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Abstract
The machining precision of grinding machine determines the precision of parts. To improve the machining accuracy, an effec-
tive geometric error modeling and compensation method was proposed. Firstly, the comprehensive error model of grinding 
machine was established based on differential theory. In contrast to the multi-body system theory, the proposed modeling 
method can simplify the calculation process and reflect the influence of each component on the tool. Secondly, MATLAB 
curve fitting tool was used to fit the known error function, and a link between 24 basic geometric error terms (BGETs) and 
milling instructions was discovered using the sum of sine function. Finally, the compensation dosage (dx dz db dc) for the 
grinding machine comprehensive error was determined by combining 24 fitting functions, the known error, the differential 
matrix of each part, and the Jacobian matrix. To test the feasibility of the above method, the grinding machine geometric 
error compensation experiment was conducted. The average machining accuracy is increased by 15.948%. It is showed that 
the proposed method can realize the error compensation of CNC grinding machine well.

Keywords Differential matrix · Comprehensive error model · Geometric error compensation · Jacobian matrix

1 Introduction

Grinding machine is a finishing-machined machine tool, and 
the final accuracy of any part is directly related to the grind-
ing machine processing accuracy. As a result, machining 
accuracy is one of the performance indicators for grinding 
machine tool, and its improvement is critical for machine 
tool design research [1, 2]. Geometric error, thermal error, 
and system dynamic error are elements that result in machine 
tool error; geometric error has the greatest effect of all of 
them [3, 4].

To improve the precision of machine tool, geometric error 
compensation techniques are generally employed by scholars 
[5]. It encompasses modeling, identification, and detection, 

as well as compensation [6–8]. At present, the most widely 
used compensation model for machine tool geometric error is 
based on multi-body system theory. Denavit and Hartenberg 
proposed this theory based on mechanism kinematics, and 
two examples of application to space mechanisms are given 
[9]. Liu et al. developed and validated three-axis machining 
center error compensation model based on it [10]. Su and 
Li carried out the geometric error compensation model for 
five-axis machine tool and estimated the machining accuracy 
[11]. However, the modeling process requires the establish-
ment of complex multi-coordinate system, and the number of 
second-order and higher-order terms in the model has little 
influence on the total error, which can only be eliminated 
manually. In addition, the comprehensive error model is lim-
ited in describing the effect of a single moving part on a tool.

To compensate for geometric errors, various methods 
have been developed, which can be classified generally 
into two categories. The first way is to improve the preci-
sion of mechanical parts and the overall assembly preci-
sion of machine tool, which is the hardware method; the 
second method is to build error model based on multi-body 
system theory and use iterative method for error compen-
sation, namely, the software method [12–14]. Yang et al. 
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constructed the geometric error model of CNC forming 
grinding wheel grinding machine and used function com-
pensation to reduce the errors of gears, laying the ground-
work for increasing the machine tool accuracy [15]. Zhang 
examined the positioning accuracy of a CNC turntable 
equipped with the HNC-818B system and corrected based 
on the hardware method for the CNC turntable pitch error 
[16]. While the hardware and software approaches are prac-
tical, both have limitations. The former is too expensive for 
small businesses and is constrained by the level of machine 
assembly and manufacture. The latter is predicated on the 
complicated multi-body system theory, and once the coordi-
nate system mistake is established, subsequent compensation 
is invalid. Additionally, the iterative correcting procedure is 
sophisticated and difficult to comprehend.

Literature review shows that geometric error analysis 
serves as the foundation for compensation technology, and 
changes of the error value affect the comprehensive error. 
However, little research has been done on relation between 
error term and machining instruction, such as the unclear 
relationship between motion error and z in Fig.  6. To 
describe this relation in a mathematical sense, a mathemati-
cal model of this relation is obtained. Then, combining the 
model with the comprehensive error model, the comprehen-
sive error model about the machining instruction is obtained.

Aiming at the limitations of previous study, this study 
proposes an error compensation method based on the 
differential theory. Then, the proposed compensation 
method is verified by CNC precision cylindrical grinding 
machining experiments. Section 2 describes the geometric 
error modeling of grinding machine based on differential 
matrix. Section 3 provides a detailed description of the 
mathematical function model for basic geometric error 
terms (BGETs) based on MATLAB curve fitting tool. 
Section 4 describes the error compensation method based 

on Jacobian matrix. Section 5 certifies the feasibility of 
the aforementioned methods through workpiece machin-
ing experiments. Section 6 is the conclusion.

2  Geometric error modeling of CNC 
precision cylindrical grinding machine 
based on differential motion matrix

2.1  Differential motion relation 
between coordinate systems of CNC precision 
cylindrical grinding machine

2.1.1  Description of differential motion 
between coordinate systems

The differential motion matrix is a six-dimensional matrix 
that describes the relationship between two coordinate sys-
tems in terms of differential motion. The minor error of a 
machine tool axis can be thought of as a small motion, which 
is typically stated mathematically as a differential. This little 
movement can be transferred to the tool coordinate system 
using differential motion theory to reflect the influence on 
the tool. Thus, the differential motion relation between coor-
dinate systems can be used to express the meaning of errors.

2.1.2  Differential motion between coordinate systems 
of grinding machine

Taking B2-K3032 CNC precision cylindrical grinding 
machine as an example, as shown in Fig. 1, it is equipped 
with HNC-818B CNC system, HVS-180 servo drive, and 
X, Z, B, C-axis. The geometric error modeling and com-
pensation method based on differential motion relations will 
be studied. As shown in Fig. 2, this grinding machine is 

Fig. 1  B2-K3032 CNC 
precision cylindrical grinding 
machine
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composed of bed, tool, working table, sliding seat, spindle, 
and other components. The Z-direction slide seat drives the 
workpiece clamped between the headstock and tailstock 
along the Z-direction guide rail, while the X-direction slide 
seat drives the tool along the X-direction guide rail. The 
spindle turns the workpiece around the Z-axis, while the 
turntable turns the tool around the Y-axis.

To construct the error model, it is important to define the 
coordinate system of each moving part in order to charac-
terize its indirect influence on the tool coordinate system, 
thus allowing for the construction of a thorough geomet-
ric error model on the tool coordinate system. According 
to the traditional machine tool coordinate system determi-
nation method, the coordinate system of B2-K3032 CNC 

coordinate system A relative to B is expressed in the form 
of homogeneous coordinates:

In Eq. (1), p is unlimited; ( a o n ) must satisfy n = o × a . 
On the contrary, the differential motion of B relative to A 
can be expressed in homogeneous coordinate form as:

The differential motion vector in the A is expressed as 
Eq. (3), and the differential matrix then expresses the dif-
ferential motion vector in B as Eq. (4).

where D is the differential motion vector in the A; D
′

 is the 
differential motion vector expression in the B; TW

[
MA

B

]
 is 

the differential motion matrix of A with respect to B. From 
the perspective of error, D and D

′

 are the comprehensive 
errors in the A and B, respectively.

(1)

MA
B
=

�
n o a p

0 0 0 1

�
=

⎡⎢⎢⎢⎣

nx ox ax px
ny oy ay py
nz oz az pz
0 0 0 1

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣

nx ox ax 0

ny oy ay 0

nz oz az 0

0 0 0 1

⎤⎥⎥⎥⎦

⎡⎢⎢⎢⎣

1 0 0 px
0 1 0 py
0 0 1 pz
0 0 0 1

⎤⎥⎥⎥⎦

(2)TW
�
MA

B
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=
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⎡⎢⎢⎣
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oT
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⎤
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−

⎡
⎢⎢⎣
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oT

aT

⎤
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0
T
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=
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nx ny nz −nypz + nzpy nxpz − nzpx −nxpy + nypx
ox oy oz −oypz + ozpy oxpz − ozpx −oxpy + oypx
ax ay az −aypz + azpy axpz − azpx −axpy + aypx
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0 0 0 ox oy oz
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⎤⎥⎥⎥⎥⎥⎥⎦

(3)D =
[
dx dy dz qx qy qz

]T

(4)D
′

= TW
[
MA

B

]
× D

Fig. 2  Schematic diagram of moving parts of CNC precision cylindri-
cal grinding machine

Fig. 3  B2-K3032 CNC grinding machine coordinate system

precision cylindrical grinding machine is shown in Fig. 3. 
Si(i = 1, 2, 3, 4) represents constants related to the structure 
of the grinding machine, and Oi(i = O,X, Z,B,C) represents 
the coordinate system of each moving part of the grinding 
machine [17].

Along with the coordinate system specification, it is 
required to explain the location and posture of the CNC 
machine tool motion axis. The motion axis pose is defined 
by the position of its own coordinate system in the machine 
tool coordinate system. Let n , o, and a , respectively, rep-
resent the unit vectors in the X, Y, and Z directions of the 
coordinate system of axis. For example, there are two coor-
dinate systems A and B, and the differential motion of the 
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2.2  Forward motion topology structure and modeling 
of CNC precision cylindrical grinding machine

For a robot, forward kinematics is from the joint param-
eters to the end effector. Similarly, it is the movement from 
table to the tool on a grinding machine. According to the 
multi-body system theory, the tool and workpiece branches 
were established, and the bed of the CNC precision cylin-
drical grinding machine was defined as O body, the Z-slide 
carriage as Z body, and so on, as shown in Fig. 4. When 
combined with the forward kinematics theory of the robot 
and the multi-body system theory, the differential theory-
based forward motion topological structure of the grinding 
machine can be constructed, as illustrated in Fig. 5.

After the theory of differential motion is coupled with 
the topology of forward motion, the effect of the tool motion 
axis is determined. Then superimposing these influence 
components, the tool total influence is obtained. The detail 
steps to establish the comprehensive geometric error model 
of grinding machine are as follows:

1. Homogeneous transformation matrix between adjacent 
bodies

In an ideal working environment, the homogeneous trans-
formation matrices between adjacent bodies are, respec-
tively, Mw

c
, Mc

z
, Mz

o
, Mx

o
, Mb

x
 , and Mt

b
 . Since the workpiece 

is fixed on the C axis and the tool is fixed on the B-turntable, 
Mw

c
 and Mt

b
 are the unit matrix E

4
 . Assume that the rotation 

angles of C axis and B-turntable are, respectively, c and b, 
and the movement distances of the X/Z-slide carriage are, 
respectively, x and z. Based on the forward motion topo-
logical structure and differential theory of grinding machine, 
the homogeneous transformation matrix between adjacent 
bodies is obtained. Mw

c
 of workpiece relative to C axis is 

transformed into the Mz
w
 of C axis relative to workpiece. 

Similarly, other matrices are shown in the Table 1.

2. Homogeneous transformation matrix of tool in each axis 
coordinate system

According to the topological structure in Fig. 5, the 
homogeneous transformation matrix of the tool of grind-
ing machine relative to the workpiece is:

Equation (5) is also known as the forward kinematics equa-
tion of grinding machine. Accordingly, the matrix of the tool rel-
ative to other bodies is respectively expressed in Eqs. (6)–(11):

(5)Mt
w
= Mc

w
×Mz

c
×Mo

z
×Mx

o
×Mb

x
×Mt

b

Workpiece
(W)

Principal axis
(C)

Slide carriage
(Z)

Body
(O)

Slide carriage
(X)

Rotary table
(B)

Cutter
(T)

Fig. 4  Topological structure based on multi-body system theory

Fig. 5  Forward motion topology 
of CNC precision cylindrical 
grinding machine

Workpiece
(W)

Principal axis
(C)

Slide carriage
(Z)

Body
(O)

Slide carriage
(X)

Rotary table
(B)

Cutter
(T)

Forward motion topology of CNC precision cylindrical grinder

Table 1  Homogeneous transformation matrix between adjacent bod-
ies of grinding machine

Homogeneous transformation matrix 
between adjacent bodies

Matrix expression

M
c

w
=
[
M

w

c

]−1
(C axis relative to workpiece) E

4
=

⎡⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎦
M

z

c
=
[
M

c

z

]−1
(Z axis relative to C axis)

⎡⎢⎢⎢⎣

cos(c) − sin(c) 0 0

sin(c) cos(c) 0 0

0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎦

−1

M
o

z
=
[
M

z

o

]−1
(body relative to Z axis)

⎡⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 z

0 0 0 1

⎤⎥⎥⎥⎦

−1

M
x

o

(X axis relative to the body)
⎡⎢⎢⎢⎣

1 0 0 x

0 1 0 0

0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎦
M

b

x

(B axis relative to X axis)
⎡⎢⎢⎢⎣

cos(b) 0 sin(b) 0

0 1 0 0

− sin(b) 0 cos(b) 0

0 0 0 1

⎤⎥⎥⎥⎦
M

t

b

(tool relative to B axis)
E
4
=

⎡⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎦
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(6)

Mt
w
=

⎡
⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎦
×

⎡
⎢⎢⎢⎣

cos(c) − sin(c) 0 0

sin(c) cos(c) 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎦

−1

×

⎡
⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 z

0 0 0 1

⎤
⎥⎥⎥⎦

−1

×

⎡⎢⎢⎢⎣

1 0 0 x

0 1 0 0

0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎦
×

⎡⎢⎢⎢⎣

cos(b) 0 sin(b) 0

0 1 0 0

− sin(b) 0 cos(b) 0

0 0 0 1

⎤⎥⎥⎥⎦
×

⎡⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

cos(b) ∗ cos(c) sin(c) cos(c) ∗ sin(b) x ∗ cos(c)

−cos(b) ∗ sin(c) cos(c) −sin(b) ∗ sin(c) −x ∗ sin(c)

−sin(b) 0 cos(b) −z

0 0 0 1

⎤
⎥⎥⎥⎦

(7)Mt
c
= Mz

c
×Mo

z
×Mx

o
×Mb

x
×Mt

b
=

⎡⎢⎢⎢⎣

cos(b) ∗ cos(c) sin(c) cos(c) ∗ sin(b) x ∗ cos(c)

−cos(b) ∗ sin(c) cos(c) −sin(b) ∗ sin(c) −x ∗ sin(c)

−sin(b) 0 cos(b) −z

0 0 0 1

⎤⎥⎥⎥⎦

(8)Mt
z
= Mo

z
×Mx

o
×Mb

x
×Mt

b
=

⎡⎢⎢⎢⎣

cos(b) 0 sin(b) x

0 1 0 0

− sin(b) 0 cos(b) −z

0 0 0 1

⎤⎥⎥⎥⎦

(9)Mt
o
= Mx

o
×Mb

x
×Mt

b
=

⎡⎢⎢⎢⎣

cos(b) 0 sin(b) x

0 1 0 0

− sin(b) 0 cos(b) 0

0 0 0 1

⎤⎥⎥⎥⎦

(10)Mt
x
= Mb

x
×Mt

b
=

⎡⎢⎢⎢⎣

cos(b) 0 sin(b) 0

0 1 0 0

− sin(b) 0 cos(b) 0

0 0 0 1

⎤⎥⎥⎥⎦

3. The differential motion vector of the geometric error of 
each axis of motion

Assuming the axis is a rigid body, it has six degrees 
of freedom. Due to assembly and manufacturing reasons, 
errors in the direction of six degrees of freedom exist, 
which are referred to as geometric errors. Geometric error 
can be classified into motion error and position error based 
on how it varies with axis movement. [18].

The motion error is affected by processing instruc-
tion; here we call them the basic geometric error terms 

and shorthand for BGETs. Such as Fig. 6, BGETs with 
respect to z are �x(z), �y(z), �z(z), �x(z), �y(z), �z(z) . The posi-
tion error is continuous and independent of the processing 
instruction, and it is comprised of the squareness error 
and position deviation. The squareness error is the differ-
ence between the real and ideal position of an axis, and its 
magnitude is the deviation between the angle of the two 
axes and 90 degrees. The rotation axis position deviation 
is defined as the difference between the real and ideal axes 
[19–21]. Take B axis as an example, as shown in Fig. 7.

The micro translation motion and rotation angle of each 
axis of grinding machine are respectively three linear dis-
placement errors and three angular displacement errors, as 
shown in Fig. 6. The position error is defined as the recom-
bination of the reference axis (Y axis) and the mechanical 
coordinate system Y axis, then there is no squareness error 

(11)Mt
b
= Mt

b
= E

4

Fig. 6  Diagram of Z-axis motion Fig. 7  Position deviation of B axis
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in Y axis, and the actual plane between X axis and Y axis 
is the X–Y reference plane, so there is only one square-
ness error vxz(�rad) of X axis in the Z direction. The posi-
tion deviations of C axis and B axis are pcx, pbx, pbz(�m), 
respectively. According to Eq. (3), the differential motion 
vectors of the BGETs of each axis are known, as shown in 

5. The comprehensive geometric error in the tool coordi-
nate system

By superpositioning the differential motion vectors of 
each axis geometric error terms and the differential motion 
matrices of each part relative to the tool, the comprehen-

sive geometric error is produced. By combining Eqs. (15) 
and (16)–(21), the vector form of the geometric error 
terms of the axes X, Z, B and C, and the other is shown in 
Eq. (22). Equation (23) is the comprehensive geometric 
error.

(16)TW
[
Mt

w

]
=

[
M

11
M

12

M
21

M
22

]

(17)TW
[
Mt

c

]
=

[
T
11

T
12

T
21

T
22

]

(18)TW
�
Mt

z

�
=

⎡⎢⎢⎢⎢⎢⎢⎣

cos(b) 0 − sin(b) 0 x ∗ sin(b) − z ∗ cos(b) 0

0 1 0 z 0 x

sin(b) 0 cos(b) 0 −x ∗ cos(b) − z ∗ sin(b) 0

0 0 0 cos(b) 0 − sin(b)

0 0 0 0 1 0

0 0 0 sin(b) 0 cos(b)

⎤⎥⎥⎥⎥⎥⎥⎦

(19)

TW
�
Mt

o

�
=

⎡⎢⎢⎢⎢⎢⎢⎣

cos(b) 0 − sin(b) 0 x ∗ sin(b) 0

0 1 0 z 0 x

sin(b) 0 cos(b) 0 −x ∗ cos(b) 0

0 0 0 cos(b) 0 − sin(b)

0 0 0 0 1 0

0 0 0 sin(b) 0 cos(b)

⎤⎥⎥⎥⎥⎥⎥⎦

(20)TW
�
Mt

x

�
=

⎡⎢⎢⎢⎢⎢⎢⎣

cos(b) 0 − sin(b) 0 0 0

0 1 0 0 0 0

sin(b) 0 cos(b) 0 0 0

0 0 0 cos(b) 0 − sin(b)

0 0 0 0 1 0

0 0 0 sin(b) 0 cos(b)

⎤⎥⎥⎥⎥⎥⎥⎦

(21)TW
[
Mt

b

]
= E

6

Eq. (12). The first 3 terms represent the linear displace-
ment errors in the direction of i(X, Z, B, C) axis, and the 
others represent the angular displacement errors. The dif-
ferential motion vector of squareness error is expressed 
by Eq. (13), and the differential motion vector of posi-
tion deviation of rotation B axis and C can be respectively 
expressed by Eq. (14):

4. The differential motion matrix of each axis in the tool 
coordinate system

Combined with the above differential motion vectors of 
the geometric errors of each axis, the differential motion 
vectors of the parts are obtained respectively (Eq. (15)).

Combined with the homogeneous transformation matrix of 
the tool in the coordinate system of each part, the calculation of 
this process reflects the influence of each part on the machining 
precision of grinding machine. Equations (16)–(21) are the 
differential motion matrices of each part in the tool.

(12)
Berror_i =

[
�x(i) �y(i) �z(i) �x(i) �y(i) �z(i)

]T
i(X, Z, B, C)

(13)Verror_z =
[
0 0 0 0 vxz 0

]T

(14)

{
Perror_b =

[
pbx 0 pbz 0 0 0

]T
Perror_c =

[
pcx 0 0 0 0 0

]T

(15)

⎧⎪⎪⎨⎪⎪⎩

error_x = Berror_x =
�
�x(x) �y(x) �z(x) �x(x) �y(x) �z(x)

�T
error_z = Berror_z + Verror_z =

�
�x(z) �y(z) �z(z) �x(z) �y(z) + vxz �z(z)

�T
error_c = Berror_B + Perror_B =

�
�x(b) + pbx �y(b) �z(b) + pbz �x(b) �y(b) �z(b)

�T
error_c = Berror_c + Perror_c =

�
�x(c) + pcx �y(c) �z(c) �x(c) �y(c) �z(c)

�T
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3  The mathematical function of BGETs 
based on MATLAB curving fitting tool

3.1  Measurement and identification of geometric 
errors

Laser interferometers have been widely employed in high-
end equipment such as machine tool and trilinear coordi-
nate measuring instrument as a representation of current 
precision measuring instruments [22].

The SJ6000 laser interferometer was used to measure the 
B2-K3032 grinding machine. Twenty evenly distributed 
mark points with a stroke of 0–365 mm on the X-guide 
rail were selected for error measurement; twenty evenly 
distributed mark points with a stroke of 0–1500 mm on 
the Z-guide rail were selected; ten evenly distributed mark 
points with a stroke of 0–1500 mm on the C-principal axis 
were selected; ten evenly distributed mark points with a 
stroke of 0–360° on the B-grinding wheel turntable were 
selected. Due to the project secrecy, the measurement pro-
cess is only shown in the form of schematic diagram in this 

(22)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

error_x
′

= TW
�
Mt

x

�
× error_x

error_z
′

= TW
�
Mt

z

�
× error_z

error_b
′

= TW
�
Mt

b

�
× error_b

error_c′ = TW
�
Mt

c

�
× error_c

error_o
′

= TW
�
Mt

o

�
× error_o

error_w
′

= TW
�
Mt

w

�
× error_w

(23)

error
′

= error_w
′

+ error_x
′

+ error_z
′

+ error_o
′

+ error_c
′

+ error_b
′

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎝

cos(b) ∗ cos(c) ∗ (�x(c) + Pcx) − cos(b) ∗ sin(c) ∗ �y(c) + �x(b)

− sin(b) ∗ �z(x) + x ∗ sin(b) ∗ sin(c) − z ∗ cos(b) ∗ sin(c) ∗ �x(c)

− sin(b) ∗ �z(z) + x ∗ cos(c) ∗ sin(b) ∗ �y(c) + cos(b) ∗ �x(z) + Pbx

+(x ∗ sin(b) − z ∗ cos(b)) ∗ (�y(z) + vxz) + cos(b) ∗ �x(x) − sin(b) ∗ �z(x)

⎞
⎟⎟⎟⎠

⎛⎜⎜⎝

sin(c) ∗ �x(c) + cos(c) ∗ �y(c) + z ∗ cos(c) ∗ �x(c)

−z ∗ sin(c) ∗ �y(c) + x ∗ �z(c) + �y(z)+

z ∗ �x(z) + x ∗ �z(z) + �y(x) + �y(b)

⎞⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝

cos(c) ∗ sin(b) ∗ �x(c) + cos(b) ∗ �z(c)

−(x ∗ cos(b) ∗ sin(c) + z ∗ sin(b) ∗ sin(c)) ∗ �x(c)

−x ∗ cos(b) ∗ sin(c) ∗ �y(c) + sin(b) ∗ �x(x) + sin(b) ∗ �x(z)

+ cos(b) ∗ �z(z) − (x ∗ cos(b) + z ∗ sin(b)) ∗ (�y(z) + vxz)

+ cos(b) ∗ �z(x) + �z(b) + Pbz − sin(b) ∗ sin(c) ∗ �y(c)

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎝

cos(b) ∗ cos(c) ∗ �x(c) − cos(b) ∗ sin(c) ∗ �y(c)−

sin(b) ∗ �z(c) + cos(b) ∗ �x(z) − sin(b) ∗ �z(z)+

cos(b) ∗ �x(x) − sin(b) ∗ �z(x) + �x(b)

⎞⎟⎟⎠�
sin(c) ∗ �x(c) + cos(c) ∗ �y(c) + �y(z) + vxz + �y(x) + �y(b)

�
⎛⎜⎜⎝

cos(c) ∗ sin(b) ∗ �x(c) − sin(b) ∗ sin(c) ∗ �y(c)+

cos(b) ∗ �z(c) + sin(b) ∗ �x(z) + cos(b) ∗ �z(z)+

sin(b) ∗ �x(x) + cos(b) ∗ �z(x) + �z(b)

⎞⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

study; the linear measurement, rotation axis error, straight-
ness, and diagram of squareness error measurement are 
depicted in Figs. 8, 9, 10 and 11.

The error values for the X, Z, B, and C axes after 
measurement with the laser interferometer are shown in 
Figs. 12 and 13. Due to the fact that the position error 
is unrelated to the processing instruction, the squareness 
error vxz is 8.9883 �rad , the position deviation pcx is − 6.74 

�m , and the position deviations pbx, pbz are 21.451 �m and 
14.042 �m using the nine-line identification method.

Fig. 8  Schematic diagram of linear measurement
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3.2  The mathematical fitting function model of BGETs

Curve fitting is a critical technique in data analysis since it 
involves selecting the proper curve type to match the given 
data and analyzing the relationship between variables using 
the fitted curve equation. The most often used data analysis 
software includes MATLAB, Origin, and Maple [23, 24]. 

BGETs and x, z, b, and c have no known relationship, and the 
error changes with the distance and angle of the axis motion. 
To explore the relation further, the curving fitting tool is uti-
lized to fit BGETs and identify its functional relationship.

There are four indexes to evaluate the fitting effect. SSE (the 
sum of squares due to error) is called the square sum of the 
residuals. The closer SSE is to 0, the better the fitting degree 
is. R-square measures the success of the fitting in explaining 
the changes in the data. The closer the value is to 1, the more 
complete the interpretation model is. RMSE (root mean square 
error) is the root mean square error between the fitting data and 
the input data. The closer RMSE is to 0, the better the fitting 
degree is. Adjusted R-square can accept any value less than or 
equal to 1, and a value closer to 1 is a better fit.

By comprehensive comparison, the fitting results show that 
the sum of sine fitting have good fitting effects, as shown in 
Figs. 12 and 13 and Tables 2, 3, 4 and 5. Fig. 12 is the Sum of 
sine fitting diagram of 12 term displacement errors of four motion 
axes. Fig. 13 is the fitting diagram of 12 term angular errors. The 
sum of sine fitting functions of the BGETs of this fitting are shown 
in Eqs. (24)–(27):

(24)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

�x(x) = 3.145 sin(1.784x + 0.3403) + 1.638 sin(3.492x + 1.196) + 1.055 sin(12.57x − 2.129)

�y(x) = 0.4953 sin(0.7338x + 1.359) + 0.0938 sin(3.726x − 0.995) + 0.2046 sin(4.545x + 0.8417)

�z(x) = 5.2545 sin(0.868x − 1.011) + 5.121 sin(0.8957x + 2.222)

�x(x) = 0.118 sin(1.16x + 1.848) + 0.0623 sin(3.585x + 2.246)

�y(x) = 0.05469 sin(01.9425x − 1.825)

�z(x) = 0.088 sin(1.361x − 1.383)

(25)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

�x(z) = 3.145 sin(1.784z + .03403) + 1.638 sin(3.492z + 1.196) + 1.055 sin(12.57z − 2.129)

�y(z) = 15.69 sin(1.604z − 1.873) + 23.29 sin(1.781z + 1.359) + 2.193 sin(6.359z + 1.47)

�z(z) = 2293 sin(6.391z + 1.925) + 2293 sin(6.932z − 1.216)

�x(z) = 135.2 sin(0.7929z − 2.955) + 132.3 sin(0.8188z + 0.1923)

�y(z) = 0.5075 sin(1.298z + 1.943) + 0.3481 sin(3.914z + 2.479)

�z(z) = 14.99 sin(0.7591z − 0.4776) + 14.51 sin(0.7865z + 2.695)

4  Geometric error compensation of grinding 
machine based on Jacobian matrix

4.1  Overview of the Jacobian matrix 
and the generalized inverse matrix

In vector calculus, the Jacobian matrix is formed of 
first partial derivatives and is structured in a certain 
way. It is essentially the best linear approximation to a 
given point of a differentiable equation. If m functions 
exist: y1(x1, x2,⋯ , xn), y2(x1, x2,⋯ , xn),…, ym(x1, x2,⋯ , xn) ; 
then the partial derivatives of these functions can form a 
matrix with m rows and n columns, namely, the Jacobian 
matrix, as shown in Eq. (28):

(26)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

�x(b) = 2.312 sin(4.45b + 1.369) + 3.555 sin(2.399b + 0.1697)

�y(b) = 34.08 sin(1.555b − 2.194) + 33.47 sin(1.687b + 1.013)

�z(b) = 533.5 sin(6.551b + 1.826) + 533.3 sin(6.554b − 1.314)

�x(b) = 8.7775 sin(1.429b − 1.858) + 8.499 sin(1.494b + 1.264)

�y(b) = 1.268 sin(1.344b − 2.825) + 24.23 sin(0.02485b − 0.0068)

�z(b) = 0.02897 sin(1.225b + 1.672)

(27)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

�x(c) = 32.9 sin(0.9583c + 1.052) + 27.53 sin(1.058c − 2.063)

�y(c) = 47.455 sin(0.8169c + 0.3983) + 45.24 sin(0.84117c − 2.768)

�z(c) = 6.521 sin(0.573c + 1.048) + 2.296 sin(3.101c − 2.063)

�x(c) = 0.4898 sin(0.567c + 1.229) + 0.081 sin(4.021c − 5.115) + 0.127 sin(6.002c − 0.382)

�y(c) = 0.6802 sin(0.9289c − 1.666)

�z(c) = 0.6925 sin(1.094c − 1.471) + 0.1694 sin(3.675c − 1.865)

(28)Jm×n =

⎡⎢⎢⎢⎣

�y1

�x1
⋯

�y1

�xn

⋮ ⋱ ⋮
�ym

�x1
⋯

�ym

�xn

⎤⎥⎥⎥⎦
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If yi(i = 1,⋯ ,m) is differentiable at point P, then the 
optimal linear approximation of yi near point P can be 
expressed as Eq. (29), and the expression of differentiation 
is shown in Eq. (30):

In Eq. (30), dy =
[
dy1 dy2 ⋯ dym

]T , dx =

[
dx

1
dx

2
⋯

dx
n

]T.
In linear algebra, since there is no inverse matrix for 

non-square matrices, there is no inverse matrix, and the 
inverse of a non-square matrix is a generalized inverse. 
The numbers of equations and unknown number are m and 

(29)yi(x) = yi(p) + Jm×n ⋅ (x − p) + o2(x − p)

(30)dy = Jm×n × dx

n, respectively, if m > n ; Eq. (31) has no solution. How-
ever, the generalized inverse matrix G(x) + is used to get 
the answer in the least squares sense, as shown in Eq. (32).

4.2  Geometric error compensation method based 
on Jacobian matrix

The grinding machine four-axis linkage results in a total 
error, and the minuscule motion of each axis is represented 
by ( dx dz db dc ) . The Jacobian matrix is constructed in 
accordance with the differential motion matrix, which is 
capable of correcting the entire geometric error [25]. This 
process is described by Eq. (33). Equation (34) is a thorough 
statement in which the left matrix represents the comprehen-
sive geometric error, and the right second matrix represents 
the minor geometric error on each axis; the first matrix rep-
resents the Jacobian matrix. Then, using the sum of sine 
function models of the 24 BGETs acquired in Sect. 3 (Eqs. 
(24)–(27)) as well as the identified squareness error and posi-
tion deviation, we can compensate for the grinding machine 
comprehensive error. Where, J +

e
=
(
JT
e
Je
)−1

JT
e
 is the 

(31)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

g1(x1, x2, x3,⋯ , xn) = 0

g2(x1, x2, x3,⋯ , xn) = 0

g3(x1, x2, x3,⋯ , xn) = 0

⋮

gm(x1, x2, x3,⋯ , xn) = 0

(32)G(x) + =
(
G(x)TG(x)

)−1
G(x)T

Fig. 9  Rotation axis error measurement

Fig. 10  Schematic diagram of straightness measurement

Fig. 11  Diagram of perpendicularity measurement
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generalized inverse of the Jacobian matrix; 
[
dx dz db dc

]T 
is the compensation dosage.

(33)error′=Je ×
[
dx dz db dc

]T
(34)

⎡⎢⎢⎣

e1

⋮

e6

⎤
⎥⎥⎦
=

⎡⎢⎢⎣

�e1

�x
⋯

�e1

�c

⋮ ⋱ ⋮
�e6

�x
⋯

�e6

�c

⎤
⎥⎥⎦
×

⎡⎢⎢⎢⎣

dx

dz

db

dc

⎤⎥⎥⎥⎦
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1814 The International Journal of Advanced Manufacturing Technology (2022) 120:1805–1819



1 3

Fig. 13  The Sum of sine fitting curve of geometric error of angular displacement of each axis a) X axis, b) Z axis, c) B axis, d) C axis
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Table 2  Sum of sine fitting 
evaluation parameters of X-axis 
BGETs

Error terms
Parameters

�x(x) �y(x) �z(x) �x(x) �y(x) �z(x)

SSE 8.953 0.3199 0.278 0.01569 0.0013 0.00767
R-square 0.8399 0.4376 0.8153 0.8389 0.8448 0.9227
Adjusted R-square 0.7784 0.2214 0.7442 0.7769 0.7851 0.893
RMSE 0.8299 0.1569 0.1462 0.0347 0.0101 0.0243

Table 3  Sum of sine fitting 
evaluation parameters of Z-axis 
BGETs

Error terms
Parameters

�x(z) �y(z) �z(z) �x(z) �y(z) �z(z)

SSE 35.72 66.3 8.642 0.9481 0.5737 0.05683
R-square 0.7803 0.6175 0.5474 0.9013 0.7721 0.7407
Adjusted 

R-square
0.6958 0.4704 0.3777 0.8633 0.6845 0.6409

RMSE 1.658 2.258 0.8153 0.2701 0.2101 0.06612

Table 4  Sum of sine fitting 
evaluation parameters of B axis 
BGETs

Error terms
Parameters

�x(b) �y(b) �z(b) �x(b) �y(b) �z(b)

SSE 77.32 31.85 50.63 0.9451 1.216 0.00499
R-square 0.6594 0.8952 0.2032 0.0046 0.7293 0.3934
Adjusted 

R-square
0.5283 0.8113 0.1036  − 0.1198 0.6954 0.3176

RMSE 2.439 1.785 1.779 0.243 0.2757 0.01767

Table 5  Sum of sine fitting evaluation parameters of C axis BGETs

Error terms
Parameters

�x(c) �y(c) �z(c) �x(c) �y(c) �z(c)

SSE 2.613 2.6 35.06 0.3852 0.02324 0.0923
R-square 0.9647 0.738 0.745 0.3002 0.9751 0.9418
Adjusted 

R-square
0.9499 0.6288 0.6387 0.00866 0.9648 0.9175

RMSE 0.4666 0.4655 1.709 0.1792 0.044 0.0877

Fig. 14  Schematic diagram of experimental processing stepped shaft

Fig. 15  Machining site drawing 
of B2-K3032 grinding machine
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Fig. 16  Comparison of theoretical machining trajectories of each shaft segment with those before and after modification
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5  Experiment

To verify the proposed modeling method based on differ-
ential theory, the mathematical model of BGETs based on 
MATLAB curving fitting tool, and the compensation method 
based on the Jacobian matrix in the grinding machine, a 
stepped shaft experiment will be conducted to demonstrate 
the feasibility of theoretical method.

5.1  Description of experimental workpiece 
and measurement items

B2-k3032 CNC precision cylindrical grinder produces pri-
marily BT30\BT40 and the material for 40Cr spindles, so 
this experiment uses a 40Cr stepped shaft. There are five 
axial segments, as shown in Fig. 14. Each shaft segment is 
distinct in length and diameter, totaling 500 mm in length 
and a maximum diameter of 40 mm.

Geometric tolerances should be chosen in accordance 
with the part structure and requirements. When achieving 
functional requirements, easier-to-measure items should be 
chosen instead of difficult-to-measure [26, 27]. Therefore, 
the radial circular run-out error is chosen to reflect the grind-
ing machine machining precision.

5.2  Experimental process and results

Firstly, two identical workpiece were processed by 
B2-K3032 CNC precision cylindrical grinding machine, as 
shown in Fig. 15. The workpiece had five axial segments 
with different lengths; hence, each segment had two, three, 
seven, two, and four measuring points. Then, using the 
RA1000 series roundness instrument from WALE Company, 
the radial circle run-out errors of 18 measuring points on the 
two workpieces were determined, and each measuring point 
was measured five times. Finally, taking the average value 
after the improvement rate was calculated. Figure 16 is the 

(35)
[
dx dz db dc

]T
= J +

e
×
[
e1 e2 e3 e4 e5 e6

]T

comparison of the parts before and after compensation and 
theoretical processing. Table 6 shows the average machin-
ing accuracy improvement rate of measuring points for each 
segment. According to Table 6, the improvement rates of 
machining accuracy of five shaft segments are, respectively, 
17.54%, 15.22%, 15.71%, 18.4%, and 12.87%; and the aver-
age machining accuracy is improved by 15.948%. Therefore, 
the geometric error modeling method and the error compen-
sation method based on the differential theory and Jacobian 
matrix are effective and applicable to improve the machining 
accuracy of the CNC precision cylindrical grinding machine.

6  Conclusions

This paper presented a geometric error modeling and com-
pensation method based on differential theory and Jacobian 
matrix to improve machining accuracy of CNC precision 
cylindrical grinding machine. Firstly, the advantages of the 
modeling method based on differential motion theory are as 
follows: (1) simple calculation process; (2) the differential 
matrix can clearly reflect the influence of each component 
on the tool; (3) in-depth study of this method in the field of 
CNC grinding machine. Then, the functional relationship 
between BGETs and processing instructions is studied, and 
24 sinusoidal fitting functions are obtained in this paper. 
Finally, an error compensation method based on Jacobian 
matrix is proposed. In addition, the experimental results 
demonstrated that the modeling, fitting, and compensation 
methods suggested in this study are viable and useful for 
grinding machine applications. It can be used to correct geo-
metric errors in CNC grinding machines and serves as a ref-
erence for machine tool design and scientific research firms.

Although progress had been made in the field of geomet-
ric error compensation of CNC grinding machine in this 
paper, this error modeling method was not widely used in 
CNC machine tool and not certain whether it is applicable 
to other high-end CNC equipment. Furthermore, the oscilla-
tion of the fitting function may have an effect on the model. 
Therefore, a model is needed to better express the functional 
relationship between errors and processing instructions.
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