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Abstract
Obtaining appropriate temperature sensor locations is crucial for data-driven thermal error modeling. The pseudo-correlation 
and variable ranking will cause inappropriate sensor selection results. In this paper, a three-step sensor selection strategy 
based on the detrended cross-correlation coefficient is proposed to obtain a stable and robust set of thermal key points. 
Combined with sensor reduction and classification, 15 sensors are reduced to 9 and classified into 3 groups. Finally, three 
sensors are selected as thermal key points. The sensor selection results are applied to a support vector machine model for a 
CNC grinding machine. The modeling results of 49 predictions based on 7 speed spectrums show that the root mean square 
error and maximum error are less than 2.32 μm and 3.73 μm, respectively. Compared with two traditional methods, the pro-
posed method has higher accuracy and stronger robustness, which is effective for sensor selection of thermal error modeling.

Keywords Thermal error modeling · Sensor selection · Spindle · Detrended cross-correlation coefficient · Grouping 
approach · Pearson correlation coefficient

1 Introduction

Thermal error is one of the major errors in machine tools, 
which occurs due to the heat generated at the moving elements  
[1]. The effects of temperature can induce up to 75% of overall 
geometrical errors of machined workpieces [2]. Thermal error  
compensation is a convenient and cost-efficient way to mini-
mize the influence of thermal error [3]. There are two kinds 
of models for thermal error compensation: the data-driven 
model and the physically-based model [4]. Many data-driven 
models have been used in thermal error modeling, such as 
multiple linear regression, BP neural network, support vec-
tor machine, principal component regression [5], and ridge 
regression algorithm [6]. A robust data-driven model can be 
established by selecting only a few temperature sensors with 
appropriate locations [7]. The optimal temperature sensors 
(known as thermal key points (TKP) or temperature-sensitive  
points) have two basic requirements [3]: Firstly, the tempera-
ture of TKP have close relationships with thermal error. Sec-
ondly, the number of TKP is limited. Too many sensors will  

increase the workload and expense, even reduce the accuracy 
of the model.

Initially, researchers directly use the sensors with large 
correlation coefficients with the thermal error as optimal 
sensors. However, the correlation among temperatures of 
different sensors can impact the correctness of selection [3]. 
Multicollinearity among temperature data will affect mod-
eling accuracy. Therefore, many researchers follow two steps 
to select TKP: (1) classifying temperature sensors into sev-
eral groups and (2) choosing one optimal sensor for each 
group based on some sorting criteria. There are two main 
classification strategies: (1) the grouping approach (GA) 
method [8] and (2) the unsupervised classification method. 
The GA method is based on such principle that the correla-
tion coefficients between different temperature sensors are 
calculated to form a correlation matrix. By setting a thresh-
old, the sensors with a coefficient greater than the thresh-
old are classified into the same group. Pearson correlation 
coefficient (PCC) [9] and gray correlation coefficient [10] 
are the commonly used correlation coefficients in the GA 
method. The unsupervised classification methods, such as 
fuzzy c-means clustering (FCM) [11] and K-means cluster-
ing [12], are also widely used in sensor classification. Due 
to the unsupervised characteristics, they are sensitive to the 
input variables. After sensor classification, the correlation 
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coefficients between the data of temperature sensors and 
thermal error are calculated. The sensor with the largest 
coefficient in each group is selected as TKP. The PCC [13] 
and gray correlation coefficient [10] are the commonly used 
criteria for calculating the correlation coefficient.

However, there are still some problems with the tradi-
tional sensor selection methods. In this paper, we summarize 
it as follows.

1. The classification without preselection. Generally, when 
there is no prior knowledge about the locations of TKP, 
as many sensors as possible will be placed on the surface 
of the spindle system. This arrangement is reasonable 
because no potential optimal position will be missed. 
However, the following problem is that some sensors 
with low correlation with thermal error will be clas-
sified in the same group, and then one of them will be 
selected as TKP. Thus, a preselection is important for 
maintaining the correlation between the selected sensors 
and thermal error data.

2. The selection based on pseudo-correlation. Many sta-
tistical methods for calculating the correlation between 
two time series have strict application conditions. For 
example, the PCC is unsuitable for non-Gaussian [14] 
and nonstationary [15] time series, especially when 
there is an obvious trend in the time series. However, 
the temperature and thermal error data have been proved 
to follow the exponential trend [16]. Thus, a new method 
is necessary to overcome the weakness of traditional 
correlation calculation methods.

3. The processing based on a single speed spectrum. Ide-
ally, the TKP selected by a single speed spectrum are 
also applicable to other speed spectrums. In the error 
compensation stage, a set of fixed TKP are more accept-
able, because it will reduce the complexity and imple-
mentation difficulty of the model. But in fact, the TKP 
selected by different speed spectrums are variable [5, 6, 
17]. It is not only the classification and ranking that will 
cause the instability of TKP, but also the speed spec-
trums with different correlation calculation methods. 
Therefore, it should be checked whether the speed spec-
trum is suitable for the correlation calculation methods, 
and the selection results should be determined by the 
results of more than one speed spectrum.

This paper proposes a three-step sensor selection strategy 
for thermal error modeling: reduction, classification, and selec-
tion. The theoretical reasons for inappropriate sensor selec-
tion are analyzed. The detrended cross-correlation coefficient 
(DCCC) is used as a robust and accurate criterion to calculate 
the correlation between time series. In the sensor reduction 
stage, the number of sensors was reduced from 15 to 9 based 
on the change of DCCC value. After sensor reduction, the 

GA method was used for sensor classification. The nine sen-
sors were classified into three groups. Finally, the TKP were 
selected based on the ranking order calculated by the mean 
DCCC value between temperature and thermal error data.

The rest of this paper is as follows. In Sect. 2, the theoreti-
cal reasons for inappropriate sensor selection are analyzed, 
and the DCCC is introduced. Section 3 shows the thermal 
error experiment on a CNC grinding machine. Section 4 
shows the detailed process of the three-step sensor selec-
tion strategy. In Sect. 5, the accuracy and robustness of the 
proposed method are verified with the comparison with two 
traditional methods. Conclusions are provided in Sect. 6.

2  The theoretical reasons for inappropriate 
sensor selection and detrended 
cross‑correlation coefficient

2.1  Pseudo‑correlation caused by the trend‑driven 
time series

The PCC between two time series (x and y) is expressed as:

where x and y are the average value of x and y, respectively, 
n is the length of each variable.

As a widely used correlation calculation method, PCC 
has been successfully applied to many fields. But the PCC 
is unsuitable for nonstationary time series. If two time series 
are nonstationary (they have similar trends), a large PCC 
value could not guarantee the real correlation.

According to the exponential thermal error model, the 
temperature and thermal error data of the spindle system 
follow the exponential trend [16], as shown in Eq. (2).

where ΔZ is the change in spindle growth over time t, Z0 
is the spindle deformation at time 0, ZSS is the steady state 
spindle deformation, and τ is the time constant.

Thus, the pseudo-correlation is inevitable when PCC is 
used as the evaluation index of correlation.

Figure 1 shows three nonstationary time series. The 
expressions are as follows:

(1)rx, y =

n∑
i=1

�
xi − x

��
yi − y

�
�

n∑
i=1

�
xi − x

�2
�

n∑
i=1

�
yj − y

�2

(2)ΔZ = Z0 + (ZSS − Z0) ∗ (1 − e−t∕�)

(3)

⎧⎪⎨⎪⎩

y1 = 10 sin x + 200(1 − 2−x∕30) + 20

y2 = 5 sin(x + (3∕8)�) + 150(1 − 2−x∕30) + 10

y3 = 100(1 − 2−x∕30) + 5
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where x = 0.1, 0.2, 0.3, …, 30.
There are three basic terms in Eq. (3). y1 is taken as an 

example. The fluctuation term is 10sinx, the trend term is 
200(1–2−x/30), and the base term is 20.

By taking y1, y2, and y3 into Eq. (1), the PCC value ry1, y2 
is 0.973, and the ry1, y3 is 0.970. The values of ry1, y2 and ry1, y3 
show a strong correlation. But the PCC values between sub-
series are variable. Six subseries are formed when the length 
of the subseries is 5, as shown in Fig. 1. Each subseries pair is 
calculated by Eq. (1). Table 1 tabulates the calculation results.

Similarly, when the length of subseries is 3, each time 
series is divided into ten subseries. The PCC values between 
subseries pairs are tabulated in Table 2.

Tables 1 and 2 show that the PCC is not effective for 
nonstationary time series. The strong correlation calculated 
by PCC for the whole time series cannot reflect the real cor-
relation relationship between subseries. For example, ry1, y2 
in Table 1 can be as high as 0.877 and as low as 0.027 and 
even show a negative correlation as -0.200.

Figure 1 shows that there are two possible cases of pseudo-
correlation. The first case corresponds to the relationship 
between y1 and y2. The fluctuation terms of y1 and y2 are dif-
ferent. But with the existence of the trend term, the PCC value 
can be as high as 0.973. The second case corresponds to the 
relationship between y1 and y3. Note that y3 has only trend term 
and base term. It indicates that the time series affected only by 
the trend term will also have a large correlation coefficient.

Thus, a conclusion can be made that the pseudo-correlation 
sensors have two characteristics: (1) they are affected by the 
trend and have small temperature change in the whole measure-
ment process; (2) they have significant variation in correlation 
value with the change of subseries size. To obtain these two 
characteristics and ensure an effective correlation relationship, 
a new correlation calculation method is introduced in Sect. 2.3.

2.2  Variable ranking from the geometric properties

Besides the pseudo-correlation, another noteworthy phe-
nomenon is the variable ranking based on the correlation 
coefficient between different speed spectrums.

If we regard 
(
xi − x

)
 and 

(
yi − y

)
 in Eq. (1) as new vectors:

Thus, Eq. (1) is rewritten as:

Eq. (5) shows that the value of PCC is equal to the cosine 
of the angle between X and Y.

Considering a simplified situation that n is 3, as shown in 
Fig. 2, P (a, b, c) is a reference vector. If an angle θ is fixed, then 
all the vectors have the same angle with P will form a conical 
surface. For example, P1 (a1, b1, c1), P3 (a1, b1, c3), and P4 (a4, 
b4, c4) are three vectors on the conical surface, and the correla-
tion coefficients for the original time series rp, p1, rp, p2, and rp, p4 
are the same. From P1 to P3, there is a P2. The angle between 
P2 and P is 0, and the corresponding correlation coefficient is 
1. Thus, with a change in Z axis from c1 to c3, the correlation 
coefficient increases first and then decreases. For vectors hav-
ing small angle with P2, a small change in any axis will cause 
a large change in the correlation coefficient. When tempera-
ture sensors are densely arranged on the headstock surface, the 
temperature data of many sensors have strong correlation with 
thermal error. Thus, the vectors of these sensors also have small 

(4)

{
X = xi − x = (x1 − x), (x2 − x), ..., (xn − x)

Y = yi − y = (y1 − y), (y2 − y), ..., (yn − y)

(5)rx, y = cos �X,Y =
X ⋅ Y

‖X‖ × ‖Y‖

Fig. 1  Three nonstationary time series and the division of subseries

Table 1  The PCC values of six 
subseries

Subseries ry1, y2 ry1, y3

a -0.200 0.086
b 0.838 0.812
c 0.877 0.975
d 0.779 0.739
e 0.027 -0.498
f -0.142 -0.375

Table 2  The PCC values of ten 
subseries

Subseries ry1, y2 ry1, y3

a 0.201 0.817
b 0.754 0.661
c 0.318 0.895
d 0.276 0.060
e 0.524 0.943
f -0.370 -0.656
g 0.708 0.972
h -0.584 -0.909
i 0.822 0.989
j -0.490 -0.976
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angles with the vector of thermal error data. It is unrealistic to 
achieve a complete stable ranking for different speed spectrums 
based on the correlation coefficient. Besides, for vectors with 
large modules such as P4, in order to achieve the same change 
in correlation coefficient (Δθ) as P1, a larger change in Z axis 
(ΔL) is necessary. Thus, it is inappropriate to directly sort the 
vectors with different module lengths based on the correlation 
coefficient. Besides, the variable characteristic is independent 
of the trend in Sect. 2.1. Thus, after removing the influence of 
the trend, the variable phenomenon still exists in the correlation 
calculation results.

In order to achieve a relatively stable ranking, some strate-
gies need to be implemented. Firstly, the speed spectrums have 
to be preselected. Since the temperature and thermal error data 
are non-Gaussian and nonstationary, some testing has to be 
carried out to ensure the data of the selected speed spectrums 
are suitable for the determined correlation calculation method. 
Secondly, classification is essential before ranking. After sensor 
classification, the vectors in the same group have similar mod-
ule length and variation, which makes the correlation coeffi-
cients comparable. Thirdly, after speed spectrums selection and 
classification, the ranking of sensors in the same group needs to 
be determined by the results of more than one speed spectrum.

2.3  Detrended cross‑correlation based method

2.3.1  Detrended cross‑correlation coefficient

The DCCC [18] method is a detrended strategy to calcu-
late the correlation between two nonstationary time series. 
It combines the detrended fluctuation analysis [19] and 
the detrended cross-correlation analysis [20]. The DCCC 
is approximately equal to PCC after detrending [21], but it 
is more suitable for nonstationary time series [15] and can 
obtain the correlation between different subseries.

The main content of DCCC includes the following two 
parts: (1) removing the trend of raw data by detrended fluc-
tuation analysis and (2) forming an evaluation index similar 
to PCC after detrended cross-correlation analysis.

Firstly, the original variables x (x1, x2, …, xn) and y (y1, y2, 
…, yn) with the same length n are calculated by (4). The new 
time series are x* (x1*, x2*, …, xn*) and y* (y1*, y2*, …, yn*).

Secondly, divide the time series into 2 N subseries. The 
length of each subseries is S, as shown in Fig. 3. The divi-
sion starts from both the positive and the negative directions.

Thirdly, the polynomial fitting is performed for each sub-
series, and the covariance is calculated by following.

(6)F2
x, y

(s, 𝜏) =

⎧
⎪⎪⎨⎪⎪⎩

1

s

s∑
j=1

(x∗
(𝜏−1)s+j

− x̂∗
(𝜏−1)s+j

)(y∗
(𝜏−1)s+j

− ŷ∗
(𝜏−1)s+j

), 𝜏= 1, 2,...,N

1

s

s∑
j=1

(x∗
n−(𝜏−N)s+j

− x̂∗
n−(𝜏−N)s+j

)(y∗
n−(𝜏−N)s+j

− ŷ∗
n−(𝜏−N)s+j

), 𝜏=N+1,N+2,..., 2N

Fig. 2  Diagram of the geomet-
ric properties of the correlation 
coefficient calculation
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where x̂∗ and ŷ∗ are fitted values of the polynomial fitting.
Fourthly, calculate the fluctuation function.

Finally, take either of the two vectors as the reference 
vector; the DCCC value is expressed as:

Thus, the DCCC is a function of the length of subseries 
(S). It reflects the detrended correlation of two time series 
with different time scales and can obtain a robust correlation 
coefficient.

In this section, two evaluation indexes are proposed based 
on the DCCC, as expressed in Eq (9).

The first index is the variation of the DCCC curve 
(V-DCCC), which reflects the change of correlation between 
different subseries. The smaller the V-DCCC, the stronger 
the stability of the correlation. The second index is the mean 
value of the DCCC curve (M-DCCC), which indicates the 
degree of correlation. The larger the M-DCCC, the stronger 
the correlation.

2.3.2  Detrended cross‑correlation coefficient with sliding 
window

The DCCC reflects the correlation of two time series with 
different subseries length. In dealing with the selection of 
time series, such as the selection of speed spectrum, it is 

(7)Fx,y(s) =
1

2N

2N∑
�=1

F2
x,y
(s, �)

(8)�x,y(s) = �y,x(s) =
Fx,y(s)√

Fx,x(s)
√
Fy,y(s)

(9)

⎧⎪⎨⎪⎩

V − DCCCx,y = max(�x,y(S)) −min(�x,y(S))

M − DCCCx,y =
1

m

m∑
S=1

(�x,y(S))

equally important to consider the correlation of two time 
series with different subseries location. Based on the slid-
ing window method in multiple detrended cross-correlation 
coefficient [22], a detrended cross-correlation coefficient 
with sliding window (SW-DCCC) is proposed in this paper. 
The division starts from the first value of the time series until 
the last sliding window reaches the last value, and the length 
of the sliding window is w, as presented in Fig. 4. In each 
sliding window, the M-DCCC is calculated. For m sliding 
windows, the SW-DCCC value is a curve with m values. 
Similar to DCCC, if the SW-DCCC curve has small fluctua-
tion and large value, it shows that the speed arrangement of 
the speed spectrum is reasonable, and every location can 
ensure consistent and high correlation.

3  Thermal error experiment

The thermal error experiment was carried out on a periph-
eral CNC grinding machine. As shown in Fig. 5, temperature 
sensors (DOCOROM PT100) were fixed on one side of the 

Fig. 3  Diagram of subseries 
division

Fig. 4  Diagram of the sliding window division
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headstock after removing the grinding wheel joined to the 
front flange. The 15 sensors were arranged along 3 lines. The 
first line is from the end cap of the front bearing (sensor 09) 
to the connecting flange between spindle and motor (sen-
sors 14 and 15). The second line is along the four grooves 
of the headstock. The third line is close to four bolted joints. 
Besides, another temperature sensor was placed outside the 
spindle to monitor the temperature variation in different sea-
sons. The laser displacement sensor (Micro-Epsilon optoN-
CDT2300) was used for the axial thermal error measurement 
of the spindle. The sampling frequency of laser displacement 

sensor was 5000 Hz. To reduce the influence of spindle rota-
tion, the average value of displacement sensor per minute 
was taken as the measured value. The sampling frequency of 
temperature sensors was 1/60 Hz. The relative value based 
on the value of the first minute of the measured temperature 
and thermal error data is used to form the dataset in thermal 
error modeling.

Two sets of experiments were conducted in different sea-
sons to obtain thermal error and temperature data in different 
environments, as shown in Fig. 6. The speed spectrums A1 
and A2 are designed based on ISO 230–3: 2020 [23]. Speed 

Fig. 5  Experimental setup of 
spindle system

Fig. 6  Variable speed spectrums
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spectrums A2 and B2 are transformations based on A1 and 
B1. Speed spectrums A3, B3, and B4 are constant speed 
spectrums.

The experimental parameters of all speed spectrums are 
shown in Table 3. Figures 7, 8 and 9 show the axial thermal 
error and temperature data of three typical speed spectrums, 
where (a) corresponds to thermal error and (b) ~ (d) corre-
spond to the temperature change of 15 sensors.

4  Sensor selection process

4.1  Spontaneous sensors and flow chart of sensor 
selection process

All the detrended cross-correlation-based methods are cal-
culations between two time series. When using SW-DCCC 
and V-DCCC, a reference time series from one sensor needs 
to be defined. The main purpose of sensor reduction is to 
remove the sensors that their temperature data are affected 
by the trend. Thus, 15 temperature sensors can be divided 
into 2 types: the spontaneous sensors and the trend-driven 
sensors. For the spontaneous sensors, the temperature 
changes are related to the heat transfer process of the spin-
dle. For the trend-driven sensors, they are affected by the 

trend of the headstock surface temperature. Instead of find-
ing the trend-driven sensors, the most spontaneous sensor is 
determined, and other spontaneous sensors can be obtained 
based on the correlation coefficient.

Figure 10 shows the temperature data of 15 sensors in 
A1 after calculating by Eq. (4). Obviously, sensor 04 has 
the largest temperature change. And this phenomenon is 
consistent in all seven speed spectrums. The sensor with 
the largest temperature change will not be affected by the 
trend. And the correlation between the temperature data of 
this sensor and the thermal error data should be strong and 
stable. In other words, sensor 04 can be regarded as the most 
spontaneous sensor.

Figure 11 shows the flowchart of the sensor selec-
tion process. The temperature and thermal error data 
of different speed spectrums are used to form different 
datasets. After determining the most spontaneous sensor 
(sensor 04), the SW-DCCC between the data of sensor 
04 and thermal errors is used to select the appropriate 
speed spectrums. Meanwhile, the V-DCCC between the 
data of sensor 04 and other sensors is used to reduce the 
trend-based sensors. Then, the M-DCCC between the data 
of different sensors is calculated in sensor classification 
process. Finally, the TKP are selected based on M-DCCC 
between thermal error data and the data of sensors in the 
same group.

4.2  Selection of speed spectrums based on SW‑DCCC 

The SW-DCCC between temperature data of sensor 04 and 
thermal error data is calculated for seven speed spectrums, 
as shown in Fig. 12. The length of the sliding windows is set 
to 100. In each sliding window, the M-DCCC is calculated. 
Speed spectrums A1, A2, and B1 are selected for the sen-
sor selection process because the most spontaneous sensor 
(sensor 04) shows a strong and stable correlation with the 
change of sliding windows.

Table 3  Experimental 
parameters

Speed 
spectrum

Temperature change 
outside the spindle 
/ °C

A1 24.11- 25.66
A2 23.75- 25.45
A3 23.62- 25.46
B1 29.14- 31.44
B2 26.37- 28.68
B3 28.57- 31.71
B4 27.14- 29.92

Fig. 7  Thermal error and tem-
perature data of A1
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To prove the correctness of the selection results, the his-
tograms and distribution curves of sensor 04 for seven speed 
spectrums are calculated, as shown in Fig. 13. Although all 
the curves are not strictly conformed to Gaussian distribu-
tion, it is clear that the data of variable speed spectrums (A1, 
A2, B1, and B2) are more approximate to Gaussian distribu-
tion than that of constant speed spectrums (A3, B3, and B4). 
Combining the results of Figs. 12 and 13, the data of speed 
spectrums A1, A2, and B1 are used in the sensor selection 
process. Although the data of speed spectrums A3, B2, B3, 
and B4 are also real and effective, they are not suitable for 
the DCCC-based method.

4.3  Sensor reduction based on V‑DCCC 

The temperature data of sensor 04 are used as the reference; 
then each sensor is calculated with sensor 04. Figure 14 
shows the DCCC value of 14 sensors in A1. The length of 
subseries (S) varies from 10 to 270 (n). When S is too small, 
the curve changes drastically, indicating the subseries are 
not large enough. In this paper, the DCCC value between 
45 (n/6) and 270 (n) is used for the following calculation.

It is worth noting that the V-DCCC is used in sensor 
reduction instead of the DCCC value itself. For example, 
the DCCC values of sensor 01 and sensor 13 are simi-
lar when S is greater than 135, but the V-DCCC of the 
whole range shows a significant difference, as shown 
in Fig. 15. Compared with sensor 13, sensor 01 is more 
suitable to be classified as a spontaneous temperature 
sensor.

For each DCCC value curve between 45 ~ 270, the 
V-DCCC is calculated, as shown in Table 4. The threshold 
is set to 0.5. The sensors with V-DCCC value greater than 
0.5 are reduced. For each sensor, if the reduction results of 
two speed spectrums are consistent, it can be considered as 
the final result. Thus, the original 15 sensors are reduced to 
9 (sensors 01, 03, 04, 05, 07, 08, 09, 14, and 15).

4.4  Sensor classification based on M‑DCCC and GA

There are two common classification strategies: (1) the 
unsupervised classification method; (2) the GA method. 
The GA method is based on a correlation matrix calcu-
lated by a correlation criterion. In this paper, the M-DCCC 

Fig. 8  Thermal error and tem-
perature data of B2

Fig. 9  Thermal error and tem-
perature data of B3
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between different sensors is used to form the correlation 
matrix.

After sensor reduction, the correlation matrix is expressed 
as:

where �i,j is the M-DCCC between sensor i and sensor j.
Table 5 shows the symmetric correlation matrix of A1. 

By setting different thresholds, sensors greater than the 
threshold are classified into the same group. For example, 
when the threshold is set to 0.85, the 15 sensors are classi-
fied into 3 groups, as tabulated in Table 6.

(10)

⎡⎢⎢⎢⎣

�1,1 �1,3 ⋯ �1,14
�3,1 �3,3 ⋯ �3,14
⋮ ⋮ ⋱ ⋮

�14,1 �14,3 ⋯ �14,14

⎤⎥⎥⎥⎦

Fig. 10  Temperature data of 15 
sensors in A1 after subtracting 
the mean value

Fig. 11  Flowchart of sensor selection process Fig. 12  The SW-DCCC curve of seven speed spectrums
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The stable classification results for different speed spec-
trums are necessary to keep a constant set of TKP. Besides, 
the number of groups is the same as the number of TKP. 
Considering that only 9 sensors are kept after sensor reduc-
tion, the number of TKP is set to 3 and 4, respectively.

The same sensor classification process is applied to the 
other three variable speed spectrums. The classification 
results are tabulated in Table 7. Obviously, the classification 
results tend to be stable only when there are three groups: 
(sensor 09), (sensor 01 and 05), and (sensor 03, 04, 07, 08, 
14, and 15).

4.5  Sensor selection based on M‑DCCC 

A stable set of TKP depends on constant classification and 
ranking. The effective ranking is very important to evaluate 
the correlation between temperature data and thermal error 
data. After sensor reduction and classification, we use the 
M-DCCC between temperature data and thermal error data as 
the ranking criterion. For each sensor group, the sensor with 
the highest ranking is selected as TKP. Figure 16 shows the 
DCCC value curve of nine sensors in A1, where the thermal 
error data is used as the reference.

Fig. 13  Histograms and distri-
bution curves of thermal error 
data for seven speed spectrums

Fig. 14  The DCCC value of 14 sensors in A1 (Temperature data of 
Sensor 04 is the reference)

Fig. 15  The change of DCCC value of sensor 01 and sensor 13 in 
A1 (Temperature data of sensor 04 is the reference)
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The M-DCCC of the second and third groups is tabulated in 
Table 8. For each group, the sensor with the largest M-DCCC is 
selected as TKP. In group 2, the M-DCCC of sensor 01 is larger 
than sensor 05 for all speed spectrums. In group 3, the M-DCCC 
of sensor 14 is also larger than other sensors for all speed spec-
trums. Thus, a stable set of TKP is achieved by the proposed 
sensor selection method, and the TKP are sensors 09, 01, and 14.

5  Results and discussion

5.1  Modeling method and evaluation index

Figure 17 shows the relationship between thermal error data 
and temperature data of A1. There is a nonlinear relationship 
between the temperature data of each sensor and thermal 
error data. Thus, a nonlinear support vector machine (SVM) 
regression model is used in thermal error modeling.

SVM has been proved to be an effective model for ther-
mal error modeling of the spindle system. The regression 
model of SVM is defined as:

where f(X) is the prediction function of SVM; X is the temper-
ature vector of TKP; Xi means support vector; l is the number 
of support vectors; �i and �∗

i
 are Lagrange multipliers; k (Xi, 

X) represents kernel function; C is penalty parameter.
In this paper, the radial basis kernel function is selected 

as kernel function, which is defined as:

where σ is width parameter of radial basis kernel function, 
mark 1/σ2 as parameter g.

There are two crucial parameters in the SVM model: C 
and g (1/σ2). In this paper, the grid search method is used to 
find the correct parameters. The search range is set to  2–4 ~  24 
after several preliminary tests. After determining the param-
eters g and C, parameters ( �i − �∗

i
 ) can be obtained by:

(11)
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Table 4  The change of DCCC value of 14 sensors for 4 variable 
speed spectrums (Temperature data of sensor 04 is the reference)

Sensor Speed spectrum

A1 A2 B1

01 0.3606 0.1114 0.2453
02 0.5283 0.5309 0.6060
03 0.3789 0.3106 0.4536
05 0.4567 0.2412 0.4333
06 0.5664 0.5772 0.6506
07 0.3530 0.2725 0.4592
08 0.0921 0.0813 0.1001
09 0.4163 0.1928 0.1721
10 0.5284 0.6272 0.4358
11 0.7328 0.9087 0.5340
12 0.5659 0.6510 0.5670
13 0.5091 0.4050 0.5009
14 0.2067 0.1349 0.2558
15 0.3591 0.2743 0.6019

Table 5  Correlation matrix 
calculated by DCCC (A1)

01 03 04 05 07 08 09 14 15

01 1
03 0.6151 1
04 0.6700 0.7470 1
05 0.8862 0.7077 0.5008 1
07 0.6231 0.9967 0.7795 0.6905 1
08 0.6754 0.9045 0.9548 0.6085 0.9259 1
09 0.7583 0.1589 0.2461 0.6358 0.1654 0.2180 1
14 0.6909 0.9412 0.9078 0.6667 0.9543 0.9850 0.2205 1
15 0.7345 0.9260 0.8312 0.7284 0.9313 0.9291 0.2764 0.9750 1

Table 6  Classification 
results of 15 sensors of A1 
(threshold = 0.85)

Group Sensors

1 09
2 01, 05
3 03, 04, 07, 

08, 14, 
15
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LIBSVM toolbox [24] and MATLAB R2018a software 
are used to obtain the four parameters of SVM: C, g, (αi-α* 
i), and b. The training function “svmtrain” and predictive 
function “svmpredict” are used to accomplish the training 
and prediction process.

Two evaluation indexes are used to display the modeling 
accuracy of the selection method: the root mean square error 
(RMSE) and the maximum error (MAX).

where yj is the measured value at j minute, y*j means the 
corresponding prediction value, n represents the total min-
utes of the experiment.

5.2  Modeling results for the proposed method

The temperature and thermal error data are obtained from 
seven speed spectrums of two different seasons. When the 

(14)RMSE =

√√√√1

n

n∑
j=1

(
yj − y∗

j

)2

(15)MAX =
n

max
j=1

|||yj − y∗
j

|||

TKP are determined, the data of each speed spectrum can 
be used as both training set and test set. Thus, there are 49 
(7 × 7) predictions for each set of TKP. The numbering rules 
of 49 predictions are tabulated in Table 9.

The data of TKP are taken into the SVM model. Figure 18 
shows the modeling results (RMSE and MAX). The root 
mean square error and maximum error are less than 2.32 μm 
and 3.73 μm, respectively. The modeling results of the pro-
posed method show a high accuracy and strong robustness.

5.3  Traditional sensor selection method and sensor 
selection results

The traditional sensor selection method is a combination of 
classification and sorting. The correlation coefficient between 
temperature data of 15 sensors and thermal error data is calcu-
lated by PCC, and the ranking results are tabulated in Table 10. 
The direct use of PCC causes the sensor selection results to be 
variable. For example, sensors 02 and 06 have a high ranking 
in A1 but low ranking in other speed spectrums; sensors 14 and 
15 have a high ranking in B2, B3, and B4 but low ranking in 
other speed spectrums. The variable ranking will cause variable 
sensor selection results, no matter whether the classification is 
stable or not.

This paper considers two traditional classification 
methods: (1) the FCM method and (2) the GA method. 
For the FCM method, the weighting exponent is set as 
2. The temperature data of 15 sensors are normalized 
between 0 and 1 before being taken into the calculation. 
For the GA method, the PCC values between different 
sensors are used to form the correlation matrix. Tables 11 
and 12 show the classification results of FCM and GA, 
respectively.

The variable sensor selection results of the two traditional 
strategies are tabulated in Table 13. The seven sets of TKP 
selected by FCM and PCC are marked as FP1 ~ FP7, and the 
other seven sets of TKP selected by GA and PCC are marked 
as GP1 ~ GP7.

Table 7  Classification results of 4 variable speed spectrums

A1 A2 B1

3 groups 09 04 09
01, 05 09 01, 05
others others others

4 groups 01 04 09
05 09 01, 05
09 03, 07 03, 07
others others others

Fig. 16  The DCCC value of eight sensors in A1 (Thermal error data 
is the reference)

Table 8  The M-DCCC of the second and third group (Thermal error 
data is the reference)

Group Sensor Speed spectrum

A1 A2 B1

2 01 0.8144 0.9667 0.9487
05 0.7445 0.9088 0.9474

3 03 0.8852 0.8750 0.8981
04 0.8502 0.9236 0.8537
07 0.8956 0.8918 0.8975
08 0.9105 0.9614 0.9333
14 0.9278 0.9632 0.9434
15 0.9221 0.9382 0.9065
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5.4  Modeling results and discussion

The sensor selection result of the proposed method is marked 
as Model1 (sensors 01, 09, and 14). For each set of TKP, the 
49 predictions are carried out. The RMSE and MAX are 
recorded as the evaluation index of modeling accuracy.

For example, when the prediction number is 2 (see 
Table 9), the training set is A1, and the test set is A2. The 

prediction value and residual of Model1, FP1, and GP1 are 
shown in Fig. 19.

The modeling accuracy of Model1 is compared with FP 
and GP, as shown in Figs. 20 and 21, respectively. Com-
pared with FP or GP, Model1 shows high accuracy and 
strong robustness. The RMSE and MAX of 49 predictions 
of Model1 are less than 2.32 μm and 3.73 μm, respectively. 
Besides, the sensor selection process achieves a relatively 

Fig. 17  The relationship between thermal error data and temperature data of A1

Table 9  Numbering rules of 49 
predictions

Training set Test set

A1 A2 A3 B1 B2 B3 B4

A1 1 2 3 4 5 6 7
A2 8 9 10 11 12 13 14
A3 15 16 17 18 19 20 21
B1 22 23 24 25 26 27 28
B2 29 30 31 32 33 34 35
B3 36 37 38 39 40 41 42
B4 43 44 45 46 47 48 49
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Fig. 18  Modeling results of 49 predictions

Table 10  The ranking order of 7 
speed spectrums based on PCC

Ranking order Speed spectrum

A1 A2 A3 B1 B2 B3 B4

1 02 01 07 03 07 07 03
2 06 09 03 07 03 03 07
3 13 07 08 13 14 15 14
4 03 05 04 01 08 08 15
5 07 03 13 02 15 14 02
6 01 13 02 06 13 13 01
7 12 02 01 05 02 02 08
8 05 06 06 08 06 06 06
9 11 12 14 09 01 04 13
10 09 08 05 12 04 01 05
11 10 10 15 14 05 12 09
12 08 11 09 10 12 05 12
13 14 15 12 11 09 09 11
14 04 14 11 04 11 11 10
15 15 04 10 15 10 10 04

Table 11  Classification results of seven speed spectrums based on 
FCM

Speed spec-
trum

Groups

1 2 3

A1 03, 07, 13 04, 08, 14, 15 others
A2 01, 03, 05, 07, 09, 13 04, 08, 14, 15 others
A3 10, 11, 12 04, 08, 14, 15 others
B1 03, 07, 13 04, 08, 14, 15 others
B2 01, 05, 09, 10 04, 08, 14, 15 others
B3 03, 07, 13 04, 08, 14, 15 others
B4 10, 11 04, 08, 14, 15 others

Table 12  Classification results of seven speed spectrums based on 
GA

Speed spectrum Groups

1 2 3

A1 04 08, 14, 15 others
A2 04 08, 14, 15 others
A3 04, 08 14, 15 others
B1 15 04, 08, 14 others
B2 15 04, 08, 14 others
B3 04 08, 14, 15 others
B4 04 08, 14, 15 others
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Table 13  Sensor selection results of the two traditional strategies 
(FCM + PCC and GA + PCC)

Speed spec-
trum

Sensor selection strategy

FCM + PCC GA + PCC

Sensors Label Sensors Label

A1 02, 08, 13 FP1 02, 04, 08 GP1
A2 01, 02, 08 FP2 01, 04, 08 GP2
A3 07, 08, 12 FP3 07, 08, 14 GP3
B1 01, 03, 08 FP4 03, 08, 15 GP4
B2 01, 07, 14 FP5 07, 14, 15 GP5
B3 02, 07, 15 FP6 04, 07, 15 GP6
B4 03, 11, 14 FP7 03, 04, 14 GP7

Fig. 19  Prediction value and residual of Model1, FP1, and GP1

Fig. 20  Modeling accuracy 
comparison between Model1 
and FP
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stable TKP. With the same sensor selection results from 
three speed spectrums, the selected TKP are suitable for all 
seven speed spectrums.

Besides, after the sensor reduction and classification 
based on the proposed method, there are three groups: (sen-
sor 09), (sensor 01 and 05), and (sensor 03, 04, 07, 08, 14, 
and 15). The PCC can also be used to sort sensors. The 
selection results based on PCC are tabulated in Table 14. 
Thus, sensors 01, 09, and 03 are selected as TKP. This selec-
tion result is marked as Model 2, and the modeling results 
are compared with the proposed model (Model 1), as shown 
in Fig. 22. With the same reduction and classification, the 
DCCC-based method still has higher accuracy and stronger 
robustness than the PCC-based method.

6  Conclusion

This paper proposes a three-step sensor selection strategy for 
thermal error modeling: reduction, classification, and selec-
tion. The thermal error experiments with seven speed spec-
trums were carried out on a grinding machine in two seasons. 
The theoretical reasons for inappropriate sensor selection are 
discussed. The proposed method based on DCCC achieves a 
stable set of TKP and shows high accuracy and strong robust-
ness. Some conclusions can be obtained as follows:

1. The preselection of speed spectrums and reduction of 
sensors before classification are necessary. A stable 

Fig. 21  Modeling accuracy 
comparison between Model1 
and GP

Table 14  The sensor selection 
results based on PCC

Speed spectrum Selection 
results based 
on PCC

A1 01, 09, 03
A2 01, 09, 07
B1 01, 09, 03

Fig. 22  The modeling results of Model 1 and Model 2
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set of TKP relies on stable classification and ranking. 
The variable speed spectrums are more suitable for the 
DCCC method than the constant speed spectrums due 
to the characteristic of data distribution.

2. The temperature time series affected by trend can be cal-
culated with a large correlation coefficient. The DCCC 
method can capture this pseudo-correlation phenomenon 
by removing the trends and dividing the time series into 
different subseries. The V-DCCC, M-DCCC, and SW-
DCCC are effective evaluation indexes in sensor selec-
tion process.

3. Sensor selection for the data-driven thermal error mod-
eling is a complex and interactive process. Different 
combinations of TKP have significant differences in 
modeling accuracy. It is achievable to ensure high accu-
racy and strong robustness of the thermal error model 
with a stable and appropriate set of TKP.
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