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Abstract
Wire arc additive manufacturing (WAAM) appears as one of the most promising technologies due to its capacity to process 
all types of materials used in welding, its high production rate, and capacity to process large geometries of particular inter-
est in the aeronautical industry. Since this technology is still under investigation, it is important to determine the efficiency 
of the process; in this sense, the melting efficiency stands out not only as a parameter of interest in energy terms but also as 
a measure of the stability of the process. For calculating melting efficiency, it is necessary to use tailored colorimeters or 
apply models requiring specific dimensions that involve destructive testing. For this reason, in the development of this work, 
the melting efficiency is evaluated through machine learning algorithms. Processing parameters such as wire diameter, wire 
feed speed, travel speed, and net power are used to determine melting efficiency. In addition, a simplified analytical model 
was developed to compare the results. The average melting efficiency analytically calculated was 44.56 ± 5.48%, while the 
predicted value reaches a comparable value of 44.32 ± 4.79% obtained with the Gaussian process regressor, which shows 
the highest accuracy. Moreover, the known relationship with travel speed was verified.
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1 Introduction

Additive manufacturing (AM) has evolved substantially dur-
ing the last decades. It has transited from being a rapid pro-
totyping technology, mainly focused on polymer processing 
[1], to a technology capable of producing final functional 
parts and processing almost any type of material [2]. Within 
metal AM, two major technologies are distinguished, one 
where there is a bed of metallic powder and the content is 
fused through a heat source, e.g., laser or electron beam 

(powder bed fusion, PBF), and the second, where the mate-
rial is deposited directly in either powder or wires, called 
directed energy deposition (DED) [3]. Wire arc additive 
manufacturing (WAAM) is a DED technology that com-
bines an electric arc as the heat source and a metal wire as 
feedstock, typically employing standard welding equipment. 
WAAM technology has many advantages compared to PBF 
processes. It has a higher deposition rate of up to 8 kg/h 
[4], it does not always require a highly inert atmosphere 
[5], and it is possible to manufacture large and medium-
complex metal components [6] and process any alloy used 
in welding [7].

In welding, it is common practice to use the heat input 
to control process characteristics such as the cooling rate 
and temperature gradient. The heat input is calculated as the 
ratio of arc power to travel speed times the arc efficiency. 
The arc efficiency considers the losses from the arc to the 
environment. However, as Fuerschbach and Knorovsky [8] 
have pointed out, the heat input is insufficient to estimate the 
amount of metal that is actually melted. Conduction losses 
through the material account for more than half the absorbed 
energy which goes into the material [9]. Moreover, the lat-
ter gets worse at low travel speed. These losses give origin 
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to the melting efficiency, as the ratio between the minimum 
necessary energy to melt the fusion zone and the energy 
which is effectively absorbed by the material. It has been 
shown that the melting efficiency can be related to the width 
of the heat-affected zone [10]. Therefore, it is relevant not 
only as any efficiency obviously is, however also as a param-
eter possibly affecting the stability of the process and the 
component’s properties.

1.1  Efficiency in metal additive manufacturing 
processes

Saving energy is essential in any manufacturing process. In 
that sense, to accurately determine the global efficiency of 
a metal AM process, it is necessary to differentiate between 
source efficiency ( �s ) and melting efficiency ( �m ). Source 
efficiency is described as the heat transferred to the work-
piece divided by the total heat generated by the heat source 
and depends on the interaction between the heat source and 
workpiece; it is described by Eq. (1):

where Ei expressed in [J  mm−1] is the energy or heat input 
per unit length and can be calculated as the ratio between 
power (P) in watts and the travel speed v [mm  s−1]; Enet is the 
net energy input per unit length. In arc sources, the power 
is calculated by the product between voltage and current; 
therefore, the arc efficiency is given by Eq. (2):

For gas metal arc welding (GMAW) and submerged 
arc welding (SAW), �s typically follows between 0.8 and 
0.9, while for non-consumable electrode processes such as 
gas tungsten arc welding (GTAW) and plasma arc welding 
(PAW), the arc efficiency falls to a value of around 0.5 [11]. 
Thus, net energy is obtained from Eq. (2).

On the other hand, the melting efficiency denotes the frac-
tion of the net energy that in fact melts the material, while 
the rest is lost through heat conduction in the workpiece. 
The �m depends on both the heat source and the material 
properties. In welding, �m is defined as the amount of heat 
required to melt the weld deposit per unit length divided by 
the net energy input [12]. Similarly, for WAAM, the melt-
ing efficiency can be calculated using the same definition. 
Therefore, WAAM technology will depend on the wire  
material, bead geometry, substrate properties, and pro-
cessing parameters. For instance, Fig. 1 shows the cross- 
section and main dimensions of a bead-on-plate deposited by  

(1)�s =
Enet

Ei

(2)�s =
Enet

P

v

=
v ⋅ Enet

V ⋅ I

WAAM in carbon steel; W represents the bead width, H is 
the bead height, Pd is the penetration depth, θ is the contact 
angle, and the darker zone is the heat-affected zone (HAZ) 
[13]. Melting efficiency can be estimated after the process 
has finished, focusing on the energy used in melting the base 
plate, given by the penetration area (A1), and the energy con-
sumed in melting the deposited material (A2).

Melting efficiency is defined as the reference value of 
heat required to cross the solid–liquid phase change barrier. 
In real terms, the melt pool reaches a higher temperature, 
but the liquidus temperature is taken as a reference. The 
�m can be determined as the ratio between the sum of the 
heat required to melt the base plate and the wire by the net 
energy input.

In Eq. (3), � [J  mm−3] represents the melting enthalpy, a 
quantity representing the change in enthalpy from inter-pass 
to liquidus temperature, Aw  [mm2] is the cross-section area 
given by the sum between A1 and A2. Since the net energy is 
known, �m can be expressed by Eq. (4):

Equations 5 and 6 show predicted melting efficiencies for 
2D and 3D heat conduction by Wells [14] and Okada [15], 
respectively, where � represents the thermal diffusivity of 
the material  [mm2  s−1], and w the wall width [mm].
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Fig. 1  Cross-section micrograph of a single layer deposited by 
WAAM
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Accurate measurement of the arc and melting efficien-
cies requires calorimetric methods to determine the amount 
of heat deposited in a workpiece. However, these methods 
typically do not consider heat losses between the start of 
the process and the beginning of calorimetric measurement 
[16]. Other methods use thermocouples to determine thermal 
cycles, but just at one point of the workpiece near the HAZ. 
Therefore, an alternative to assess �m consists of applying 
analytical or numerical models [17]. Pepe et al. [18] deter-
mined process efficiency of GMAW and cold metal transfer 
(CMT); the average process efficiency was around 85% by 
averaging the results of a liquid nitrogen calorimeter and an 
insulated box calorimeter. Mezrag et al. [16] determined the 
efficiency of CMT by applying two methods: (1) an analyti-
cal heat transfer model coupled with thermocouple measure-
ments and (2) numerical heat transfer simulation. The values 
obtained vary between 0.78 and 0.92. CMT minimizes the 
heat input by actively limiting the arc current during deposi-
tion [19]. Since the AM process involves all heat transfer 
phenomena and besides the heat source moves continuously, 
the Navier–Stokes equations are also involved, making their 
computation highly complex and time-consuming. One alter-
native to solve these problems is the application of machine 
learning (ML) algorithms. Supervised ML algorithms map a 
function from known input–output pairs and are mainly used 
for classification and regression [20]. Regression is employed 
to estimate the relationships between a dependent variable 
and one or more independent variables [21]. Thus, it appears 
as an appropriate mathematical tool to build predictive mod-
els of the melting efficiency in AM as a function of process 
parameters.

1.2  Alloys, parameters, and machine learning 
in metal additive manufacturing

WAAM emerges as a powerful technology whose primary 
applicability has been established in the aerospace, aero-
nautical, automobile, and marine industries [22]. The capa-
bility of fabricating large-scale metal components at rela-
tively low prices and a low buy-to-fly ratio, compared to 
conventional manufacturing and PBF processes, makes it 
suitable for these industrial sectors [23]. In WAAM, the heat 
source power falls in a range from 1 to 5 [kW], a travel speed 
between 5 and 50 [m  s−1], and a deposition rate from 100 to 
1000  [cm3  h−1] [24].

Process parameters must be chosen carefully to avoid 
problems such as spatter, excessive distortion [25], high 
residual stresses [26], and poor surface finish [27]. Several 

(6)
�m =

1

1.35

(

1 +

√

1 +
10.4�2

(vw)2

)

works have been developed to face these common problems, 
where deposition strategy optimization, path planning, and 
in situ monitoring are some strategies studied. Huang et al. 
[28] analyzed the effect of depositing direction on the resid-
ual stress and distortion. They found that alternating direc-
tion of deposition in every layer causes 25% less distortion. 
Xiong et al. [7] developed a closed-loop control system for 
controlling the layer width. The controller was useful for 
layer width ranging from 6 to 9 mm. Nguyen et al. [29] 
applied machine learning to generate optimal tool paths, 
avoiding welding defects and uneven build-up. Ding et al. 
[30] developed an automated manufacturing system apply-
ing artificial neural network (ANN) for path planning and 
void-free deposition with high geometrical accuracy. Ríos 
et al. [31] developed an analytical model to predict the power 
consumption for pulsed TIG and plasma deposition, and the 
model was validated for wall width less than 12 mm in Ti-
6Al-4 V processing.

ML algorithms appear as a powerful tool to increase our 
understanding of metal AM. Li et al. [32] employed ANN 
to enhance a bead-overlapping model, preventing defects 
inside the fabricated samples. Deng et al. [33] compared 
boosting algorithms and ANN algorithms for bead geometry 
prediction; they trained the ML algorithms using average 
current, deposition rate, and inter-pass temperature as inputs 
and predicted the bead height and width. In the same line, 
Barrionuevo et al. [34] compared several ML regressors to 
predict layer height and wall width of Ti-6Al-4 V processed 
by plasma WAAM. Xia et al. [35] applied ML to predict 
the surface roughness and improve the surface integrity of 
deposited layers by WAAM. Ikeuchi et al. [36] developed 
a model based on ANN for track profile modeling in cold 
spray AM. ML algorithms bring new opportunities to opti-
mize advanced manufacturing systems capable of modeling 
high nonlinear relations and learning from available data.

With the motivation to determine the melting efficiency 
of the WAAM technology, copper-coated, G3Si1 solid wire 
low-alloyed carbon-manganese steel was deposited by cold 
metal transfer technology. Then, three of the most powerful 
ML algorithms were trained to find a possible relationship 
between processing parameters and melting efficiency. A 
feature-importance analysis was developed to identify which 
parameter dominates the melting efficiency.

2  Material and methods

2.1  Experimental setup

Mild steel solid wire consumable electrodes G3Si1 (AWS: 
A5.18ER70S-6) were deposited on carbon steel plate A572 
Gr50 (ASTM A1011/1011 M) by a modified GMAW variant 
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based on a controlled dip transfer mode mechanism (Fronius 
CMT GmbH). All deposits were conducted on a 5-axis Trio 
Motion rig coupled with the Robacta Drive CMT welding 
torch (Lincoln Power Wave) [13]. Seventy-five single layer 
deposits were fabricated, where the wire diameter, wire feed 
speed, and travel speed were controlled while bead width, bead 
height, and energy were quantified. Furthermore, the cross-
sectional area was determined by optical micrographs. The 
range of processing parameters is listed in Table 1.

2.2  Melting efficiency evaluation

For assessing melting efficiency, Eq. (4) was applied, the 
source efficiency was held constant ( �s = 0.9 ). In cases 
where it is difficult to assess the cross-section area, it is pos-
sible to replace Aw with the product between layer height 
(H) and wall width (W), as they show a high coefficient of 
correlation (R2 = 0.9797) (Fig. 2). Moreover, a coefficient 
( � = 0.87 ) is added to Eq. (4) in order to improve the model 
accuracy and increase its precision. Therefore, the melting 
efficiency can be calculated using Eq. (7):

(7)�
m
=

� .� ⋅ v ⋅ H ⋅W

�
s
⋅ P

2.3  Machine learning algorithms

The core of the ML algorithms is the data. Therefore, Fig. 3 
presents the statistical distribution of each variable and the 
histograms on the diagonal. The input parameters to train the 
algorithms were the wire diameter (WD), wire feed speed 
(WFS), travel speed (TS), and nominal power (P). The out-
put parameter is the melting efficiency (ME) (Fig. 4). To 
accurately predict melting efficiency in WAAM processes, 
three types of the most potent ML regressors were employed, 
which are detailed in the following sections.

2.3.1  Gaussian process regressors

Gaussian process regressor (GPR) is a stochastic method 
based on statistical learning and Bayesian theory that meas-
ures the similarity between points using a kernel function to 
predict the value for an unseen point from the training data 
[37]. GPR works well on small datasets and can provide 
uncertainty measurements on the predictions [38].

2.3.2  Extreme gradient boosting regressor

Extreme gradient boosting regressor (XGBR) is an ensemble 
boosting method, which predicts the desired outcome based 
on a forward stage-wise fashion [33]; it allows the optimiza-
tion of arbitrary differentiable loss functions [38]. It uses a 
regularized model formalization to control overfitting, which 
gives it better performance.

2.3.3  Multi‑layer perceptron

Multi-layer perceptron (MLP), commonly known as artifi-
cial neural network (ANN), is based on the perceptron as an 

Table 1  Experimental variables employed for the fabrication of mild 
steel by cold metal transfer

Factor Symbol Min Max

Wire diameter (mm) WD 0.8 1.2
Wire feed speed (mm/s) WFS 28 222.5
Travel speed (mm/s) TS 1.66 25
Power (kW) P 0.65 4.03

Fig. 2  Relationship between the 
cross-section area (Aw) and the 
product between layer height 
(H) and wall width (W)
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operational unit trained using backpropagation; therefore, it uses 
the square error as a loss function output set of continuous val-
ues. MLP determines a function y = f (x;�) and learns the value 
of the parameters � that result in the best approximation [39].

GPR, XGBR, and MLP were all trained and tested. 
The dataset was assembled from the experimental results 
(Fig. 3). In order to achieve the highest accuracy, the 
hyperparameters of each ML algorithm were tuned by 
applying random search optimization. This procedure 
automatically examines the hyperparameter search space 

and attempt to find the optimal values that maximize the 
coefficient of determination (R2). The ranges of explored 
hyperparameters are listed in Table 2.

The dataset assembled with the experimental data was 
randomized and then split into training (80%) and testing 
(20%) portions. Before initiating the training process, the 
dataset was scaled using zero mean and unit variance. The 
ML algorithms employed to assess the melting efficiency 
were executed in Google Colaboratory (Colab) environ-
ment using Scikit-learn and XGBoost libraries.

Fig. 3  Scatter matrix to show a possible correlation between process parameters and melting efficiency
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2.4  Evaluation of the precision of machine learning 
algorithms

K-fold cross-validation (CV) was employed to avoid over-
fitting during the training process [40]. In this validation 
technique, k represents the number of parts in which the data 
is divided; k-1 folds are used for training, and the remain-
ing fold is used to test the model [38]; in this work, 5 k CV 
was utilized. According to Barrionuevo et al. [41], ML algo-
rithms’ accuracy evaluation is more straightforward when 
applying several metrics or a combination of them. They 
applied a custom metric in the form of Eq. (8):

where R2 is the coefficient of determination, MSE is the 
mean squared error, and MAE is the mean absolute error.

This index of merit (IM) evaluates the accuracy of the 
predictions; as the magnitude of the index approaches zero, 
the maximum predicting accuracy is achieved. This metric 
is beneficial when all metrics present similar results.

Once identified which algorithm presents the higher 
accuracy (lower IM), feature importance analysis (FIA) 
was employed. FIA assigns a score to input features based 
on how useful they are at predicting a target variable ( �m ). 
Moreover, FIA provides scores that help us obtain insight 

(8)IM =

√

(

1 − R2
)2

+MSE + (MAE)2

into the data, and the model can improve the usefulness of a 
predictive model on the estimations achieved.

3  Results and discussion

3.1  Bead geometry evaluation

Sequeira-Almeida [13] determined layer geometry through 
AxioVision image analysis software utilizing built-in 
measurement functions. The obtained results are shown in 
Fig. 5. The bead width (W) varies from 2.52 to 8.83 mm; 
the bead height (H) presents a compact range from 1.61 
to 3.62 mm.

3.2  Analytical melting efficiency results

According to the methodology explained in Sect. 2.2, Eq. (7) 
shows good agreement with the conventional model depicted 
in Eq. (4). A �m of 44.56 ± 5.48% was obtained using Eq. (4), 
while �m = 44.47 ± 6.47% is reported when applying Eq. (7). 
Therefore, the use of the height and width of the WAAM 
deposit appears as a good alternative to replace the pen-
etration area (A1), and the energy consumed in melting the 
deposited material (A2). The obtained results are in agree-
ment with the results reported by DuPont and Marder [42]. 
Furthermore, it is common to report the melting efficiency 
as a function of the travel speed; thus, Fig. 6 shows that the 
melting efficiency increases with increasing travel speed. 
Equations (4), (5), and (7) were employed to assess the melt-
ing efficiency in WAAM analytically.

3.3  Machine learning melting efficiency results

The obtained hyperparameters that maximize the accuracy 
by random search optimization are reported in Table 3.

Gaussian process regressor (GPR), extreme gradi-
ent boosting regressor (XGBR), and multi-layer per-
ceptron (MLP) algorithms were applied to predict the 

Fig. 4  Machine learning regres-
sors for predicting melting 
efficiency

Table 2  Hyperparameter ranges employed in random search optimi-
zation

ML algorithm Hyperparameter ranges

GPR Noise level α: [0.001, 0.1, 1, 10]
Number of optimizers: [5, 10, 20]

XGBR Number of estimators: [100, 1000, 10000]
Maximum depth: [5, 10, 20]
Learning rate: [0.1, 0.01, 1e-3]

MLP Hidden layers: [5, 8, 10]
Activation function: [“relu,” “tanh”]
Solver: [“lbfgs,” “sgd,” “adam”]
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melting efficiency during WAAM. All algorithms show 
similar predictions, GPR reports a melting efficiency 
of 44.32 ± 4.79%, XGBR 44.69 ± 4.62%, and MLP 
44.12 ± 4.80%. The dispersion of these results is due in part 
to the range of travel speed involved in the CMT experi-
ments. The obtained metrics during the cross-validation 
and testing are reported in Table 4.

Cross-validation provides a practical evaluation of the 
models’ capability to predict new data and face common 
problems as underfitting or overfitting. For the melting 
efficiency evaluation, all the examined algorithms pro-
vide similar metrics. Nonetheless, GPR achieves a higher 
coefficient of determination, which explains how well the 
model replicates the observed results and presents the 
same value for MAE with the XGBR algorithm. XGBR 

and MLP present similar metrics, but MLP presents a 
higher index of merit, therefore, lower accuracy.

Fig. 5  Boxplots of measured 
bead geometry: height (H) and 
width (W)

Fig. 6  Melting efficiency as a 
function of travel speed for the 
cold metal transfer process

Table 3  Hyperparameters that provide the highest accuracy of each 
ML algorithm

ML algorithm Hyperparameters

GPR Noise level α = 0.001
Number of optimizers = 40

XGBR Number of estimators = 100
Maximum depth = 10
Learning rate = 0.1

MLP Hidden layers = 5
Activation function = relu
Solver = lbfgs
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GPR obtains the lowest IM and reports the highest R2 
and the lowest error metrics about the set employed for 
testing evaluation. All the algorithms show good accuracy 
for predicting melting efficiency in WAAM. Figure 7 shows 
the performance evaluation of each ML algorithm. The 
training dataset is plotted in black dots and different colors 
in the testing dataset by each algorithm. The predicted 
melting efficiency corresponds to the vertical axes, while 
the horizontal axes show the measured melting efficiency.

Figure 8 shows the feature-importance analysis, where 
power (P) scores the highest value, 72.74%. Therefore, the 
nominal power represents the main factor for the prediction 
model. Travel speed (TS) and wire feed speed (WFS) show 
feature importance of 11.56 and 10.47%, respectively. The wire 
diameter practically does not influence the model predictability.

In order to assess the behavior of the ML algorithms, 
an average set of processing parameters was selected 
(WD = 0.8 mm, WFS = 98 mm  s−1, P = 2245 W); the melting 
efficiency evaluation is reported as a function of travel speed 

in Fig. 9. GPR and MLP algorithms converge to the maxi-
mum melting efficiency value (≈ 51%); on the other hand, 
XGBR reports a melting efficiency near the average (44.8%). 
Therefore, GPR and MLP capture the essence of the melting 
efficiency evaluation; they can reproduce the observed trend 
in Fig. 6 and the model developed by Wells [14].

During the WAAM process planning, it is worth noting 
that although the melting efficiency increases with increasing 
travel speed, there is a threshold where the heat input only 
melts the feedstock but does not melt the substrate, caus-
ing delamination. Moreover, a roughness increase has been 
reported while increasing travel speed or decreasing power 
due to a lower melting efficiency [25]. Experimentally, it has 
been found that the power with which there is greater melting 
efficiency is around 2.6 kW. Thus, a linear energy density of 
around 110 J/mm is recommended for processing carbon-
manganese steel. Furthermore, an inverse relationship has 
been reported between travel speed, melt pool depth, and 
width, and a direct relationship with heat input [10, 43].

Table 4  Metrics to assess the 
accuracy of the ML algorithms 
employed to predict melting 
efficiency in CMT

ML algorithm Cross-validation Testing

R2 RMSE MAE IM R2 RMSE MAE IM

GPR 0.8678 0.0004 0.0153 0.1345 0.9190 0.0146 0.0113 0.0830
XGBR 0.8453 0.0005 0.0153 0.1570 0.8667 0.0187 0.0154 0.1355
MLP 0.8172 0.0005 0.0173 0.1851 0.8864 0.0187 0.0143 0.1160

Fig. 7  Scatter plot for accuracy evaluation of the GPR performance in the melting efficiency prediction

3130 The International Journal of Advanced Manufacturing Technology (2022) 120:3123–3133



1 3

Fig. 8  Feature importance analysis of the processing parameters in the melting efficiency prediction model

Fig. 9  Melting efficiency evalu-
ation as a function of travel 
speed: comparison between 
XGBR, GPR, and MLP
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4  Conclusions

This work presents the evaluation of melting efficiency 
in a WAAM process. The cold metal transfer process was 
assessed analytical and by applying machine learning algo-
rithms. The main results can be summarized as follows:

• The calculated melting efficiency results report a value 
of 44.56 ± 5.48% for the cold metal transfer process 
employing Eq. (4). For the proposed model in Eq. (7), 
a melting efficiency of 44.47 ± 6.47% was obtained.

• By applying machine learning, it is possible to predict 
the melting efficiency without using complex calorimetry 
measurement systems. This technique can adjust the pro-
cess parameters to ensure suitable adhesion between the 
substrate and the deposited material avoiding delamination.

• The algorithm that better performs predicting melting 
efficiency in CMT was the Gaussian process regres-
sor, with a predicted value of 44.32 ± 4.79%. It shows 
the highest coefficient of determination, lowest mean 
squared error, and lowest absolute error during cross-
validation and testing procedures. The accuracy evalu-
ation was validated through the lowest index of merit. 
For these reasons, GPR is the algorithm recommended 
for predicting melting efficiency in WAAM.

• The factors that dominate the model prediction were deter-
mined through a feature-importance analysis. Nominal power 
represents over 72.7% of the model’s predictability, followed 
by travel speed (11.6%). These parameters make physical sense 
since the torch power to speed ratio represents the heat input.
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