration [29] and the master  
thesis of the first author [30], a systematic investigation  
and discussions, as well as proposing a novel performance 
indicator, are proposed to provide the most updated results 
and to elucidate the importance and applications of the pro-
posed quantification evaluation method. The rest of this arti-
cle thus presents the technical detail. In Sect. 2, the overall 
system setup and experiment plan is anchored and addressed 
for guiding the entire study. Essential signal analysis and 
sensitivity evaluation for picking up effective sensor indexes 
are presented in Sect. 3. Consequently, in Sect. 4, the signa-
ture set and the obtained test data are then used to develop 
various autoencoder-based unsupervised machine learn-
ing schemes for bearing fault diagnosis. A model based on 
Euclidian distance in hyperspace is proposed in Sect. 5 as the 
measure for quantifying the clustering performance of unsu-
pervised machine learnings. The key discovery, contribution, 
and recommended future works are then discussed in Sect. 6.  
Finally, Sect. 7 concludes this work.

2 � Experimental system setup

2.1 � Experimental platform setup

The experimental system, as shown in Fig. 2a, is basically a 
high speed spindle driven shaft supported by an end journal 
ball bearing. The PMSM spindle provides accurate speed 
control. Two payload disks (shown in Fig. 2b) are mounted 
on the aluminum shaft (diameter 20 mm) for providing 
designated imbalance loading by attaching some eccentric 
masses on them. Meanwhile, essential faults would be cre-
ated on the ball bearing intentionally. For example, Fig. 2c 

and d show a normal and a lack of lubricated bearings, 
respectively.

Next, as already shown in Fig. 2a, various transducers, 
including one PCB piezo microphone, two PCB tri-axial 
piezo accelerometers, a Kistler acoustic emission (AE) sen-
sor, a K-type thermal couple, plus a current transformer, are 
set up for accessing acquired physical signals. One of the 
two tri-axial accelerometers is attached on the spindle for 
monitoring the spindle vibration during operation and the 
other is attached on the rim of the ball bearing for detecting 
abnormal bearing vibration. On the other hand, the micro-
phone is positioned nearby the end ball bearing. The AE 
sensor is mounted on the bearing foundation for monitor-
ing elastic wave generated and the current sensor hangs on 
the power cable of the spindle for measuring the current 
and torque. Finally, the thermal couple is installed on the 
bearing surface for accessing the friction heating generated 
during long time operation. Table 1 lists the major specs 
and the associated data acquiring systems. The sensed data 
can be acquired synchronically with the sampling rates set 
as 2 MHz for the AE sensor; 51.2 kHz for the microphone, 
the accelerometers and the current sensor; and 1 Hz for the 
thermal couple during the subsequent signal acquisition and 
processing.

Figure 3 shows a typical result of bearing temperature 
measurement. Under a rotating speed of 2000 rpm, the tem-
perature of bearing increases from 27.9 to 38.2 °C in 15 min. 
It is expected that the characteristics of bearing temperature 
would vary with different operating conditions and different 
faults. However, the characteristic periods for thermal and 
vibration analysis signals have significant difference, i.e., o 
(10 min.) vs. o (1 ms). This imposes practical difficulties for 
experiment design and implementation. As a result, we shall 
focus on addressing the impact of vibration related phenom-
ena on bearing fault status. The temperature related studies 
would be left as the immediately future work.

2.2 � Operating and ball bearing fault condition 
setup

Rotating speed of the spindle and designated operation faults 
in the bearings are served as the key controlled input source 
variables in this work. Four rotating speeds (1000, 1500, 
2000, and 2500 rpm) are operated during the test. Fault sce-
narios created include shaft unbalance, lubrication loss and 
lubrication contamination of bearings. For ease of classifica-
tion, three levels (i.e., minor, severe, and healthy) are defined 
depends on the amount of added flaws. The rotor imbalance 
is achieved by placing small steel blocks on the disk shown 
in Fig. 2b. The imbalance level can be adjusted by the num-
ber of lumped mass and attached location. In this study, the 
healthy condition means no extra imbalance is added and 
the imbalance is solely from the system itself. On the other 
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hand, the minor imbalance is set by a lump of 19 g placed at 
a radius of 42 mm (i.e., the imbalance is 80 g-cm), and the 
severe imbalance is set by a 66 g lump at a radius of 42 mm 
(imbalance = 277 g-cm).

Meanwhile, to realize different levels of lubrications, 
cleaning naphtha is used to remove the greases in the 
bearing and re-adding different amount of grease (SKF 
LGMT 2/0.4) into the bearing. Figure 2c and d show the 

fully lubricated bearing and the one with no lubricants. 
In this study, the severe and minor lacking of lubrication 
are defined as a bearing with less than 0.01 g and 0.2 g of 
lubricant, respectively, which corresponds to less than 0.5% 
and 10% of nominal lubrication level. Finally, for dealing 
with the issue of lubrication contamination, Inconel 718 
metal powders (average diameter approximately 50 μm) are 
used to mix with the lubricant. The weight ratio between 

Fig. 2   Setup for tests: a the 
platform for conducting 
experiments, b unbalance shaft 
with an eccentric imbalanced 
mass and ball bearings with c 
fully lubricated and d with no 
lubrication

Table 1   Transducers used in this investigation

Transducers Spec Remarks

PCB 354C03 3-axis accelerometer Bandwidth 6 kHz, sensitivity 100 mV/g w/ PCB 483C15 charge amplifier
PCB 130F20 Microphone Bandwidth 16 kHz, gain 41.7 mv/Pa w/ PCB 483C15 charge amplifier
CTT-10-CLS-CV-5 Current transformer sensitivity 1 V/A
Kistler 8152C1030300 AE sensor Bandwidth 0.1–0.9 MHz, gain 48 dB w/ Kistler 5125C charge amplifier
TT-K-30-SLE
K-type thermocouple

Range −200 ~ 260 ℃

FLIR T530
Infrared camera

Range −20 ~ 650 ℃

DAQ Modules NI 9234 51.2 kHz/ch
NI USB 6361, 2 MHz
NI 9213 75 Hz

6361: AE; 9213: for thermocouple
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the lubricant and the Inconel 718 powder is 2% and 25% 
in minor and severe contamination situations, respectively.

In summary, the experimental design creates one healthy 
and four faulted cases (i.e., two lubrication levels plus two 
contamination levels) for addressing bearing damage in this 
study. For each category, normal and flawed bearings are 
placed on the test module with four rotating speeds, three 
imbalanced levels, and five bearing tribology states. There-
fore totally 60 scenarios are resulted (i.e., 4 speed × 3 unbal-
anced conditions × 5 cases) should be investigated. Experi-
ments associated with each scenario are performed repeatedly 
100 times and to ensure the repeatability and the sufficient of 
data. Finally, 100 sets of data are collected for each operation 
scenario. Each set contains collected data in 10 s. In which 
90% of them would be used for training and the rest 10% are 
for validation. Table 2 lists the detail information regarding 
the experiment design and data collection plans.

3 � Signal processing and analysis

After establishing experimental system and performing 
tests, the acquired data are then processed for extracting 
essential features for subsequent effectiveness evaluation 
and machine learning development. Since the amount of 

original signals obtained is huge, processing data reduc-
tion and extracting effective features is essential. The defi-
nitions of key sensor features are introduced first, followed 
by the evaluation of effective sensor index.

3.1 � Feature extraction

From vibration and statistics, it is possible to reduce 
obtained data into a few meaningful features or indexes to 
describe the key characteristics of the collected data. Each 
index could possibly have different sensitivities to specific 
conditions. Those indexes can be classified into time and 
frequency domains. The time-domain features utilized in 
this study are briefly explained below [31]:

•	 Mean value (μ): μ is the average quantity of a data set.

•	 Standard deviation (STD, σ): Standard deviation is a 
measure of data scattering of a set of data.

•	 Root mean square (rms): rms is defined as the square 
root of the mean square of a set of data.

•	 Kurtosis: Kurtosis represents a measure of platykurtic 
or sharpness of a data set.

•	 Skewness: Skewness serves as a measure of data sym-
metry.

(1)μ =
1

n

∑n

i=1
xi

(2)σ =

�∑n

i=1
(Xi − �)2

n − 1

(3)rms =

�
1

n

∑n

i=1
xi
2

(4)Kurtosis =
1

n

∑n

i=1

E(xi−�)
4

�4

Fig. 3   Temperature of a healthy 
bearing measured by a a 
thermal image camera and b a 
thermocouple

Table 2   Design of experiment with bearings at different operating 
conditions

Data length: for accelerometer, microphone, current transformer (51.2 
kHz for 2 s, totally 102.4k/scenario) and for acoustic emission sensor 
(2MHz for 2 s, totally 1M/ scenario)

Bearing status (total 5) Healthy/lubrication loss (minor and 
severe)/lubrication contamination (minor 
and severe)

Rotating speed (total 4) 1000 rpm 1500 rpm 2000 rpm 2500 rpm
No unbalance 100 100 100 100
Minor unbalance 100 100 100 100
Severe unbalance 100 100 100 100
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•	 Entropy: Can be treated as the average level of informa-
tion uncertainty inherent in the variable’s possible out-
comes

•	 Crest factor: which is defined as the ratio between peak 
amplitude and the rms value of a data set for representing 
the extreme level of a waveform.

•	 In Eqs. (1)–(7), n represents the size in a signal set, xi 
is the ith value in the data set, E the expectation value, 
and p the normalized histogram counts. All indexes 
computations are performed using MATLAB. The 
indexes mentioned above are applied to data collected 
by different sensors. Specifically, kurtosis, rms, skew-
ness, crest factor, and entropy, are used for the data 
collected from the accelerometers, the microphone, and 
the AE sensor. μ and σ are used for the data obtained 
from current sensor based on subsequent sensitive 
analyses.

(5)Skewness =
1

n

∑n

i=1

E(xi−�)
3

�3

(6)Entropy = −
∑n

i=1
p
�
xi
�
∗ log

2
p(xi)

(7)Crest factor =
|Xpeak|
xrms

Meanwhile, frequency-domain information such as 
power spectrum can be obtained by performing STFT 
of time-domain signals. Here, major frequency-domain 
indexes are extracted from the signals acquired by the 
accelerometers and the microphone and are brief ly 
addressed in below.

•	 Magnitude of the rotating-speed-frequency: This value 
corresponding to the rotating speed set at the spindle.

•	 Octave band strength: This indicates the summed energy 
of a spectrum based on octave band [26]. Here, a full spec-
trum is divided into ten bands according to the definition 
listed in Table 3 and the strength is then obtained by sum-
ming the spectrum within the band..

After deciding the indexes that being utilized. Proper signal 
processing can be conducted to evaluate the effectiveness of 
the selected signatures for reducing the dimension of signals 
for subsequent storage and machine learning applications.

3.2 � Sensor index evaluation

The complete list of possible control factors and features of 
the experiments is shown in Table 4. There are 12 input con-
trol variables (and 60 scenarios) and 44 features after primary 

Table 3   Characteristic 
frequency of the octave band

Band No 1 2 3 4 5

Frequency span (Hz) 0–16 16–32 32–64 64–125 125–250
Band No 6 7 8 9 10
Frequency span (Hz) 250–500 500–1000 1000–2000 2000–4000 4000–8000

Table 4   The control and key 
feature index for all experiments

Sensors/controls Features

Bearing operating parameters (total 12) Shaft rotating speed (4)
Unbalance level (3)
Lubrication loss/lubrication contamination 

levels (5)
Tri-axis accelerometer at spindle (total 18) RMS (3)

Entropy (3)
Spectrum at rotating frequency (3)
Octave band induction No. 8, 9, 10 (9)

Tri-axis accelerometer at bearing (total 18) RMS (3)
Entropy (3)
Spectrum at rotating frequency (3)
Octave band induction No. 8, 9, 10 (9)

Microphone (total 4) Crest factor (1)
Octave band induction No. 8, 9, 10 (3)

Acoustic emission sensor (total 1) Entropy
Current transformer (1) Mean
Thermocouple (1) Steady-state temperature
Infrared thermograph (1) Steady-state temperature
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screening from experimental observation and literature sur-
vey. However, the sensitivity and correlation of these features 
should be further identified to pick up the most dominated 
features. This is not a trivial issue since we believe that if all 
of the listed indexes are used to train AI model, the compu-
tational cost could be significantly increased and the training 
efficiency could be even worse [26, 27]. Consequently, the 
evaluation on the effectiveness of sensor features is important 
and selects proper features to train the subsequent AI models. 
After performing systematic feature sensitivity analysis, the 
most dominated features are determined for different types of 
fault and are shown below.

1.	 Unbalance of shaft
	   Rotating unbalance is traditionally an important issue 

to be addressed and machine learning technique has 
been applied [32]. After completing the experiments 
and subsequent sensor index extraction, the database 
of unbalanced shaft is then established. Figure 4 shows 
typical vibration of bearings at different rotating speeds 
and imbalance levels. It can be seen that the acceleration 
increases with both the speed and the imbalance level. 
The next issue is to perform correlation and sensitivity 
evaluation on the database. Eventually, proper sensor 

features suitable for subsequent AI modeling are then 
identified. The effectiveness is mainly determined by 
experiment for each sensor feature. For example, Fig. 5 
shows the mean values and standard deviations of kur-
tosis and skewness w.r.t. unbalance situations. Although 
these factors may have certain correlations with imbal-
ance level, their results are considered poor in general. 
Thus, these two indexes are treated as ineffective. In 
contrast, Fig. 6 shows the acceleration amplitude of both 
rms in time domain and the power spectrum of the rotat-
ing speed in frequency domain. Both factors monotoni-
cally increase with unbalance and speed levels increases. 
Therefore, both of them could be treated as effective 
index the index for training the AI model subsequently. 
Based on the same examining procedure, the most effec-
tive features are extracted and listed in Table 5.

2.	 Loss of lubrication
	   Similar to the procedure for addressing the case of 

shaft unbalance, the significance of features is evaluated 
to pick up dominated indexes for reflecting lubrication 
loss. Figure 7 shows typical vibrations signal picked 
up by the bearing accelerometer in both time and fre-
quency domains at 2000 rpm. From Fig. 7a, it can be 

Fig. 4   Accelerations of a 
healthy bearing at 1000 and 
2500 rpm and b healthy 
and imbalanced bearings at 
2000 rpm

Fig. 5   a Kurtosis and b skew-
ness in unbalanced conditions 
of the bearing acceleration
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seen that the vibration level significantly increases for 
bearings without lubrication. On the other hand, as one 
can see in Fig. 7b, the power spectra distributions are 
different. These data are then used to extract features 
for subsequent machine learning. Examples of poor 
features are shown in Fig. 8, which indicates the cor-
relations between the obtained kurtosis and crest factor 
of the acceleration signals and the lubrication level are 
not significant. In the meantime, Fig. 9a shows that the 
well correlation between the rms of the x-acceleration 
signals of the accelerometer mounted on the bearing and 
the lubrication level. Furthermore, as shown in Fig. 9b, 
the associated responses of octave band spectrum are 
presented. Although there are no obvious differences 
in low-frequency bands (i.e., band no. 1 to no. 6), high 
frequency bands (i.e., bands no. 8, 9, 10) indeed exhibit 
strong differences between different bearing lubrication 
status. Thus, those high-frequency bands could possibly 
serve as appropriate indexes. Based on the same proce-
dure, the most effective features for counting lubrication 
loss are selected and listed in Table 5.

3.	 Lubrication contamination
	   Finally, for the case of lubrication contamination, 

similar to the above cases, we also perform correla-

tion to find major sensor features. Again, typical data 
collected by the microphone are presented in Fig. 10. 
In Fig. 10a, it can be seen that the noise level signifi-
cantly increases due to the presence of metal particle 
contaminations. On the other hand, the corresponding 
frequency power spectra, shown in Fig. 10b, also exhibit 
different distributions between normal and contaminated 
cases. These data are then used to extract features for 
subsequent computations. As shown in Fig. 11, it indi-
cates that both the kurtosis and skewness of microphone 
signals are failed to be qualified indexes. On the other 
hand, similar to the lubrication loss case and as appeared 
in Fig. 12, the rms of x-acceleration component of the 
bearing accelerometer and the octave band spectrum of 
the microphone signals are treated as effective sensor 
features. Finally, through a series of correlation analy-
sis, the most effective features are obtained and listed in 
Table 5. Notice that most of the effective features are the 
same for both lubrication loss and contamination cases 
and there are only some tiny differences to distinguish 
them. For example, as shown in Fig. 13, the tendencies 
of the rms and 8th octave band component for lubrica-
tion loss and contamination are similar but with certain 
quantitative differences. Such a difference might not be 

Fig. 6   Effective feature exam-
ples: the relationship between 
unbalance level vs. a rms and 
b the magnitude of rotating-
speed-frequency of bearing 
acceleration signals

Table 5   The most dominated 
features for this study

Faults Sensors Features

Unbalance Accelerometers at spindle and bearing Spectrum at rotating frequency (6)
Lubrication loss Accelerometers at spindle and bearing RMS (6)

Octave bands 8, 9, 10 (18)
Microphone Octave band No. 8, 9, 10 (3)

Lubrication contamination Accelerometer at spindle RMS (3)
Octave band No. 8, 9, 10 (9)

Accelerometer at bearing RMS (3)
Entropy (3)
Octave bands 8, 9, 10 (9)

Microphone Octave bands 8, 9, 10 (3)
AE sensor Entropy
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easily distinguished by engineers without the aid of arti-
ficial intelligent model. Here, as addressed previously, 
autoencoder would be hired to proceed this task.

4 � Failure diagnosis using autoencoder models

Autoencoder is a kind of signal compression model based 
on neural network. As schematically shown in Fig. 14, it 
can reduce data dimension for achieving clustering of events 
through systematic data encoding and decoding [19]. It is 
a non-supervised learning network used to replace classical 
dimensionality reduction method such as principal compo-
nent analysis (PCA) [33] to achieve better nonlinear feature 
compression. We utilize Python, and PyTorch [34] to create 
the autoencoder model for subsequent coding and simula-
tion. In encoding process, the number of inputs equals to the 
used sensor indexes, which could be different based on faults 
to be deal. An architecture with two hidden layers with 128 
and 64 neurons connected in the first and the second layer is 
used in this work. The current architecture is based on the 
recommendation from previous researches [35, 36]. Further 
alternation on the program architecture is possible toward 
deep autoencoder for better performance and would be our 

immediate future work. In addition, the dimension of the 
final hyperspace could be arbitrary but is currently set as 
three for ease of visualization and three clustering variables 
(x,y,z) would be used to represent the clustering level. The 
optimal dimension for achieving best clustering still remains 
unknown and is left as our current study. Meanwhile, the 
decoding processing is symmetric to the encoding one and 
the whole process is schematically illustrated in Fig. 14. The 
models are trained using 128 epochs with a batch size of 64 
data sets. The training process including two major steps: 
i.e., data forward propagation and error back propagation. 
One can refer to elsewhere for introducing the detail archi-
tecture of autoencoder [37]. Finally, as mentioned earlier, the 
feature dimension is reduced to three and visualized on the 
hyperspace space to evaluate the trained results.

Figure 15a shows the trained classification results for the 
three unbalance levels operated under the same lubrication 
loss at 1500 rpm. The models are trained by all addressed 
indexes without evaluations to exclude out improper indexes. 
One could see that the clustering result is relatively poor, 
where one could hardly identify the clustering results by 
the distribution in the hyperspace. Meanwhile, by utilizing 
the dominated indexes listed in Table 5, different imbalance 
levels can be clearly clustered as shown in Fig. 15b. Within 

Fig. 7   Accelerations of healthy 
and lack lubrication bearings at 
2000 rpm. a Time domain data 
and b frequency power spectra

Fig. 8   Ineffective feature exam-
ples: a kurtosis of the accel-
erometer on the spindle and b 
crest factor of the acceleration 
on the bearing at different lubri-
cation loss levels
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the hyperspace, clustered data for each imbalance levels 
concentrates at specific regimes and there are only a few 
extreme values away from those regions. This demonstrates 
the importance of using appropriate indexes for machine 
learning.

Next, it is possible to utilize the same setting to deal the 
lubrication loss and contamination problems for checking 
the effect of input features. The results for lubrication loss 
problem are shown in Fig. 16 and the model inputs have 
been listed in Table 5. The result indicates that if the most 
effective features are selected, the clusters are mainly con-
centrated in three well-separated regimes in the hyperspace, 
which implies that the three different lubrication levels can 
be well-classified apparently (seen in Fig. 16b). In contrast, 
for using all features as inputs, the separation level would 
not be so clear (seen in Fig. 16a). Same conclusion applies 
for the lubrication contamination case. As shown in Fig. 17, 
the results indicate the importance of proper selection of 
sensor features.

It is interesting to point out here that although the 
harshness levels of different types of bearing faults (i.e., 
lubrication loss and lubrication contamination in this 
work) could be clearly distinguished within their own 
domains, it is questionable if the scheme can distin-
guish two different types of fault. This concern is not a 

trivial since the used indexes and the trends of them are 
extremely similar. However, as shown in Fig. 18, by uti-
lizing the similar training process, different fault types in 
different levels could still be classified and the root-cause 
could be clearly identified.

Finally, for model validations, fresh experimental data 
are fed into those trained models (10% of all experimental 
data) and the prediction results are shown in Fig. 19, the 
prediction results of those new data for validation (labeled 
in color solid) are well grouped at the same regimes as the 
training data (labeled in hollow gray) in the hyperspace. 
This result validates the reliability of the designed autoen-
coder models.

5 � Proposed model for quantify unsupervised 
machine learning schemes

Although the visualization in 3D hyperspace is straight-
forward for qualitatively examining the clustering perfor-
mance, a quantitative evaluation is still required based 
on the following reasons: First, if the clustering is per-
formed in a hyperspace with dimension larger than 3, 
the above-used visualization techniques cannot be used. 
Second, the judgment on the goodness of clustering are 

Fig. 9   Effective index exam-
ples: a rms and b octave band 
strength of the bearing accelera-
tions in different lubrication loss 
levels

Fig. 10   Microphone signal 
of healthy and contaminated 
bearings at 2000 rpm. a Time 
domain data and b frequency 
power spectra
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highly subjective. In certain sense, such a subjective judg-
ment could be difficult. For example, for the 2-D cluster-
ing cases schematically shown in Fig. 20a, it is hard to 
judge which classification is better. As a result, it requires 
a quantitative evaluation to address the performance of 
the non-supervised autoencoder model. Surprisingly this 
issue is not reported in previous works. To response this 
concern, a quantitative indicator, Qij, served as the cost 
function, is proposed for evaluation the clustering perfor-
mance and is expressed as

In Eq. (8), dij means Euclidian distance between the cen-
troid of clusters i and j; std represents standard deviation 
of the position data in each cluster in the hyperspace; and 
indexes i, j represents different clusters (here i, j = 1, 2 or 3 
and they represent healthy, minor fault, and severe fault data 
clusters) respectively. For a Gaussian distribution, the prob-
ability of data apart with its mean value within two stand-
ard deviation is 95.5%. Therefore, Eq. (8) is an indicator to 
measure the cleanness of separation level between clusters. 
That is, if Qij > 1, it is reasonable to declare that the two 

(8)Qij =
dij

2(stdi + stdj)

clusters (i.e., i and j) are completely separated. On the other 
hand, for a Qij less than 1, it means that there could have 
certain probabilities these two clusters are tangled together 
and causes misjudgments. Figure 20b shows the schematic 
diagram in a 3-D hyperspace. Here, three different center to 
center distances dij and the standard deviation of each data 
set σi are calculated. The smallest Qij represents the worst 
separation level between two clusters and this value is cho-
sen as the clustering performance. Table 6 shows the quan-
titative performance comparisons based on the proposed 
model for the three fault cases discussed in this work. For 
each fault cases, three runs are performed. It can clearly be 
seen that the Q factors for the situation with proper indexes 
are larger than those without feature screening, which indi-
cates that a better classification. In particular, for the unbal-
ance case, the Q factors are less than unity if the indexes are 
not properly screened. This implies that the clustering per-
formance is inferior and one can compare the results shown 
in Fig. 16 and Table 6 for the argument.

It is also important to point out that the proposed 
approach can be extended to hyperspaces with any dimen-
sions thus it provides an universal approach. With the 
proposed evaluation model, it is possible to examine the 
effect of different model parameters such as the number 

Fig. 11   Ineffective indexes 
examples: a kurtosis values and 
b skewness in different lubrica-
tion contamination levels of the 
microphone signals

Fig. 12   Effective indexes: a rms 
and b octave band strength of 
the acceleration and microphone 
signals on the ball bearing with 
different lubrication contamina-
tion degrees
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of hidden layers, the number of neurons, and the final 
dimension of hyperspace, as well as the effect of input 
data features to the performance of machine learning 
schemes. Furthermore, as schematically sketched in 
Fig. 21, it is also possible to perform several autoencoder 
models sequentially to identify the possible multiple 
faults. Taking the investigated problem to identify a bear-
ing fault containing both minor imbalance and lubricant 
contamination as an example, the first step is to examine 
if the system contain unbalance fault (and the severity). 
Then, one can use the same data with different features 
to examine the possibility of lubrication loss and subse-
quently, the lubrication contaminations by examining if 
the data is well within the corresponding clusters. This 
provides a systematic flow for investigating faults con-
taining multiple causes in the future.

6 � Discussions

Using machine learning in diagnosis of machine and 
components has been widely investigated and is believed 
as a promising approach in modern system longevity 

assessment and maintenance scheduling. However, the 
performance still largely depends on the selected sensor 
features. In addition, the unsupervised machine learning 
approach, although it does not need labeling in training, 
the clustering results lack a quantification comparison 
and thus it brings an obstacle for subsequent scheme 
optimization.

Here a platform of high speed rotating shaft with mul-
tiple sensors is set up for performing the investigation and 
ball bearings with five different lubrication fault condi-
tions or levels are designed. These bearings are worked 
with 3 unbalance levels at 4 rotating speeds to generate 
data for subsequent autoencoder model development. The 
study results clearly indicate the importance of choosing 
effective sensor features on the machine learning per-
formance. With effective sensor features determined via 
experiments, difference imbalance or bearing fault levels 
can be clearly classified. The model is powerful such that 
different fault category can also be identified. To better 
quantify the clustering performance, an index based on the 
measure of separation level between clusters in hyperspace 
is proposed. This provides further opportunities to optimiz-
ing the clustering performance of unsupervised machine 
learning schemes.

To the best of our knowledge, there is no similar work 
presented before for addressing the above two concerns 
and this could be the major innovative contribution of 
this work. One could further optimize autoencoder or 
hire other unsupervised machine learning schemes to 
study the bearing failure problems or utilize the concept 
proposed in this work in dealing with related engineer-
ing fault analyses. Notice that although some sensor 
indexes seem not effective in this work, it could pos-
sibly become critical if other types of faults are consid-
ered. Nevertheless, one can follow the same procedure 
developed for evaluating the situation and discussing 

Fig. 13   The relationship 
between acceleration features of 
faulted bearing in different fault 
level of lubrication loss and 
contamination: a rms and b 8th 
octave band

Fig. 14   A schematic diagram for the procedure of autoencoder
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fault scenario individually to make the diagnosis system 
more comprehensive.

In short, we believe that this work provides the sev-
eral novelty and contribution to the related fields. First, 
it provides an experimental flow in finding significant 
features for bearing and to prove that using correct 
features are critical. Second, it utilizes unsupervised 
machine learning scheme to classify both different types 
of cause and the degree of damage in failure diagnosis. 
Finally, this work proposes a new qualification method 
to measure the goodness of classification for machine 
damages.

In the near future, for the current bearing fault diag-
nosis problem, investigations on the effect of hyperspace 
dimension and the effect on the limitation of available 
sensors would be investigated and optimized based on 

the proposed Q parameter. Finally, it is hoped that the 
proposed approach is helpful for quantifying perfor-
mance of unsupervised machine learning schemes and 
thus imposing contributions on other engineering system 
fault diagnosis. A specific example is that the proposed 
methodology could be used for machine tools and high 
speed spindles failure predictions, where the failures of 
ball bearings are identified as a dominated failure mode. 
Since the selection of proper sensors and their index, as 
well as the install locations, are crucial to the perfor-
mance, our developed sensing module [38] could possi-
bly be mounted at the interior of spindle for further opti-
mizing the sensor performance. By such an integration, 
the diagnosis performance should be improved in com-
parison with our pervious used ANN scheme in machine 
tool wear experiment [27].

Fig. 15   Trained clustering result 
with a all indexes and b most 
sensitive features for unbalance-
only situation at 1500 rpm

Fig. 16   Trained clustering results using a all indexes and b most sensitive features for lubrication loss-only condition at 1500 rpm
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Fig. 17   Trained results with 
a all unscreened indexes and 
b most sensitive indexes for 
lubrication contamination clas-
sification with no unbalance at 
2000 rpm

Fig. 18   Trained results for distinction between lubrication loss and contamination: a minor and b severe cases

Fig. 19   Validated results for a 
imbalance level at 2500 rpm 
and b lubrication loss level at 
2000 rpm
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Fig. 20   Schematic diagrams to illustrate a the problem on evaluating the clustering performance and b physical insight of the proposed quantita-
tive indicator
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7 � Summary and conclusion

Machine learning based fault diagnosis gradually plays 
important roles in modern smart manufacturing. Unsu-
pervised machine learning, owning its nature with no 
needs on pre data labeling on training, becomes increas-
ingly popular. However, it lacks a quantitative measure to 
evaluate the effect of feature selection and other settings 
and parameter adjustments. In this work, by utilizing ball 
bearing failure and autoencoder models as the test bed, 
the effect of feature selection based on physical effec-
tiveness evaluation on the AI prediction performance is 
investigated. It clearly indicates the importance of select-
ing effective feature on improving the AI diagnosis per-
formance. Meanwhile, a model is also proposed to quan-
tify the clustering performance of unsupervised machine 
learning. With the model in hand, it is possible to use it 
as the basis for evaluating the performance and for opti-
mizing the structure of unsupervised machine learning 
schemes.
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