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Abstract
Developing non-toxic, bioactive, and antibacterial implant devices is an urgent demand in the biomedical field. Here, the 
antibacterial behaviour and bioactivity of the polyetheretherketone (PEEK)-based coating was enhanced via multi-layer 
coating approach. This paper presents a study on antibacterial efficiency and in vitro bioactivity of electrophoretically 
deposited biodegradable gentamicin sulphate (GS)-loaded chitosan (CS)/gelatin (GT)/bioactive glass (BG) layers on PEEK/
BG coatings. As a first layer, PEEK/BG layer was utilized to provide long term stability of the implant and to be a potential 
reservoir for sustainable drug release. Initially, a Taguchi design of experiment (DoE) approach was adopted to optimize 
EPD process of CS/GT/BG coatings on 316L stainless steel (316L SS) substrates. Later, CS/GT/BG coatings including GS 
particles were produced first on the bare 316L SS and then on the PEEK/BG layer. The multi-layered coatings were analysed 
through morphological, chemical composition, antibacterial activity, drug release capacity, and in vitro bioactivity. The GS 
was released from the coatings in the controlled manner and minimum inhibitory concentration was maintained even after 
3 weeks of incubation. The agar disc diffusion tests confirmed that sustained release of GS provided an antibacterial result 
against Escherichia coli (E. coli) and Staphylococcus carnosus (S. carnosus). Acellular in vitro analysis demonstrated the 
bioactive nature of the multi-layered coatings by forming an apatite-like layer on the surface of the coatings after 72 h immer-
sion in the simulated body fluid (SBF). Furthermore, the non-toxic behaviour of the multi-layered coatings was confirmed 
by in vitro cellular studies.

Keywords  Electrophoretic deposition · Chitosan · Local drug delivery · Sustainable antibacterial activity

1  Introduction

Biomedical tools reside within millions of individuals and 
are being implanted in more by new and follow up surger-
ies every year [1, 2]. As a major component of modern 
regenerative medicine, their application comprise on hip/
knee replacement, tissue regeneration, prosthesis, and sus-
tained drug release [2, 3]. Metallic implants are commonly 
used as orthopaedic and internal fixation devices, where 
the mechanical robustness is needed [2, 4, 5]. The proper 

fixation and maintaining a stable interface between the host 
tissue and the implant at both cellular and organ level are of 
vital importance for orthopaedic joints implantation [6, 7]. 
The most encountered fixation issues are related with bacte-
rial infection, wear of implant material due to friction, and 
migration [8, 9]. Due to these problems, osteolysis manifests 
in the bone bed, causing long-term implant loosening.

Surface coatings can manipulate various insufficiencies  
in implants by augmenting natural tissue and implant inter-
actions such as bioactivity, resistance to corrosion, localized 
drug delivery, and cell adhesion [10]. For example, the use 
of bioactive coatings can enhance the osteoconductivity of 
metals [11], of which bioactive glasses (BGs) are poten-
tial candidates [5, 12, 13]. However, bare bioactive ceramic 
coatings present some problems such as high coefficient of 
friction and brittleness, which are generally controlled by 
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producing composite coatings [14]. The addition of BGs 
into a biocompatible polymer tailors the coefficient of fric-
tion and the elastic modulus of the composite coating in the 
range of cortical bone [15] [16].

The complexes of biomolecules and/or natural polymers 
with bioactive ceramics show improved osteointegration 
and mimic the biological morphologies (biomimetic sur-
faces) and processes [17]. Therefore, natural polymers have 
attracted attention owing to their structural similarities with 
the significant portions of the extracellular matrix (ECM), 
superior biocompatibility, and biodegradability [18]. A nota-
ble polymer found in nature chitosan (CS) presents structural 
similarity to glycosaminoglycan, a major part in the ECM 
of bone, which holds a vital role in cell attachment and cell 
proliferation [18, 19], and thus, it is highly recommended 
as a coating on the metallic implants [20]. The interface of 
the coatings with host tissue can be further developed by the 
introduction of proteins. For example, a polypeptide gelatin 
(GT), derived from collagen [21], is the main component of 
the ECM of bone that can be incorporated in the CS-based 
coatings. The main role of GT is to improve cell attachment, 
cell differentiation, migration, and proliferation [10]. The 
tripeptide sequence (RGD sequence) of gelatin facilitates 
the adhesion of osteoblast cells [22].

Electrophoretic deposition (EPD), being a low cost and 
versatile technique, can be considered the method of first 
choice for deposition of novel combinations of biomaterials 
[23], in which the mobility of charged particles or molecules 
is harnessed by applying an electric field [24, 25]. In com-
bination to its economic merits, the processing of EPD at 
ambient temperatures enables the biological macromolecules, 
cells, and antibacterial drugs to be coated on a conductive 
substrate or to be infiltrated into a non-conductive materials 
[23]. CS and its composites can be successfully deposited as 
a continuous film by EPD with ease. Co-deposition of CS 
along with GT via EPD was shown to enhance the prolif-
eration of cells and reduction of the cell apoptosis [26]. For 
example, the introduction of GT in the CS matrix improved 
shear strength and adhesion to osteoblast-like cells [27]. 
In vivo and in vitro investigations of chitosan/gelatin (CS/
GT) coatings were reported by Keenan [28] which demon-
strated the degradation of coatings by lysozymes, accelerat-
ing osteogenesis in the early stage of bone healing process. 
Furthermore, Jiang et al. [27] suggested that the matrix of 
CS/GT composite might be beneficial for loading functional 
agents. The focus of research has shifted towards the func-
tionalization of bioactive coatings by assimilating various 
functional agents, e.g. growth factors, drugs, and enzymes 
since 2014 [26].

To inhibit the bacterial attachment and formation of bio-
film, and to improve the bioavailability of a drug, local drug 
delivery (DD) systems have taken centre stage in the bio-
medical applications, recently. Local DD systems assure the 

required therapeutic amount of a drug over a specified period 
of time at the site of injury, eliminating the risk of serious 
infections and speeding up the curing process. Moreover, 
local DD can decrease the likelihood of toxicity and may 
impart a persisting bactericidal effect, due to the sustained 
drug release, which is frequently introduced in a polymer-
based matrix [29, 30]. An aminoglycoside antibiotic, gen-
tamicin sulphate (GS), is routinely administered for the nurs-
ing of osteomyelitis due to its far-reaching effect against 
various bacteria [31–33]. GS is frequently incorporated in 
the coatings to establish a local drug delivery system and to 
provide long term bactericidal effect [31, 32, 34–38]. Pish-
bin et al. [39] produced GS-loaded CS/BG coatings that dis-
played long-lasting antibacterial effect and augmented cell 
attachment. CaP/CS/GS/carbon nanotube (CNTs) coatings 
were fabricated on magnesium alloy via EPD by Zhang et al. 
[40], and the release of GS was controlled by regulating the 
concentration of CNTs in the composite coating.

In our previous work, we have investigated the in vitro 
bioactivity and adhesion strength of single polyetheretherk-
etone (PEEK) and BG coatings [41], design of experiment 
study of single CS/GT/BG coating [42], and osteogenesis 
and antibacterial activity of multi-layered metallic ions 
doped-BG/CS/GT on PEEK/BG basal layer [43].

Accordingly, in this research work, we produced multi-
layered coatings having sustainable antibacterial activity 
and non-toxic and bioactive surfaces. The biodegradable 
top coating (CS/GT stocked with GS by EPD on the bio-
stable bottom layer (PEEK/BG coatings) can be considered 
an emerging class of multifunctional coatings for metallic 
implants. Special attention was given to the co-deposition 
of CS/GT/BG particles at ambient temperature by adopt-
ing Taguchi design of experiment (DoE) approach for the 
optimization of EPD process in economic terms. A detailed 
microstructural, compositional, and bioactivity analysis is 
carried out. In order to tackle the increasing issues of bacte-
rial infections related with orthopaedic implants, we doped 
GS to the top layer and analysed the antibacterial activity 
and drug release capability of the coatings. The novel classes 
of multi-layered and multifunctional coatings were designed, 
produced, and studied, to deploy in the field of EPD coatings 
for orthopaedic implant applications.

2 � Experimental procedure

2.1 � EPD

2.1.1 � First layer: PEEK/BG coating

We deposited the PEEK/BG bottom layer on a polished 316L 
SS (medical grade) substrate via EPD, described elsewhere 
[44]. Briefly, an ethanol-based suspension including 45S5 BG 
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particles [45] (4 µm mean particle size, Schott™, Germany), 
PEEK particles (10 µm average particle size, 704XF Vic-
trex™), and citric acid (VWR™ International) was prepared. 
A stable and mechanically robust coating of ~ 80 µm at 15 × 15 
mm2 area was produced via EPD and sintering. The cleaned 
316L SS electrodes were inserted into the suspension facing 
one another and constant voltage (80 V) was applied for 90 s. 
The sintering of coatings was done in an air furnace at the 
temperature of 375 °C for half an hour. PEEK/BG coatings 
were used as a substrate for the CS/GT layers in the upcoming 
studies.

2.1.2 � Top layer: CS/BG/GT/GS

A clear CS solution was prepared. First, 0.5 g/L of CS (aver-
age molecular weight, with 75–85% degree of deacetylation, 
Sigma Aldrich™) was mixed in 20 vol.% of distilled water and 
1 vol.% of acetic acid (VWR international). Then, 79 vol.% of 
absolute ethanol was included to the CS solution. Separately, 
a GT solution was formulated. A total of 1.0 g/L GT powder 
(type B, Fluka™) was mixed in 20 vol.% distilled water and 1 
vol.% acetic acid. The mixing was guaranteed by stirring mag-
netically at the temperature of 45 °C for 60 min. Afterwards, 
the suspension was gently cooled off under magnetic stirring. 
Finally, 79 vol.% of ethanol was added to the GT solution after 
cooling. The individually prepared CS and GT solutions were 
then mixed in the volume concentration ratio of 50:50. Opti-
mum concentration ratio of CS and GT were determined by 
using Taguchi design of experiment (DoE) approach (data is 
not shown here). A total of 0.5 g/L 45S5 BG particles and 
2 mg/mL GS (Sigma Aldrich™, Germany) solution in deion-
ized water were poured in the mixed solution. Subsequently, 
solution was put under magnetic stirring for 5 min and ultra-
sonicated for 60 min to ensure the uniform dispersion of the 
solid particles in the solution. The stability of the suspension 
was confirmed by the zeta-potential measurement with a zeta-
sizer (nano ZS equipment, Malvern Instruments™, UK). BG 
incorporated CS/GT films were first deposited on the 316L 
SS substrate to optimize the deposition parameters of EPD 
process and then the PEEK/BG layer was deposited in the 
next step. The PEEK/BG-coated 316L SS was used as the 
substrate and bare 316L SS foils were utilized as the coun-
ter electrode for DC-EPD. The distance of 10 mm was kept 
between electrodes and deposition voltages of 30–50 V were 
applied for 5 min.

2.2 � Characterization of the coatings

2.2.1 � Morphological, compositional, and surface roughness 
analysis

The surface topography and elemental composition of the 
coatings were characterized by microscopic techniques 

including field emission scanning electron microscopy 
(FESEM, LEO 435VP, Carl Zeiss™ AG) and the energy-
dispersive x-ray spectroscopy (EDX), respectively. Fourier 
transform infrared spectroscopy (FTIR) (Nicolet 6700, 
Thermo Scientific™) was used for chemical compositional 
analysis of the coatings in transmittance mode ranging from 
wavenumber of 4000 to 400  cm−1. The crystallographic 
examination was carried out by X-ray diffraction (XRD) (D8 
Advance, Bruker™) in the 2ϑ range of 20 to 80°.

Laser profilometer (UBM, ISC-2) was used to analyse the 
average and maximum surface roughness of the coatings. 
In order to measure the surface roughness of the coatings 
5–7-mm long line was drawn on the surface of each sample 
(scanning velocity of 400 points per second).

2.2.2 � Drug release capability and antibacterial activity

The amount of GS incorporated in the coatings was quanti-
fied by scraping off the substrate and immersed in 1 mL 
deionized water (borate buffer pH 10.4). After 10 min soni-
cation, the immersion samples were centrifuged and the 
supernatant was tested for dissolved GS, according to [39]. 
To quantify the drug release of GS, the multilayer coatings 
(15 × 15 mm2) were immersed in the solution of 10 ml of 
PBS, and then incubated at the temperature of 37 °C for 
60 min upto 21 days (experiment was done in triplicate). At 
specified time intervals, 2-ml aliquots were extracted and 
replaced with fresh PBS solution to preserve the physiologi-
cal conditions. At the wavelength of 248 nm, characteris-
tic absorption peak of GS was measured and monitored by 
using UV/VIS Spectrometer (Specord40 by Analytikjena) 
and WinASPECT 2.5.8.0 software, respectively. The per-
centage of cumulative drug release at each time point (ρx) 
was computed as per Eq. 1, where mx and mt represent mass 
of released drug at individual time intervals and cumulative 
release of GS in the duration of 180 days, respectively. ρx 
is the percentage of cumulative drug release at each time 
interval.

Agar disc diffusion testing was performed on PBS (con-
trol sample), CS/GT/BG, controls, and on the GS-loaded 
CS/GT/BG coatings (CS/GT/BG/GS). The 10-µL aliquots, 
which were taken for drug release, were dropped to the paper 
discs (diameter = 10 mm). Agar culture plates were filled 
homogeneously with 20 mL of agar and then pouring over 
it 20 µL of LB-media containing Gram negative bacteria; 
Escherichia coli (E. coli) and Gram positive; Staphylococ-
cus carnosus (S. carnosus) having optical density of 0.015 
(OD600). The agar plates containing paper discs were then 
incubated at 37 °C for 24 h. After 24 h, the cultured agar 
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plates were photographed and images were analysed using 
‘ImageJ’ software for inhibition zones measurement (each 
test was carried out in triplicate).

2.2.3 � In vitro bioactivity studies

SBF tests   For in vitro acellular bioactivity evaluation, the 
coatings were immersed in simulated body fluid (SBF), as 
suggested by Kokubo and Takadama [46]. Coated samples 
of 15 mm × 15 mm dimensions were soaked in 50 mL of 
SBF and then kept in the incubator at the temperature of 
37 °C for a duration of 1, 3, 7, and 14 days. Samples were 
removed from SBF at each specified time interval, rinsed 
gently with distilled water, and then stored in a desiccator 
after drying in air. The acellular bioactivity of the coat-
ings was assessed for the formation of apatite like crystals 
through SEM–EDX, XRD, and FTIR techniques.

Cell studies  For in vitro cytocompatibility testing of the 
coatings, human osteosarcoma cell line MG-63 (commer-
cially available and purchased from Sigma Aldrich, Ger-
many) was used. Disc-shaped multi-layered CS/GT/BG 
coatings and the coatings of CS/GT/BG/GS on PEEK/BG 
(having diameter of 13.6 mm) were used for cell studies. 
PEEK/BG layer and tissue culture plate were used as con-
trol samples. Dulbecco’s modified Eagle medium (DMEM) 
was used for cell culture, augmented with 10 vol.% of foetal 
bovine serum (FBS; Sigma-Aldrich) and 1 vol.% of penicil-
lin/streptomycin (Pen-Strep; Sigma-Aldrich). The arrange-
ment was then placed in the incubator under a humidified 
atmosphere containing 5% CO2 (Glaxy 170R, New Brun-
swick) at 37 °C. To achieve up to 80–90% of confluence, 
75 cm2 canted-neck cell culture flasks (Greiner-Bio One) 
were used for cell growth for 48 h. The grown cells were 
then washed with phosphate buffer saline (PBS; Gibco) and 
used medium was discarded. Afterwards, trypsin/EDTA 
(Life Technology) was deployed to detach cells from the 
wall of the flask. The numbers of living cells were counted 
in a haemocytometer by introducing trypan blue dye (Sigma-
Aldrich). The samples containing cells were sterilized in 
24-well plate under UV light for 1 h. After sterilization, 
1 mL of cell suspension including 105 cells/mL was added 
to each well. The cells were then allowed to grow on the 
control samples and coatings for 48 h at 5% CO2 humidity 
level and 37 °C temperature. For cell viability quantifica-
tion, the WST-8 (water-soluble tetrazolium salt) test was 
performed. At each time interval, the used culture medium 
was removed and replaced with 400 μL fresh DMEM solu-
tion containing 1% WST-8 reagent in each well pursued by 
incubation, following standard protocols (Cell counting kit 
8: Sigma Aldrich). A microplate-reader (Anthos-Phomo, 
Germany) was used to measure absorbance at 450 nm. The 
absorbance value of the tissue culture plate (positive control) 

was taken as 100% cell viability. The viability of the sample 
coatings was normalized against the positive control. The 
results obtained from experiments (performed in pentapli-
cate) were stated as the mean value ± standard deviation 
(SD). Moreover, for statistical analysis, one-way analysis of 
variance (ANOVA) with p < 0.05, p < 0.01, and p < 0.001 
was adopted and for post hoc analysis, Tukey’s range test 
was utilized (the analysis was carried out using a statistical 
software; MINITAB 16™).

For qualitative evaluation of the morphology and viability of  
the cells attached to the coatings surface after 48 h of incubation,  
the cells were dyed with DAPI (4′,6-diamidino-2-phenylindole) 
and CalceinAM (Life Technologies, USA). Cells were washed 
with PBS briefly and then 4 μL CalceinAM/DAPI per mL of 
PBS was added to the cells. After 60 min of incubation time, 
samples were again washed with PBS and fixed with a 3.7 wt.% 
paraformaldehyde (PFA Sigma-Aldrich, Germany) solution. 
Fluorescence microscopy (FM) (Axio Scope A.1, Carl Zeiss 
Microimaging GmbH) was used to record cell viability.

SEM analysis was performed to study the cell morphol-
ogy attached to the multi-layered CS/GT/BG/GS on PEEK/
BG layers. To fix the cells to the coatings surface, two dif-
ferent fixing solutions were utilized. SEM-Fixer I solution 
had the composition of 1 mL of 50% of glutaraldehyde 
solution (0.1%), 25 g of sucrose, 10 g of paraformaldehyde, 
and 500 mL of sodium cacodylate trihydrate whereas the 
composition of SEM-Fixer II solution was 3 mL of 50% 
glutaraldehyde solution (0.3%), 15 g of paraformaldehyde, 
and 500 mL of sodium cacodylate trihydrate. At first step, 
samples were soaked in 1 mL of SEM-Fixer I solution for 
45 min and then washed with 1 mL of PBS. At second step, 
samples were soaked in 1 mL of SEM Fixer II solution for 
again 45 min and subsequently washed with 1 mL of PBS. 
Then samples were dehydrated with an increasing etha-
nol series (purity level 30–99%). In the end, samples were 
dried supercritically for approximately 60–90 min using EM 
CPD300 dryer (Leica, Germany).

3 � Results and discussion

3.1 � Bare chitosan/gelatin/BG coatings

3.1.1 � Suspension stability

The stability of the solutions, which depends on intermo-
lecular interactions, was measured by assessing their pH 
dependent zeta-potential. The pure GT (1.0 g/L) and CS 
(0.5 g/L) solutions exhibited positive zeta-potentials at pH 
value of 4.5, which closely agrees with the data found in 
literature [47]. The mixtures of CS and GT solution also 
showed a positive zeta-potential calculated as + 45 ± 7 mV, at 
a pH value of 4.5, which was also reported by Ma et al. The 
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reason for higher zeta potential values could be the repulsive 
intermolecular interaction between CS and GT, which facili-
tated the stability of suspension [48]. At acidic pH, CS and 
GT were charged positively exerting repulsive forces (FR) 
among them. However, opposite charge was established on 
some side groups, due to which they may interact overcom-
ing electrostatic repulsive forces (FR) [26, 49]. The electro-
static attractions (FA) between the NH3

+ groups of CS and 
COO− groups of GT may lead towards the formation of a 
polyelectrolyte complex [50]. As a consequence, although 
the possible interaction between the CS and GT molecules, 
no precipitation was occurred, and the clear blend solution 
had high enough stability for electrophoretic deposition.

The positive zeta-potential value of + 35 ± 7 was main-
tained at the pH value of 4.5 on addition of BG to the CS/
GT suspension. The attractive forces between oppositely 
charged particles, i.e. BG (positive) and side groups of CS/
GT (negative), should cause the adsorption of CS/GT mol-
ecules on the surface of BG particles at an acidic pH [18], 
which could facilitate the electro-steric stabilization of the 
BG particles. Moreover, the hydrophilic groups present in 
GT were adsorbed on the BG surface. The adsorption of CS/
GT molecules on BG surface and positively charged poly-
electrolyte were responsible for achieving co-deposition of 
CS/GT/BG. Therefore, CS/GT polyelectrolyte complex and 
the BG particles possessing positive zeta-potential migrate 
towards the cathode under the applied electric field and get 
deposited on the cathode surface as a continuous film of CS/
GT reinforced with BG particles [50].

3.1.2 � Statistical analysis

To optimize the working parameters for EPD and composi-
tion of the suspension, the Taguchi design of experiment 
(DoE) approach was applied. It helped achieve high deposi-
tion rate and low standard deviation values for the CS/GT/
BG coatings (data not presented here). The parameters were 
optimized at 30 V of the deposition voltage, 5 min of deposi-
tion time, and 50:50 ratio of the volume concentrations. The 

assessment of the kinetics of the EPD process was based on 
Hamaker’s model at the optimum concentration ratio. Fig-
ure 1 shows the variation in current density as a function of 
deposition time at different applied voltages and the deposi-
tion yield. The values of current density remained almost 
constant during the whole deposition time at each applied 
voltage, i.e. 20 V, 30 V, and 50 V (Fig. 1A). The deposition 
rate increased with the increase in deposition time and volt-
age, as expected. However, deposition yield deviated from 
linearity at the lowest applied voltage and deposition time 
(10 V; 1 min) and at the highest applied voltage and deposi-
tion time (50 V; 9 min). The deposition rate was linear in 
the range of 20–30 V (Fig. 1B). It may be suggested that the 
lower applied voltage and short deposition time caused to 
form an insufficient coating, whereas, the highest voltage 
(50 V) led to deposit extreme amount of BG particles that 
would inhibit the deposition of CS and GT matrix. As a 
result, according to the Taguchi DoE studies, we chose the 
optimum parameters as 50:50 CS/GT volume concentration, 
30 V and 5 min, respectively. The detail study on the opti-
mization of the composite coating was published in [42].

3.1.3 � Coating morphology

Figure 2 illustrates the SEM images of surface and cross 
section, and EDX elemental mapping of SEM analysis of 
the CS/GT/BG coatings on 316L SS that were produced with 
optimized EPD parameters, anticipated by DoE approach. 
The coatings had reasonably homogenous microstructure 
consisting of a film like layer considered the CS/GTmatrix 
and reinforced BG particles that were distributed homoge-
nously within the matrix (Fig. 2A). However, a little amount 
of microspores was spotted in the coatings, for which the 
reason could be the occurrence of water electrolysis [43]. 
The cross section of CS/GT/BG showed a uniform coating 
(film-like structure) of 4–5 µm thickness (Fig. 2B, C). The 
thickness of coating noted in this study was in accordance 
to the literature [30, 47, 49].

Fig. 1   A Plot for the variations 
in current density with deposi-
tion time at different voltages. 
B Plot for the variation in the 
deposition yield at various EPD 
parameters. (Reproduced from 
[42])
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3.2 � Multilayer coatings (CS/GT/BG/GS coatings 
on PEEK/BG layer)

3.2.1 � Deposition mechanism, morphological, and structural 
investigations

Deposition phenomenon of multilayer coating  Once the 
optimized parameters for CS/GT/BG coatings deposited over 
316L SS were obtained [42], corresponding parameters for 
EPD and composition of the suspension were used to pro-
duce multi-layered coatings by depositing the CS/GT/BG on 
PEEK/BG layers which were previously attained by EPD. 
We simply record the value of the current density at 30 V 
for the deposition time of 5 min with reference to the 316L 
SS substrate. Upon changing the substrate, i.e. PEEK/BG-
coated 316L SS substrate, we apply the 30 V but the value 
of current density was lower compared to that of the 316L 
SS substrate. We simply keep on increasing the deposition 
voltage, i.e. 50 V till the point we achieve the same current 
density that we obtained for 316L SS substrate at 30 V (the 
optimum deposition parameter).

The deposition phenomenon of the GS-loaded CS/GT/
BG on the PEEK/BG layer is exhibited in Fig. 3. It was 
reported in the Sect. 2.1 that the suspension including CS 
and GT molecules and BG particles was charged positively. 
Therefore, a continuous film of GS-loaded CS/GT/BG was 
deposited on the cathode surface; in this case, PEEK/BG 
coated 316L SS. It is worth mentioning that the porosities 
found in the layer of PEEK/BG may be held responsible for 
providing a conductive passage to the charged molecules. 
Furthermore, PEEK/BG coatings were charged negatively at 
the pH value of 4.5 [44], which may have favoured the depo-
sition of positively charged CS and GT molecules present in 
the suspension. Therefore, this attractive sort of interaction 

between two layers, i.e. PEEK/BG and CS/GT/BG/GS may 
improve adhesion.

Bottom PEEK/BG layer  Figure 4A, B demonstrate the SEM 
images of surface and cross section of PEEK/BG coatings 
deposited electrophoretically and then sintered at 375 °C. 
The surface of the coatings presented a fairly homogenously 
microstructure including PEEK matrix reinforced with BG 
particles (Fig. 4A). Moreover, the matrix and the particles 
were highly packed and uniform thickness of 80–85 µm was 
achieved. The PEEK/BG-coated 316L SS samples were 
mechanically robust and would ensure the long-term stabil-
ity, thus were utilized as the substrates to fabricate multi-
layered coatings. The porous nature and rough surface of 
the coatings is visible from both surface and cross section 
SEM images. The porosities and valleys in/on the coatings 
were used as the reservoirs for the top CS/GT-based coat-
ings and were beneficial to the sustainable drug release. The 
details of the effects of deposition kinetics and sintering on 
the mechanical properties (adhesion and bending strength) 
of the coatings was recently published [41].

Morphology of the multilayer coatings  Figure 4D, E show 
the SEM images of the surface and cross section of mul-
tilayered coatings. The CS/GT/BG coating penetrated the 
pores in the PEEK/BG layer to some extent, as displayed 
in the SEM image of the surface (Fig. 4D). Nevertheless, 
multilayered coatings maintained the rough surface due to 
the thin layer of CS/GT/BG/GS and represented the surface 
of PEEK/BG layer. A thinner, film like layer can be seen on 
the PEEK/BG layer (Fig. 4E) revealing that CS/GT/BG had 
lower thickness than that produced on bare 316L SS. The 
similar protocol was employed by [51] to examine cross-
section of the coatings. This result can be considered due 
to the deposition of the top layer on the rough surface and 

Fig. 2   SEM images of CS/GT/BG (0.5 g/L) coatings on 316L SS produced at 30 V and 5 min of deposition time: A image at the surface, B 
image at the cross section, C EDX mapping at the cross section. (Reproduced from [42])
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in the porous structure of the PEEK/BG layer. The conduc-
tive pathway made by the porosities at the PEEK/BG layer 
allows to deposit the CS/GT/BG/GS deep inside the pores 

of the PEEK/BG layer, which may facilitate the sustained 
release of the GS over prolonged periods. Figure 4F dis-
played the presence of GS nanoscale precipitates in the CS/

Fig. 3   Schematic illustration of the deposition phenomenon for multi-layer coatings

Fig. 4   SEM images of PEEK/
BG and GS-loaded multilayer 
coatings A the surface of coat-
ings of PEEK/BG sintered at 
375 °C and B the cross section 
C point EDX at BG particles 
and GS precipitates D the 
surface of GS-loaded CS/GT/
BG coatings over PEEK/BG 
and E CS/GT/GS layer cross 
section, F BG particles and GS 
precipitates displayed at high 
magnification, G elemental 
distribution across the cross-
section of multilayer coatings, 
and H EDX mapping of the 
multilayer coatings
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GT/BG coating, and further confirmation of GS precipitates 
was provided by the EDX analysis, as presented in Fig. 4C. 
EDX analysis demonstrated the increment in the intensity of 
sulphur peak of the precipitates and decrement in the inten-
sity of Ca and P peaks, which proved the occupancy of GS 
in the multilayer coatings qualitatively. Figure 4G shows the 
elemental distribution across the cross-section of the multi-
layer coating shown in Fig. 4E. It was observed that the Na, 
Si, Ca, C, and P are distributed across the cross-section (the 
presence of Na, Si, Ca, and P is attribute to the BG and the 
presence of C may indicate the presence of polymeric con-
tent in the coatings). Figure 4H shows the elemental EDX 
mapping of the CS/GT/BG/GS coatings deposited on PEEK/
BG layer. It was observed that the BG particles and GS pre-
cipitates are dispersed fairly uniform on the top surface of 
the coatings (S represents GS precipitates whereas Si, Ca, 
and Na represents BG).

The adhesion strength of the multilayer coatings was not 
investigated in the current study. However, the adhesion 
strength of the PEEK/BG layer was studied in our previous 
studies. PEEK/BG coatings exhibit the adhesion strength of 
4B (qualitatively) and 13–18 N qualitatively [2, 3]. The top 
layer just infiltrated in the porous PEEK/BG layer, therefore, 
no clear interface was observed. Since the top layer did not 
show a separate interface. Thus, the adhesion strength of the 
multilayer coatings is expected to be similar to that of the 
PEEK/BG coatings (as PEEK/BG layer is in contact with 
the substrate).

Table 1 shows the elemental composition of CS/GT/BG/
GS coatings deposited on PEEK/BG layer. The results of the 
Table 1 are in agreement with the Fig. 4G, H. It is important 
to mention that the detection of C via EDX is not accurate. 
Therefore, the presence of CS/GT and PEEK in the mul-
tilayer coatings system was confirmed via FTIR analysis.

Chemical composition of the multilayer coatings  The FTIR 
spectra were taken separately for each set of coatings. For 
example, first FTIR of PEEK/BG coating was conducted fol-
lowed by the, CS/GT/BG coating on SS, multilayer coatings 
and GS-loaded multilayer coatings. The obtained spectrum 
was plotted in Origin® by using the option “stack lines by 
offsets”. Figure 5 illustrates the FTIR spectra of PEEK/BG, 

CS/GT, and multilayered coatings. FTIR bands of PEEK/BG 
and CS/GT coatings are seen overlapped in the multilayer 
spectrum. For instance, the FTIR bands of the multilayer 
coating at 1700 cm−1–1300 cm−1 were dominated by the 
peaks relevant to the polymer that can be referred to the 
CS, GT, and PEEK molecules. These peaks representing 
C = O bonds, C-H bonds, and symmetrical stretching of the 
nitro group were found overlapping at 1651 cm−1 [47, 52], 
1536 cm−1 [53], and at 1454 cm−1 [54], respectively. The 
peaks related to BG particles in the multilayer spectrum 
were perceived at lower wavenumbers such as phosphate and 
Si–O-Si bending were spotted at 461 cm−1 and 562 cm−1, 
respectively [44]. The deposition of CS and GT in the mul-
tilayer coatings was indicated by the existence of amide 
I and amide II bands in the multilayer spectrum (Fig. 5). 
Moreover, the incorporation of GS widens the O–H band as 
shown in spectrum 4, the reason could be the formation of 
hydrogen bond between amide groups of CS/GT and O–H 
group of GS [55]. Even so, FTIR spectra were not able to 
show convincing proof of the successful deposition of GS 
in the multilayer coatings.

3.3 � Performance analysis of multilayer coatings

3.3.1 � Drug release capability

Drug release capability of a device/material is important to 
investigate whether it can carry or not, a required therapeutic 
amount of a drug at the targeted site over a certain period 
of time. Figure 6 shows the curve of drug release obtained 
for GS for the multilayer coatings. Comparing the fitting 
of experimental data to four different models, namely the 
Peppas-Sahlin model was found as the best fitting model 

Table 1   Elemental EDX 
analysis of the GS-loaded CS/
GT/BG coatings over PEEK/
BG layer

Element Atomic %

C 73.11
O 20.93
Na 2.05
Si 0.28
S 3.25
Ca 0.37
Total: 100.00 Fig. 5   FTIR spectra of PEEK/BG coating (1), CS/GT/BG coating on 

SS (2), multilayer coatings (3), and GS-loaded multilayer coatings (4)
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with R2 of 0.9613. The curve presented three main regions. 
Region-I corresponded to primary burst release of drug at 
day 1, during which ~ 35% of the drug got liberated mainly 
due to the direct diffusion of drug from the surface of the 
multilayer coatings to the PBS (phosphate buffer saline) 
medium [29, 35, 56]. Therefore, it is right to conclude that 
on day 1 the drug was mainly released as a result of dif-
fusion mechanism [29, 57]. After 24 h of immersion in 
PBS medium, the CS/GT film in the upper layer may start 
degrading [43]. In conclusion, the drug released continu-
ously at accelerated rate, i.e. almost 60% of the drug was 
released during first 7 days (same effect was reported in the 
literature [55]). Consequently, it can be hypothesized that 
after day 1, the combined effect of degradation and diffu-
sion mechanisms governed the kinetics of drug release [58]. 
As diffusion rate is in direct relation with the concentra-
tion gradient, GS released with a higher rate in region-I. 
In region-II, despite the dissolution of the CS/GT matrix, 
drug release rate was slowed down by the decreased con-
centration gradient between the multilayer coating and the 
medium. In other words, the available dosage of GS in the 
multilayer coatings reduced after 24 h of incubation period. 
In the region-III, drug release was very slow due to the fact 
that degradation of the most of the CS/GT matrix occurred 
and the little amount of the left over drug in deeper pores of 
PEEK/BG layer was released at very lower rates in the end. 
During EPD, the conductive pathway in the porous PEEK/
BG coating allows to deposit the GS-loaded top layer into 
the deeper pores. Therefore, the porous and rough layer of 
PEEK/BG facilitated the release of GS in a controlled man-
ner over a time period of 21 days, as shown in Fig. 6.

3.3.2 � Antibacterial activity

The antibacterial behaviour of multilayer coatings was veri-
fied by adopting indirect contact method which showed the 
generation of inhibition zone on agar medium against bac-
teria including S. carnosus and E. coli. The 10-µL aliquots 
taken from the pristine PBS solution (control), CS/GT/BG 
coating immersed PBS solution (control) and multilayer 
coatings immersed PBS solution (sample) were placed on 
bacteria inoculated plates. The control samples exhibited 
no antibacterial activity against both bacteria. However, 
multilayer coatings presented bactericidal effect against S. 
carnosus and E. coli (Fig. 7). A bacteria free zone (inhibi-
tion zone) was formed around the paper discs. GS, a broad-
spectrum antibiotic, released from the multilayer coatings 
within the immersion time, which was confirmed by the 
UV/VIS studies, spread to the agar medium, and killed the 
bacteria to some extent. The molecular structure of GS is 
responsible for its bactericidal property. GS forms bond with 
the bacterial cells and produce abnormal proteins having 
bactericidal effect [37, 55, 59].

To achieve a long-term antibacterial outcome, the drug 
should be liberated above the minimum inhibition concen-
tration (MIC) in a sustainable manner over longer periods 
of time. To analyse the antibacterial efficacy, the change 
in the inhibition halo with the immersion time was calcu-
lated using ‘ImageJ’ software. The largest inhibition zones 
(halo = 10 ± 1 mm) were exhibited by the multilayer coat-
ings that were incubated in PBS for 6 h. The reason for this 
result could be the primary burst release and diffusion of the 
GS from the multilayer coating during the initial 6 h. The 

Fig. 6   Cumulative release of 
GS from the multilayer coat-
ings in PBS (data provided is 
the mean ± standard deviation 
for experiments performed in 
triplicate)
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inhibition zone narrowed with increasing incubation time 
(Fig. 7), which was in accordance to the kinetics of drug 
release showing the decreased release of the GS due to the 
degrading of the multilayer coating. However, the released 
concentration of GS was higher than the minimum inhibi-
tory level (0.2–0.5 mg/L) even after 21 days, which was able 
to perform antibacterial activity against gram positive and 
gram negative bacteria [60]. Multilayer coatings were antici-
pated to present antibacterial effect for longer period of time.

Due to the higher surface roughness and porous structure 
of the PEEEK/BG, the design of multilayer coating con-
trolled the release of GS; as a result, a zone of inhibition 
developed even after 2 weeks by the multilayer coatings. 
The average surface roughness (Ra) measured for the multi-
layered coating was ~ 1.5 µm. The surface roughness also 
influences the attachment of bacteria and cells to the coating 
[61]. With the growing resistance of bacteria towards antibi-
otics, there is a need to modify the material surface so that 
it can resist the attachment and spreading of bacterial film. 
The roughness size achieved is usually comparable with the 
size of bacteria to effectively inhibit bacterial adhesion to 
the surface [62]. The fundamental mechanism behind this is 
the rupture of bacterial cell wall by the sharp grooves on the 
surface killing the bacteria [63]. Thus, synthesizing modified 
surface coatings and incorporating antibiotics such as GS in 
it can provide a potent way out of the bacterial infections. 
It is concluded that coatings of multilayer structure may be 
considered a preferred design to control the long term drug 
release and to maintain prolonged bactericidal affect.

The coatings developed in this study showed the burst 
release of GS initially. The burst release of GS is useful in 

preventing the formation of biofilm. The GS release even 
after 6 h of incubation was enough to develop the zone of 
inhibition against gram-positive and gram-negative bacteria. 
On the other hand, the multilayer coating also provided the 
sustained release of GS. For example, supernatants obtained 
after 2 weeks of incubation were antibacterial against the 
both types of bacteria. Thus, we concluded that the multi-
layer coating developed in this study can provide sustainable 
antibacterial effect.

3.3.3 � In vitro bioactivity

Multilayer coatings (CS/GT/BG/GS coatings on PEEK/
BG layers) were soaked in SBF medium for 1, 3, 7, and 
14 days, to qualitatively evaluate the bioactivity of coat-
ings. Figure 8 demonstrates the surface SEM images of 
multilayer coatings soaked in SBF medium up to 14 days. 
After 1 day of immersion, the surface morphology of the 
multilayer coatings began changing. A porous layer consist-
ing of nanocrystals was nucleated and grew laterally on the 
surface (Fig. 8A). The multilayer coatings were completely 
covered by these nanoparticles after 3 days of incubation, 
which can be ascribed to the apatite crystals. Moreover, 
crystals of apatite were observed to grow vertically with 
increasing immersion time (Fig. 8B). The early formation 
of crystal of apatite and the subsequent growth of the apatite 
layer within the immersion time revealed that multilayered 
coatings were bioactive under in vitro conditions and thus 
it may be suggested that multilayered coatings would show 
in vivo osteoconductive property. The good bioactivity of 
the multilayer coatings may also be attributed to the surface 

Fig. 7   Inhibition zone test with 
gram positive and gram nega-
tive bacteria (E. coli and S. car-
nosus) for multilayer coatings at 
different time durations
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roughness of the coatings [64]. The EDX spectra of the mul-
tilayered coatings immersed in SBF for 1 day and 14 days 
are shown in the inset figures in Fig. 8. The intensity of Si 
peak (assigned to the BG) decreased after immersion in SBF 
(Fig. 8A) compared to the EDX pattern before immersion in 
SBF (Fig. 4C). The decrease in the intensity of the Si peak 
may indicate the dissolution of BG or the formation of thick 
apatite-like layer on the surface of coatings. Furthermore, 
the atomic percent of Ca and P increased with the increase 
in immersion time (Table 2). The intense and progressive 
development of the Ca and P peaks with the immersion 
time implied that the apatite like layer was gradually grown 
within the immersion time [55, 65].

Figure 9 illustrated the XRD patterns and FTIR spec-
tra of the multilayer coatings immersed in SBF medium for 
various durations. XRD and FTIR analyses illuminated the 
carbonated hydroxyapatite formation on the multilayer coat-
ings [66]. New XRD peaks at 2θ =  ~ 25.8° and at 2θ =  ~ 32° 
arisen after 24 h of incubation in SBF medium (Fig. 9A). 
These peaks can be referred to the formation of hydroxyapa-
tite crystals on the multilayer coatings (the peaks were attrib-
uted to HA on the basis of JCPDS-9–432). The intensity 
of the peaks at 2θ = 25.8° and at 2θ = 32 were observed to 
increase with the time of immersion, indicating the growth 
of apatite-like crystals [53, 55]. New bands representing 
phosphate (560 cm−1, 610 cm−1, and 1014 cm−1 [67]) and 
carbonate (873 cm−1 and 1400 cm−1 [10]) were investigated 
at the FTIR spectrum of the multilayer coatings immersed 
in SBF for 1 day (Fig. 9B). Moreover, the intensity of silica 
peak decreased at increased incubation period. The growth 
of apatite crystals was confirmed by the relative increase 
in the intensity of phosphate peaks with the prolonged 
immersion period [10, 67]. The formation of carbonated 
hydroxyapatite crystals was confirmed by the presence of 
carbonate and phosphate bands [68]. Furthermore, FTIR 
analysis authenticated the bioresorbable character of the CS 
and GT film at the upper layer. The intensity of the amide-I 
(1645 cm−1 [47]) and amide-II (1558 cm−1 and 1406 cm−1 

[47]) peaks corresponding to relevant bands progressively 
reduced with the immersion time (Fig. 9B). Therefore, we 
concluded that CS and GT exhibited the required degrada-
tion behaviour upon immersion in SBF medium, which was 
also in agreement with the data reported in the literature 
[69].

3.3.4 � In vitro cellular studies

Figure 10A, B show the cell density and distribution on 
PEEK/BG coatings and on tissue culture plate (TCP). It was 
observed that the cells were uniformly spread on the tissue 
culture plate with relatively higher cell density in compari-
son to the PEEK/BG coatings. The relative higher value of 
average roughness associated with the PEEK/BG coatings 
led to the decrease in the cell density.

Figure 10C, D demonstrate the cell density and their 
distribution on the surface of multilayer coatings. Dense 
and evenly dispersed, living cells in a large number with 
a relatively large nucleus were spotted on the surface of 
both coatings (Fig. 10C, D). The images of fluorescence 

Fig. 8   SEM images of mul-
tilayer coatings after immer-
sion in SBF medium for: A 
1 day and B 14 days (inset 
figures show the EDX spectra 
extracted from the surface of the 
immersed samples)

Table 2   Elemental EDX analysis of the multilayer coatings after 
immersion in SBF for 1 and 14 days

Element Atomic % after 1 day of 
immersion in SBF

Atomic % after 14 days 
of immersion in SBF

C 19.32 16.83
O 63.59 63.57
Si 0.30 -
Na 1.06 0.47
Mg 0.43 0.42
P 5.86 7.23
Cl 0.70 0.29
Ca 8.50 11.08
Fe 0.25 0.10
Total: 100.00 100.00
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microscopy showed that the GS loading to the multilayer 
coatings (Fig. 10D) caused no harmful effect on the MG-63 
cells growth after 2 days of cultivation as compared to the 
CS/GT/BG coatings, confirming the biocompatible and non-
toxic behaviour of GS in the multilayer coatings. It may be 
suggested that the hydrophilic nature and rough surface 
(Ra ~ 1.5 µm) of the multilayer coating facilitated the disper-
sion and attachment of cells, and thus MG-63 cells attached 
and spread over the surface of coatings [70, 71].

The cellular activity of the CS/GT/BG coatings (with 
or withoutGS) on the layers of PEEK/BG was investigated 
by the WST-8 assay based on the percentage of cell viabil-
ity. Figure 10E displays MG-63 cell viability on the bare 
PEEK/BG coatings and multi-layered coatings. The coat-
ings of CS/GT/BG and CS/GT/BG/G on PEEK/BG layers 
facilitated the proliferation of osteoblast-like MG-63 cells 
in the initial incubation period of 2 days. The differences 
in cell viability (measured in percentage) between the 
positive control (tissue culture plate) and the multilayer 
coatings with and without GS loading were not significant 
at p < 0.05. Furthermore, the percent cell viability was sta-
tistically similar for the two multilayer coatings (with and 
without GS loading), therefore, it can be concluded that 
the addition of GS caused no cytotoxicity in the multilayer 
coatings, (Fig. 10E). The results of cell viability studies 
in relation to the in vitro bioactivity studies (Fig. 9) con-
firmed loaded multilayer coatings are biocompatibile and 
bioactive (promote the formation of new bone). Similar 
results for GS-loaded CS/BG composite coating have been 
presented by Pishbin et al. [55]. Furthermore, in compar-
ison to the PEEK/BG coating, the incorporation of the 
top layer (BG reinforced CS/GT layer) enhanced the cell 
viability, which was in agreement with the literature [72]. 
We concluded relying on the fluorescence microscopy and 
cell viability test results that dissolution of BG and the 
release of GT (and CS) multilayered coatings persevered 
superior osteoblast cells adherence and proliferation due 
to the surface topography [21, 70, 71, 73, 74]. Moreover, 

Fig. 9   A XRD analysis of 
multilayer coating before and 
after immersion in SBF. B FTIR 
analysis of the coatings before 
and after immersion in SBF

Fig. 10   Fluorescence microscopy images of osteoblast-like MG-63 
cells cultured on A PEEK/BG coatings, B tissue culture plate, C GS-
loaded multilayer coatings and D multilayer coatings stained with 
Calcein and DAPI after 2 days (live cell in green and nuclei in blue), 
and E osteoblast-like human cells (MG-63) response to (1) tissue cul-
ture plate (control), (2) PEEK/BG coatings, (3) multilayer coatings, 
and (4) GS-loaded multilayer coatings. *** symbolize the significant 
difference between the two systems at p < 0.001 and # symbolize the 
in-significant difference between the two systems (data presented here 
is the mean ± standard deviation of two separately performed experi-
ments in pentaplicate)

3896 The International Journal of Advanced Manufacturing Technology (2022) 120:3885–3900



1 3

the degradation behaviour is enhanced by the presence of 
GT, resulting in the reduced steric hindrance and enabling 
cells to grow and proliferate [72].

The important biochemical behaviour is indicated by the 
morphology of cells such as adhesion, proliferation, and 
migration on a relevant material/substrate [75]. Figure 11 
conveys the SEM analysis showing morphology of MG-63 
cells on the GS-loaded CS/GT/BG on PEEK/BG layer. The 
SEM images reveal that MG-63 cells got attached on the 
surface of CS/GT/BG/GS coatings over the provided culti-
vation period. Due to the presence of high adhesive protein 
content, the cells got elongated and adopted a strong attach-
ment with the matrix and guided morphology (Fig. 11). The 
CS/GT matrix degraded with time and the porous and rough 
surfaced PEEK/BG bottom layer came to the surface causing 
the embedded cells to experience low steric hindrance [72].

It is concluded by many researches that the peptides 
responsible for cell binding, specifically RGD sequence 
helps to improve the osteogenic differentiation of osteoblast 
cells [61, 76]. The RGD sequence of collagen is incorpo-
rated by the GT [77, 78]; we therefore concluded that the 
RGD peptide found in the coatings stimulates the activity 
of cell integrin receptors that may play a significant role in 
osteogenic differentiation. The cell viability and intercon-
necting cell spreading networks can be enhanced by the pres-
ence of GT which confirms the preferability of CS/GT/BG/
GS coatings for orthopaedic demands and possibly for bone 
tissue engineering, e.g. as a coating for scaffolds.

4 � Conclusions

In this study, a multi-layered coating was designed to 
develop a sustainable antibacterial, non-toxic, and bioac-
tive coating. PEEK/BG-deposited 316L SS provided a 

potent platform for the deposition of biodegradable CS/GT/
BG/GS composite coatings via EPD, in which the working 
parameters were optimized by Taguchi design of experiment 
approach (DoE). The final remarks of this research work are 
listed below:

1.	 Compositional and morphological analysis: The SEM 
and FTIR analyses indicated the favourable deposition 
of CS/GT/BG on PEEK/BG layers, whereas EDX and 
UV/VIS analyses verified the incorporation of GS in 
the multilayer coatings. The CS/GT/BG/GS coating was 
uniformly spread on the rough surface of the PEEK/BG 
layer and penetrated its interconnected porosities to vari-
ous degrees due to the complicated surface properties 
owned by the basal PEEK/BG layer. The interconnected 
porosities, which might create a potential conductive 
pathway for depositing the top layer to deeper inside 
the bottom coating, were facilitated as reservoirs for the 
top layers.

2.	 Drug delivery and antibacterial activity: Multilayer 
coatings showed GS released in the multi-structure coat-
ings in a sustained way for relatively longer period of 
time (21 days). As a result, multilayer coatings showed 
antibacterial effect against both gram-positive and gram-
negative bacteria due to the controlled liberation of GS, 
broad-spectrum antibiotic, to the medium.

3.	 In vitro bioactivity and cell studies: On the surface of 
multilayer coatings that were immersed in SBF for a 
short period of time (3 days), a layer similar to apatite 
was formed indicating the bioactive and osteoconductive 
nature of the coatings. Furthermore, initial in vitro cel-
lular study clarified that the multilayer coatings, specifi-
cally GT, augmented the cell attachment, cell spreading, 
and cell viability. The non-toxic behaviour of CS/GT/
BG/GS coatings was demonstrated by WST-8 assay and 

Fig. 11   SEM analysis of MG-63 cells morphology spreading on the surface of CS/GT/BG/GS coatings over PEEK/BG layers incubated for 
2 days in cultivation medium
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fluorescence microscopy which confirmed the worth of 
CS/GT/BG/GS coatings for orthopaedic administrations.

The research presented here may lay the foundation for 
the consideration of multi-structured coatings for in vivo 
testing and clinical trials.
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