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Abstract
In recent years, 3D printing technology has played an essential role in fabricating customized products at a low cost and  
faster in numerous industrial sectors. Fused deposition modeling (FDM) is one of the most efficient and economical 3D 
printing techniques. Various materials have been developed and studied, and their properties, such as mechanical, thermal, 
and electrical, have been reported. Numerous attempts to improve FDM products’ properties for applications in various sec-
tors have also been reported. Still, their applications are limited due to the materials’ availability and properties compared 
to traditional fabrication methods. In 3D printing, the process parameters are crucial factors for improving the product's 
properties and reducing the machining time and cost. Researchers have recently investigated many approaches for expand-
ing the range of materials and optimizing the FDM process parameters to extend the FDM process’s possibility into various 
industrial sectors. This paper reviews and explains various techniques used in 3D printing and the various polymers and 
polymer composites used in the FDM process. The list of mechanical investigations carried out for different materials, pro-
cess parameters, properties, and the FDM process's potential application was discussed. This review is expected to indicate 
the materials and their optimized parameters to achieve enhanced properties and applications. Also, the article is highly 
anticipated to provide the research gaps to sustenance future research in the area of FDM technologies.

Keywords Fused deposition modeling · 3D printing · Mechanical properties · Additive manufacturing · Fused filament 
fabrication

Abbreviations
3DP  Three-dimensional printing
ABS  Acrylonitrile butadiene styrene
AM  Additive manufacturing
ANOVA  Analysis of variance
ASTM  American Society for Testing and Material 

standards
β-TCP  Beta-tricalcium phosphate
BJ  Binder jetting
CAD  Computer-aided design
CAM  Computer-aided manufacturing
CF  Carbon fiber
CFF  Continuous flax fiber
CFR  Continuous fiber reinforcement
CIJ  Continuous inkjet
CNT  Carbon nanotube
DCB  Decellularized bone matrix
DED  Direct energy deposition
DLF  Direct light fabrication
DLP  Digital light processing
DMD  Direct metal deposition

Highlights
• Various methods of the additive manufacturing process were 

discussed. 
• Fused deposition modeling materials (polymers and polymer 

composites) were discussed in detail.
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• Properties of different polymers and polymer composites have 

been extracted from different kinds of experiments and studies.
• Applications in the various sectors using the fused deposition 
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DMLS  Direct metal laser sintering
DOE  Design of experiments
EBW  Electron beam welding
FDM  Fused deposition modeling
FF  Flax fiber
FFF  Fused filament fabrication
G-Code  Geometric code
GF  Glass fiber
HA  Hydroxyapatite
HIPS  High-impact polystyrene
IP  Inkjet printing
ISO  International Standard Organization
LENS  Laser-engineered net shaping
LOM  Laminated object manufacturing
M-Code  Machine code
ME  Material extrusion
MJ  Material jetting
MWCNT   Multi-walled carbon nanotubes
OMMT  Organic montmorillonite
PA  Nylon/polyamide
PBF  Powder bed fusion
PBS  Poly(butylene succinate)
PC  Polycarbonate
PCL  Polycaprolactone
PEEK  Polyetheretherketone
PEKK  Polyetherketoneketone
PHB  Poly(3-hydroxybutyrate)
PLA  Polylactic acid
PLGA  Poly(lactic-co-glycolic acid)
PMMA  Polymethyl methacrylate
PP  Polypropylene
PPSF  Polyphenylsulphone
PVA  Polyvinyl alcohol
PVDF  Polyvinylidene fluoride
PS  Polystyrene
RP  Rapid prototyping
RSM  Response surface methodology
SBF  Simulated body fluids
SCF  Short carbon fiber
SL  Sheet lamination
SLA  Stereolithography
SLS  Selective laser sintering
STL  Standard tessellation language
TMP  Thermomechanical pulp
TPU  Thermoplastic polyurethanes
UAM  Ultrasound additive manufacturing
VP  Vat photopolymerization

Symbols
μm  Micrometer
$  American dollars
MPa  Megapascal
GPa  Gigapascal

1 Introduction

The need for greater versatility and the evolution of cus-
tomized products has directed the precipitous technologi-
cal advancement of additive manufacturing technology. 
3D printing is an additive manufacturing technology, also 
called rapid prototyping by the ASTM F42 technical com-
mittee, to differentiate between conventional production 
(subtracting manufacturing method) processes [1]. Origi-
nally, AM methods were used only for concept visuali-
zations and validation. However, the advancement of the 
technique has led to the development of end-use compo-
nents and tools [2]. The component manufactured by the 
AM technique is shaped layer by layer using the digital 
data designed using CAD and CAM [3]. In recent years, 
the use of AM technology has snowballed due to its ability 
to bring the product to market quicker than conventional 
methods [4]. As reported by Forbes in 2017, 57% of the 
global manufacturers have invested in 3D printing research 
and development, and 95% of manufacturing companies 
perceive 3D printing technology provides a significant 
market advantage. Finding also reveals that 47% of 3D 
printing businesses have been more successful than in pre-
vious years [5]. In the next 5 years, analysts predict that 
the 3D printing industry’s average growth will be 24% or 
35 billion dollars [6]. In 2020, the AM industry grew by 
7.5%, or nearly $ 12.8 billion. Figure 1 indicates the global 
annual report of AM parts’ production from independent 
service providers (in millions of dollars) by Wohler.

Fused deposition modeling is a popular AM technol-
ogy because of its fast production, cost-efficiency, ease of 
access, broad material adaptation, and capability to pro-
duce complex components [8, 9]. In 1988, Crump-patented 
fused deposition modeling (FDM) and formed Stratasys in 
1989. The initial system has essential fundamental aspects 
of AM except for the possibility of generating complex 
geometry [10]. Later, several optimized series were intro-
duced, such as FDM Titan, FDM Dimension, FDM Van-
tage, FDM Maxum, FDM 3000, and FDM Prodigy Plus 
[11, 12] that can produce complex geometry designs. The 
structure is created three-dimensionally over the build 
plate per CAD design using thermoplastic filament in the 
FDM process. Once the initial layer is printed, the bed 
goes down, and the second layer is printed over the previ-
ous layer, and the process continues. Materials such as 
acrylonitrile butadiene styrene (ABS) and polylactic acid 
(PLA) are the most widely used materials in the FDM 
because their thermal and rheological properties make it 
easier to manufacture parts [13]. Other possible materi-
als for FDM are nylon, ULTEM, polyetheretherketone 
(PEEK), polypropylene (PP), polyphenylsulphone (PPSF), 
thermoplastic polyurethanes (TPU), polyvinyl alcohol 
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(PVA), high-impact polystyrene (HIPS), and composite fil-
aments [14]. These materials have developed components 
for various industries such as automotive, electronics, 
biomedical, construction, aerospace, and domestic appli-
ance industries [15]. The processing parameters have been 
reported to be the crucial factor determining the output 
product's quality and behavior. The different processing 
parameters used in the FDM process are layer thickness, 
infill pattern, infill density, raster angle, raster width, print-
ing speed, build orientation, printing, and bed temperature. 
FDM manufactured parts are heavily affected by deprived 
mechanical and anisotropic properties. Several researchers 
have investigated the FDM process parameter's effect on 
mechanical behavior [16]. Lanzotti et al. [17] investigated 
the effect of layer height, raster angle, and shells on the 
tensile strength of a PLA. The author observed the tensile 
strength reduces with raster angle increment and increases 
with lower layer thickness. Ziemian et al. [18] analyzed 
the anisotropic properties of the FDM printed ABS and 
reported that the direction of the fracture depends on 
the raster direction and strength of the individual layer. 
Chacón et al. [19], in their work, reported that lower layer 
thickness specimen resulted in higher tensile strength 
and ductility; these higher mechanical properties were 
achieved at flat edge orientation. The FDM technology 
has also been shown to form porous internal structures in 
the manufactured component, which leads to inadequate 
mechanical strength and the “stair-stepping” effect to other 
problems such as poor surface finish [20, 21].

Literature studies attest that FDM technology has been 
used in various applications. This technology potential to 
produce functional products by using innumerable poly-
mers and polymer composites. At present, most of the 
reported works seem to focus on developing polymers and 
polymer composites to be used with the FDM process. The 

components produced with this method are reported to have 
lower strength compared with the other conventional meth-
ods. Research in the field of additive manufacturing or 3DP 
has been increasing every year. The number of publications 
in this area from 2000 to 2020 is shown in Fig. 2. After 
2012, the rate of research contribution in this area has been 
augmented significantly. The present review paper summa-
rizes the crucial advancements in the FDM process, mate-
rial characterization, and process parameters to develop the 
optimum print quality and enhance the FDM process's prod-
uct quality. Also, the present paper attempts to present the 
property matrix for all the materials investigated. Since most 
researchers focus their review papers on particular areas, 
the current work concentrates on the overall FDM review. 
This current review paper includes the following sections: 
materials, properties, parameters, applications, technical 
challenges in the FDM process, and the conclusion.

2  3D printing technologies

The International Standard Organization (ISO) and the 
American Society for Testing and Material standards 
(ASTM) have categorized the techniques of 3DP/AM [1]. 
They have classified AM technology into seven categories 
and discussed them in the preceding sub-sections.

2.1  AM categories

Sheet lamination, material extrusion, powder bed fusion, 
direct energy deposition, binder jetting, material jetting, 
and vat photopolymerization are the main categories of AM 
technology. Each technique has different abilities depending 
on its applications. The various processes and the methods 
of AM are shown in Fig. 3.

Fig. 1  Global annual report 
of AM parts production from 
independent service provid-
ers (in millions of dollars) by 
Wohler [7]
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2.1.1  Sheet lamination

In the sheet lamination process, the raw material is added 
together to form the final product in the form of sheets. 
The raw materials (worksheets) are cut by laser or cutter as 
per the geometry before the lamination process. The sheets 
are stacked layer by layer, and the stacked sheets were 
bonded by diffusion instead of melting [22–24]. Laminated 
object manufacturing (LOM) and ultrasonic additive man-
ufacturing (UAM) are the main techniques in this process. 
The processing speed is relatively high, with low operation 

cost and ease of handling material [23, 25]. Various mate-
rials such as polymer, ceramic, paper, and metals can be 
used in this sheet lamination process. This process's main 
advantages are integrating as a hybrid manufacturing sys-
tem, working with ceramic and composite fiber material, 
and without the necessity for support structures. The limi-
tation of this process is the availability of limited materials 
and removing the excess materials after the lamination. 
Compared with other methods, the wastage is high in the 
sheet lamination process. In addition, the strength of the 
bonding relies on the lamination technique, and in certain 

Fig. 2  Number of journal pub-
lications on FDM for the period 
of 2000–2020 ( source from 
google scholars)

Fig. 3  Techniques and process of AM
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instances, adhesive bonds will not suffice the strength and 
integrity required for the long term.

2.1.2  Material extrusion

In this material extrusion process, a continuous filament 
of thermoplastic or composite material is used to construct 
3D parts. The polymer filament is forced over the nozzle 
and fed over the build plate or previously solidified sub-
stance, and the product is built layer by layer technique at 
a constant speed and pressure [22, 23, 26]. This process is 
primarily used to build complex geometry that is impossible 
to produce by the traditional manufacturing process. Also, 
multi-material can be used in this extrusion process [27, 
28]. Operation time and cost are minimal compared to other 
methods, and the main techniques in these processes are 
fused deposition modeling (FDM) and fused filament fab-
rication (FFF) [23, 25]. Low initial and running cost, easily 
understandable printing technique, small equipment size, 
simple and easy changing of print material, and comparably 
low-temperature process are the main pros of this process. 
The main cons of this process are visible layer thickness 
and the support structure may be required. In addition, part 
strength in the Z-axis is lacking, the structure of the parts 
is delaminated due to warping and temperature fluctuation.

2.1.3  Powder bed fusion

In this powder bed fusion process, the raw materials are in 
powder form. Initially, the powders are fed over the base plate, 
and the materials are sintered using heat, laser, or electron 
beam. Next, the Z-axis moves downwards to spread the pow-
der over the layer uniformly by a brush or wiper, and again the 
process repeats [22, 24]. Selective laser melting (SLM), selec-
tive laser sintering (SLS), electron beam melting (EBM), and 
direct metal laser sintering (DMLS) are the main techniques 
of this process. In this PBF process, the previous layers are 
reheated to reduce anisotropy, and this process is used to fab-
ricate intricate structures without additional supports [29, 30]. 
The process advantages are as follows: (1) comparatively low 
cost as it does not require any supporting structure, (2) a wide 
range of materials can be used, and (3) the remaining powders 
in the process can be recycled. However, the limitations of the 
process are relatively low speed, very long print time, post-
processing requirement, high power usages, weak structural 
properties, and surface texture.

2.1.4  Direct energy deposition

This process creates three-dimensional objects by melting 
material as it is deposited using concentrated thermal energy 

such as a laser, electron beam, or plasma arc. A gantry sys-
tem or robotic arm manipulates both the energy source and 
the material feed nozzle. In here, a movable chamber is fixed 
along with a laser. The metal powder is routed into the noz-
zle to the specific area simultaneously; the laser operates and 
melts the powder and solidifies the layer. The movable cham-
ber is not fixed at a particular axis, and it moves in various 
directions. Depending on the material feedstock, the DED 
process is classified into two types: (1)metal powder and (2) 
metal wire [24]. Comparative from PBF, different types of 
substrates can be used in DED. This process produces high 
accuracy products with the minimized void formation and 
improved density [31, 32]. The primary techniques used in 
this process are laser engineered net shaping (LENS), direct 
light fabrication (DLF), and direct metal deposition (DMD). 
High build rate and faster build time, used for built larger 
parts, fewer material wastages, multi-material range are the 
advantages of this method. The limitations of this method 
are low build resolution, high capital cost, and without sup-
port structures.

2.1.5  Binder jetting

In this process, the binder liquid bonds the powder and 
forms the final part. Initially, the powder is spread over 
the bed evenly, and the bonding agent is dropped over the 
powder using the print head. Next, the electrical heater is 
used to solidify, forming the desired shape. After the forma-
tion of the first layer, the powder bed moves down, and the 
powder is spread over the previously printed layer, and the 
method continues [24, 33, 34]. The energy utilized is low 
compared to other AM processes, and the operation cost is 
also relatively low [35]. Various parts can be made using 
this process, and this process is faster than other processes. 
The double material approach gives several different varia-
tions and mechanical characteristics of binder powder. This 
process's limitations are that it is not suitable for structural 
parts, post-processing is required, and high cost.

2.1.6  Material jetting

In this MJ process, liquid polymers are used as the raw mate-
rial. Using the piezo print head, the droplets of polymer liq-
uids are deposited over the build plate, and the solidification 
is carried out using ultraviolet lamps [22, 36]. This process 
is categorized into three types: (1) Polyjet technology, (2) 
nanoparticle jetting, and (3) drop-on demand. The process is 
capable of printing large components compared to VP [37]. 
The material jetting process is similar to ordinary inkjet 
printers, where the droplets are controlled layer by layer to 
produce a 3D object. After the layer finishes, it is cured in 
the photo-sensitive material with ultraviolet light or heat 
for metal and ceramic pieces. The advantage of this process 
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is that it can be used to develop complex geometry com-
ponents, high precision, and efficient techniques. The main 
techniques are inkjet printing (IP) and material jetting (MJ). 
This process is capable of building high-accuracy parts at 
less than 14 μm. The injection molding process has a bet-
ter surface finish, print multi-material, and low wastage of 
materials due to high accuracy printing. The main limitation 
of this process is non-suitable for function prototypes. Com-
pared with other AM techniques, the machine is expensive, 
the parts are relatively brittle, and the high accuracy can be 
achieved on limited materials such as polymers and waxes.

2.1.7  Vat photopolymerization

In this VP process, the materials are mixed with the high 
reactivity acrylate resins. The mixed photopolymers are 
placed in the platform, and the laser is used for sintering. 
Here, the stereolithography (SLA) uses a laser, and direct 
light printing (DLP) uses a projector for the sintering pro-
cess. The laser is exposed over the mixed metal resins, and 
it undergoes a chemical reaction to become a solid. It is a 
photochemical process where small monomers are linked 
together like a chain to form a solid object [38, 39]. This 
process has high accuracy and surface quality. This process 
is also relatively quick and typically used to build large com-
ponents at a size of 1000 × 800 × 500 mm and a maximum 
weight of 200 kg. The limitations of this process are that the 
machines are relatively expensive, post-processing time and 
the removal of resins time takes a significant amount of time, 
and the material selection is limited.

2.2  Major techniques of AM

All the AM methods have various printing techniques with 
unique characteristics. Some of the techniques are cost-
effective, high accurate, user friendly, but few techniques 
have low printing quality, are not an end-user product, and 
require post-processing. The most common methods used in 
the various industrial sectors are as follows.

2.2.1  Stereolithography (SLA)

This stereolithography (SLA) technology is a polymerization- 
based process that was commercially introduced in 1986 
[40]. Two techniques are used in this SLA process, one is 
top–bottom, and another one is bottom-top. The top–bottom 
technique is the most popular than another one [41]. Pho-
topolymerizable monomers of epoxy or acrylates resins are 
used for laser irradiation. The resins cover the building plat-
form, and the laser head is computer-controlled. At first, the 
boundary layer of the product and the supporting structures 
are printed before the primary structures [42]. Then, a thin 
amount of resins is placed over the building platform, and 

the laser is exposed over the resin; the photo-sensitive layer 
undergoes polymerization, known as the first layer of the 
prints. After the first layer print, the platform lowers at the 
y-axis, and the resins are spread over the specific area. The 
process repeats until the whole component is printed. The 
excess material in the platforms is removed after each layer 
formation. This process prints the product layer by layer at 
the range of 50–200 µm [43]. This process is categorized into 
two types based on the ultraviolet light used for curing: (1) 
projection-based stereolithography and (2) scanning-based 
stereolithography [44]. In PSL, the lamp is exposed over 
the entire area in a single pass, but each layer is scanned 
individually in the SSL. This SLA technique is relatively 
quick and has the highest resolution compared to other AM 
techniques. This drawback of this SLA technique is the slow 
printing process and high cost.

2.2.2  Selective laser sintering (SLS)

Selective laser sintering (SLS) is one of the best powder-
based AM techniques developed in 1987 by Carl Deckard 
[45]. In this technique, the powder particles are sintered 
using a laser source to produce the solid structure [46]. Two 
chambers are used in this SLS technique, the feed chamber 
with a roller is to load the powder to the bed, and the build-
ing chamber is for printing. Initially, the feed chamber feeds 
the powder evenly to the built chamber base plate with the 
help of a roller. Before the laser is exposed, the building 
chamber is heated (below melting temperature) then the  Co2 
laser is exposed over the powder to cure the material. The 
building chamber then slightly moves down, and the feed 
chamber applies the powder over the printed layers. The 
excess powders in the building chamber act as a supporting 
structure and are removed after completion, and the excess 
material is reused. This is a cost-efficient and flexible pro-
cedure to make high-density prototype products [47, 48]. 
However, due to the high power of laser input, the operation 
cost is high and the product quality compared to the SLS 
process is low [49].

2.2.3  Inkjet printing (IP)

The modern inkjet printers were invented by Canon and 
Hewlett-Packard in 1987. The inkjet printers are mainly 
classified into two types based on the operation: continu-
ous inkjet printer and drop-on-demand inkjet printer. In the 
continuous inkjet printer, the ink droplet creation is constant. 
Meanwhile, in the drop-on-demand inkjet printer, the ink is 
emitted when necessary. The resolution of continuous inkjet 
(CIJ) printing is lesser than the DOD printing [50–52]. This 
CIJ printing ink is extended through a small nozzle by a 
high-pressure pump controlled by a piezoelectric crystal. 
The charger electrodes selectively charge the inks from the 
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print head, and the droplets form the image on the matrix. 
The excess materials are deflected to the gutter and its reuse. 
In the DOD process, the ink droplets are generated by the 
piezoelectric actuation or pulses of the thermal resistor or 
thermal buckling. In the thermal process of DOD, the ink 
chamber is heated to a high temperature for vaporization, 
and the bubbles are formed on the heater surface, which 
will create the pressure pulse, push the ink from the nozzle, 
and form the objects. The advantage of this technology is 
to minimize wastage, environmentally friendly, and post-
processing is minimized [53].

2.2.4  Laminated object manufacturing (LOM)

Laminated object manufacturing (LOM) is a vastly handy 
technique to produce small to big-sized objects, and Feygin 
and Pak developed it at Helisys Corp in 1991 [54, 55]. Ini-
tially, the raw material is stored as a roller and supplied to 
the Platform, and the sheet material is cut by using a cutter 
or laser. The same process endures on the second layer and 
is placed over the first layer. Then, using a heated roller, 
pressure is applied over the two sheets containing adhesive 
coating in-between the sheets. The laser is then used to 
remove the excess materials [56, 57]. Plastic, metals, fabrics, 
paper, and synthetic materials are commonly used materi-
als in this technique. This technique’s main advantage is 
mainly used to produce high-strength objects compared to 
the conventional process, lower tooling cost, post-processing 
not required, support structures not needed, and less time to 
manufacture larger products [58, 59].

2.2.5  Fused deposition modeling (FDM)

Fused deposition modeling (FDM) is the most popular mate-
rial extrusion-based additive manufacturing method invented 
by Scott Crump, co-founder of Stratasys, in 1989 [60]. FDM 
is a material extrusion process using thermoplastic poly-
mers. Acrylonitrile butadiene styrene (ABS), polylactic acid 
(PLA), and polycarbonate (PC) are the base material of this 
FDM process [61, 62]. The layout of the FDM is shown 
in Fig. 4. Here, the filaments are stored in the roller and 
directly connected to the extrusion head. This head moves 
in X and Y directions, and the build platform moves in the 
Z direction. An electric motor controls the movable head, 
and the filament is directly connected to the extrusion head. 
Generally, two types of material filaments are used for this 
process. One is built material, and another one is the sup-
porting material. The filament diameter is typically 1.75 to 
3.0 mm. This FDM technique is consists of three stages for 
the production: (1) pre-processing, (2) production, and (3) 
post-processing.

The product’s design is drawn using CAD software and 
saved in STL format in the pre-processing stage. Then, 

before slicing the file, essential parameters for the process 
are considered, like slicing parameters, building orienta-
tion, and temperature condition of the machine. These 
are the vital parameters of the printing that will affect 
the final product’s mechanical properties [63, 64]. The 
essential parameters of the process are shown in Fig. 5. 
Once this procedure is completed, the slicing is done 
using the software (e.g., idea maker, quick slice, etc.), 
and the tool path is labeled as G-code. The G-code is a 
computer numerical controller code to control the extru-
sion process. Figure 6 shows the step-by-step process of 
the FDM process.

After the pre-processing, the feedstock material con-
nected with the head is regulated by temperature and heated 
to the semi-liquid stage. It forms the 2D layer over the build 
platform [65]. The layer forms one over another until the 3D 
objects are created [62, 66]. The filament is heated at a tem-
perature between 150 and 300℃ and printed over the plate 
at the dimensional accuracy of 100 µm [67]. The support 
base is initially printed before the required object is printed. 
The building platform moves downwards after every layer 
is printed, then the extrusion process is sustained, and the 
object is printed.

The post-processing technique is carried out for the final 
product. Post-processing is a vital process in FDM since 
the printed parts are not entirely ready for instant usage. 
After the printing process, the product is taken out from 
the bed platform, and the supporting structures are removed 
and undergo post-processing. This process is mainly used 
to improve the surface quality of the product [68, 69]. 
Kumbhar and Mulay [70] reported that the post-processing 
techniques are usually used to improve the surface finish. 
The post-processing process is categorized into two that 
are mechanical and chemical methods [71]. The chemical 
method uses painting, coating, heating, and vapor deposi-
tion process [72, 73]. In contrast, the mechanical method 
includes machining, sanding, abrasive, vibratory, and barrel 
finishing to improve the parts' surface quality and mechani-
cal properties [74, 75].

Daminabo et al. [27] and Bryll et al. [76] are reported 
the different mechanisms in FDM methods classified by the 
heads and feed mechanism. Figure 7 shows the different 
types of FDM processes.

• Single-head method
• Dual-head method
• In-nozzle impregnation method

Only one filament is used for production in the single 
head FDM method, and it is a traditional method. Composite 
materials of polymers with fiber, wood, and metals are used 
in this method. The drawback of this process is, it is not 
possible to fabricate products with more than one material 
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type. In the dual-head method, two material filaments are 
used for this process. This method feasible the development 
of components with two different materials. It is relatively 
quick compared to the single head method. This method 
is used to make skeletal structures like honeycomb and 
square cells. Compared to the previous processes, this in-
nozzle impregnation method is unique. Here, the filaments 
are directly fed into the nozzle head. The polymer filament 
and the add-on materials (e.g., carbon fiber, glass fiber) are 
directly fed into the nozzle, and the filaments are mixed, and 
printing is performed.

The significant advantages of this FDM process are 
ease of access, less cost of the machine, and multicolor 
product printing; compared to other RP techniques, this 
technique is cheaper and cost-effective. On the other 
hand, the main limitations of this technique are poor sur-
face quality and it needs support structures. The vari-
ous materials used, the product quality of the technique, 

merits and demerits, and the applications of these tech-
niques are shown in Table 1.

3  Materials for the FDM process

The materials used for FDM are usually polymer-based, 
having different physical, mechanical, and thermal behav-
iors. The selection of the polymer materials depends on the 
different applications and as per the requirements. How-
ever, at present, limited types of polymers are available and 
have restrained FDM technology. Also, high melting point 
materials could not be used in this process since the com-
mercially available FDM machines melting capability are 
around 300 ℃ [77]. Due to these constraints, thermoplastic 
polymers and several low melting temperature materials 
are ideal for this process. Thus, various attempts have been 
made to improve the quality and properties of the polymers 

Fig. 4  Basic layout of the FDM process [291]
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by adding fillers such as ceramics, nanoparticles, metals, 
and wood fiber.

3.1  Polymers

In the 3D printing process, polymers are the most common 
materials used to form the prototype or products. The com-
mon materials are used in the FDM process are acrylonitrile 
butadiene styrene (ABS), polylactic acid (PLA), polyethyl-
ene (PE), polypropylene (PP), nylon/polyamide (PA), and 
polycarbonates (PC) [25, 78, 79]. Pure polymers such as 
ABS, PLA, and PA are mainly used for prototypes as they 
have low physical properties. In contrast, polyethyleneimine 
(PEI), polyetherketoneketone (PEKK), polystyrene (PS), 
and polyetheretherketone (PEEK) are used for components 
that require improved properties. These materials have high 
mechanical, thermal properties and chemical resistance [77]. 
Some special materials of ABS such as ABSi, ABS-M30, 
ABS-M30i, ABS-ESD7, and ABS plus are also used as the 
printing material in the FDM process [80, 81].

PLA is a biodegradable, easily compostable, and non-
toxic material obtained from sugar beets and corns. PLA is 
the low-temperature thermoplastic, and it is the reinstate of 
petroleum-based thermoplastics. They are mainly used for 
biomedical and tissue engineering and scaffolding [82, 83]. 
Due to their low operating temperature, the cost of operation 

is reduced with desirable mechanical properties. However, 
low melting strength and slow crystallization rate are the 
main limitations of this PLA. Due to this drawback, the 
application of PLA in different sectors is constrained [84].

ABS is the most used petroleum-based material having 
high mechanical strength, easy processability, corrosion 
resistance, and high melt strength. In the FDM process, 
the strength of printed ABS can achieve 80% of the raw 
material [85–87]. Compared to PLA, the ABS has better 
mechanical strength. In addition, the ABS material can be 
easily extruded because of less friction coefficient, and they 
are mainly used to print household products [88]. However, 
ABS is not suitable for medical applications as they are not 
biofriendly, and the layers do not merge completely to create 
a watertight device [72].

Polyamide (PA)/nylon has been one of the most popular 
engineered thermoplastics with excellent mechanical and 
thermal properties [89]. PA/nylon has higher mechanical 
properties compared to the PLA and ABS [90]. The most 
promising biocompatible polymer with exceptional mechan-
ical qualities and outstanding processability is polyamide/ 
nylon. However, this material exhibits the most challenging 
material characteristics compared with some other polymers 
[91]. Pure PA-based FDM products are seriously warped, 
lack shape infirmity and are distorted. Due to these limita-
tions, their applications are restricted [92].

Fig. 5  Important process parameters of the FDM process
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PEEK is a high-performance, non-toxic, semi-crystalline 
thermoplastic polymer with good mechanical strength, high-
temperature resistance, and excellent dimensional stability 
[93]. PEEK has a high melting point and mechanical strength 
compared with PLA and ABS [94, 95]. PEEK is a biocom-
patible material used in biomedical applications and automo-
tive, aerospace, electronics, and medical industries [96]. It 
also has good chemical resistance and mechanical properties 
up to 240 ℃ and is usually used as an alternative material for 
the metal in high-temperature applications [97].

3.2  Composites

Pure polymers were the primary filaments used in the FDM 
process because of the low melting point and low cost, 
process flexibility, and availability. 3D-printed polymer 
products have a high degree of geometric sophistication, 
and their wide application presents a significant challenge 
with the lack of mechanical strength and functionality. Pure 
polymers as a filament have many obstacles to increasing 
the product’s strength some other materials added with 
the polymers. Combining different materials to obtain the 

required mechanical and functional properties is a promising 
way of solving this problem. The production of composite 
materials compliant with current printers has also gained 
significant interest in recent years. Many promising findings 
were demonstrated in producing new printable composites 
strengthened by ceramics, metals, fibers, and nanomaterials. 
The composites are mainly classified into four types, and 
that is shown in Fig. 8.

The polymers, ceramic, fiber, and nanomaterials were 
added with the base polymers to create the composite fila-
ments. The materials used with the polymer materials are 
mainly classified into two types: (1) biodegradable materials 
and (2) non-biodegradable materials. Figure 9 indicates the 
various types of materials used in the FDM process.

3.2.1  Biodegradable materials

The increasing drawback of fossil supplies in blend with a 
society that needs environmentally friendly and ecological 
procedures has led to forming a market for biobased plastics. 
The biodegradable materials are non-toxic so that this type 
of material is mainly used in medical applications and recy-
clable products. The development of the filament as a biode-
gradable material was primarily motivated by this demand. 
Biodegradable materials are natural materials, and the prop-
erties of these materials are relatively low compared with 
non-biodegradable materials. Here, the bio-based polymers 
are added with other bio-based polymers, ceramics, natural 
fillers, and natural fibers. PLA and ABS are the standard 
materials used as a base material in the composites because 
of their low cost, ease of availability, and good mechanical 
properties [98].

3.2.1.1 Biodegradable polymer blends In recent years, 
a number of research on polymer blends have been con-
ducted aiming for biomedical applications. Researchers 
mainly focus on PLA/PCL blends due to their compatibility 
in biomedical. Haq et al. [99] investigated the mechanical 
properties of PCL/PLA composite blended with PEG at dif-
ferent molecular weights. In their investigation, the 5 phr 
of PEG containing the composite result showed the high-
est elastic modulus value (396.43 MPa). Meanwhile, the 15 
phr PEG containing composites showed the highest impact 
strength of 0.14 J. Menčík et al. [100] analyzed the mechan-
ical, thermal, and morphological properties of poly(3-
hydroxybutyrate)/poly (lactic acid)/plasticizer biodegrad-
able blends. Tributyl citrate C-4, acetyl tributyl citrate A-4, 
acetyl tributyl citrate A-6, n-butyryl tri-n-hexyl citrate B-6 
was used as a plasticizer. The PHB/ PLA/plasticizer ratio is 
60/25/15 wt%, and the filament size is 1.75mm. The result 
shows that the elongation of acetyl tributyl citrate (A-4) 
and tributyl citrate (C-4) improved by 308% and 155%, 
respectively, compared to the PHB/PLA composite blends. 

Fig. 6  Process flow of FDM
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Poly(butylene succinate) (PBS)/polylactide (PLA) polymer 
blend was analyzed by Ou-yang et al. [101]. The PBS-PLA 
with the composition of 20, 40, 60, and 80 wt% and fila-
ment diameter of 1.75 mm were studied. The layer thick-
ness used is 0.1mm, and the printing orientation angle of 
the first and second layers is 45° and 135°, respectively. The 
result shows that 40 wt% of PBS added into PLA showed 
a good tensile and low degree of crystallinity. Kim et  al. 
[102] analyzed the PLGA/β-TCP/hydroxyapatite nanocom-
posite scaffolds for a rabbit. The scaffold enrooted into the 
femoral defect of the rabbit body and its osteoconductive 
and biodegraded in 12 weeks. Polycaprolactone(PCL)/tri-
calcium phosphate (TCP) composite scaffolds in vitro deg-
radation analyzed by Lei et  al. [103]. The scaffolds were 
immersed in simulated body fluids (SBF) at 37 ℃, and the 
degradation behavior was monitored for a different period. 
The findings revealed very good degradation behavior.

3.2.1.2 Polymer ceramic composites Ceramic materials are 
naturally biodegradable and are mainly used as a human 
bone replacement. Ceramics are favorable biomaterials 
because of their similarity to natural bone structures. The 
standard ceramic biomaterials used for medical applications 
are alumina, silica, zirconia, calcium phosphate, and bioac-
tive glass–ceramics [104]. Liu et  al. [105] investigated the 
mechanical properties of PLA/ceramic and other compos-

ites. Their analysis reported that the maximum tensile mod-
ulus of PLA/ceramic was 1056.3 MPa, the tensile strength 
was 46.3 MPa at the angle of 45°/ − 45°. The tensile modu-
lus of PLA/ceramic composites was found to be higher com-
pared to all other composites. The composition of polyamide 
12 with 15 wt% zirconia and 15, 20, and 25 wt% of β-TCP 
was analyzed by Abdullah et al. [106]. Their analysis con-
cludes that the specimen’s physical and mechanical proper-
ties were affected upon the addition of the fillers more than 
30 wt%. Chen et  al. [107] investigated the microstructure, 
thermal behavior, printability, and mechanical properties 
of poly(vinyl alcohol)/β-tricalcium phosphate. β-TCP was 
mixed with the ratio of 5, 10, and 20 wt% respectively with 
PVA. The printing parameters of the specimen were infill 
percentage of 40%, raster angle 90°-layer thickness 0.3 mm, 
and the printing and the bed temperatures at 175 ℃ and 25 
℃, respectively. The experiment's outcome shows that the 20 
wt% of β-TCP with PVA has the most optimum properties. 
The maximum stress improved from 8.3 to 10.7 kPa and was 
identified as a potential candidate for bone tissue engineer-
ing. Poly (e-caprolactone)/bioactive glass composite was 
studied by Korpela et al. [108]. Their experiment suggests 
that PCL with a 10 wt% BAG composition is stiffer than 
the standard PCL structure. The operating parameters of the 
specimen preparation were the layer thickness 0.4 mm, raster 
angle 0°/90°, and the temperature at 190 ℃. Wu et al. [109] 

Fig. 7  Single, multi, and in-nozzle impregnation FDM methods
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investigated the morphological and mechanical properties of 
polylactic acid (PLA)/hydroxyapatite (HA) composite. Com-
positions are 5, 10, and 15 wt% for HA with PLA at the oper-
ating parameters of 0.6-mm layer thickness and the printing 
head and the bed temperature was 210 ℃ and 60 ℃, respec-
tively. The mechanical properties of the composites were 
found closer to the human bones, but the addition of HA into 
PLA composition reduces the quality of the printing.

3.2.1.3 Natural fillers  Recently, the addition of natural 
fillers into biodegradable polymers has received seem-
ingly interest due to the increased demand for biodegrad-
able materials in the medical sector. Fillers such as wood, 
bamboo wood, sugarcanes, kenaf with PLA, and other base 
materials have been in progress for exploration. Ayrilmis 
et  al. [110] investigated PLA with 30 wt% of wood by 
using FDM. The water absorption and mechanical property 
changes were investigated at various layer thicknesses of 
0.05 mm, 0.1 mm, 0.2 mm, and 0.3 mm. The finding indi-

cated that the increase in layer thickness would increase the 
porosity and reduce the specimen's mechanical properties. 
PLA/raw sugarcane bagasse and PLA/sugarcane bagasse 
fiber were analyzed at different compositions of 3, 6, 9, and 
12 wt% by Liu et  al. [111] and reported to have the best 
properties for industrial-scale applications. A study on bam-
boo/PLA composite preparation using FDM was carried out 
by Zhao [112]. The addition of bamboo powder into PLA 
polymer was found to reduce the nozzle clogging and has 
superior biodegradable behavior. Daver et al. [113] analyzed 
the morphological, mechanical, and thermal properties of 
cork-filled PLA at various infill percentages. The printed 
parts’ tensile and yield strength were low compared with 
the compression molded composites, but the elongation at 
break was higher. PLA/wood flour composite was examined 
by Tao et  al. [114]. Their result exhibits that the melting 
temperature of the composite does not change with the addi-
tion of 5 wt% wood flour into PLA. Vaidya et al. [115] ana-
lyzed the composite’s warping behavior with respect to fill-

Fig. 8  Basic composites of 
FDM

Fig. 9  Biodegradable and non-biodegradable materials in FDM

1543The International Journal of Advanced Manufacturing Technology (2022) 120:1531–1570



1 3

ers addition polyhydroxy butyrate (PHB) and Pinus radiata 
wood chips). The 20 wt% added filler into PHB changes the 
melt viscosity and improves the warpage from 34 to 78% 
compared with pure PHB printed parts. Tran et  al. [116] 
analyzed the thermal and mechanical properties of poly-
caprolactone (PCL)/cocoa shell composite. Different com-
position of cocoa shell added into PCL resulted into a low 
temperature composite that suitable for printing biomedical 
scaffolds and toys. Frone et al. [117] studied the morpho-
structural and thermomechanical properties nano crystal 
cellulose added with Polylactic acid (PLA)/polyhydroxy 
butyrate (PHB) composite and Dicumyl peroxide (DCP) as 
a cross-linking agent. The reported good bonding and ther-
momechnical properties of the specimen.

3.2.1.4 Natural fibers The use of natural fibers as a filler 
in the thermoplastic composite has been increasing. In 
many applications, natural fibers are used as an alternative 
to petroleum products. Natural fibers have a high specific 
strength, are relatively cheaper, light in weight, and are bio-
degradable [118]. Mechanical properties of the harakeke 
composite surpassed the plain PLA, as reported by Hu and 
Lim et al. [119]. The harakeke was added at a composition 
of 30, 40, and 50 wt% into PLA, and the findings exhibit 
that the 40wt% fille composite has the highest mechanical 
properties. Le Duigou et al. [120] experimented on PLA/
continuous flax fiber (CFF) composite. The filament and 
printed sample microstructure were characterized, and 
mechanical properties were analyzed. PLA/jute fiber and 
PLA/flax fiber composites were examined by Hinchcliffe 
et  al. [121]. The jute fiber composite filament size was 
2 mm, and the flax fiber was 0.5 mm. The findings revealed 
the tensile strength increased by 116% and 26%, respec-
tively. The stiffness of the product was increased by 12% 
and 10%. The effect of different l/d ratios of PLA/ Bamboo 
fiber and PLA/Flax fiber were studied by Depuydt et  al. 
[122] and reported an increase in the stiffness. Le Duigou 
et  al. [123] investigated and showed that it is possible to 
print hygromph biocomposite of PLA/wood fiber compos-
ite with dedicated bilayer microstructure. Mechanical prop-
erties and potential of the hemp and harakeke reinforced 
with Polypropylene were studied by Milosevic et al. [124]. 
The ultimate tensile strength and Young’s modulus were 
reported to improve by 50% and 143%, respectively, com-
pared with pure polypropylene. The mechanical properties 
of thermomechanical pulp (TMP) fiber reinforced with 
BioPE composite were analyzed by Tarrés et al. [125] and 
reported that the printing quality improved. Thibaut et al. 
[126] examined the mechanical properties and anisotropic 
shrinkage of Carboxymethyl cellulose (CMC) with natural 
cellulose fiber during drying. The result showed that the 
30 wt% composite has better mechanical properties and 
reduced shrinkage.

3.2.2  Non‑biodegradable materials

Non-biodegradable bioplastics are fascinating because they 
balance the advantages of decreased carbon footprint dur-
ing processing and better resource quality with microbial 
degradation persistence [127]. However, most materials are 
toxic, not easily decomposable by natural factors, and have 
relatively poor mechanical properties. Therefore, metals, 
fibers, nanomaterials have been used as filler materials to 
improve the mechanical strength and biodegradability of the 
materials.

3.2.2.1 Non‑biodegradable polymer blends  Peng [128] 
prepared and investigated the mechanical properties and 
shape memory effect of polypropylene(PP)/nylon 6 (PA6). 
The composition of 10, 20, and 30 wt% of PA6 was added 
into the PP. The specimen was printed with the param-
eters of 0.1-mm layer thickness, 45°/ − 45° orientation, 
and with nozzle and bed temperatures of 250 ℃ and 110 
℃. The findings revealed that 30 wt% of PA6 blends with 
PP have high dimensional stability and mechanical prop-
erties and a suitable SME deformation temperature of 175 
℃. S. Chen et al. [129] developed a polymer blend of 10, 
20, and 30 wt% of polymethyl methacrylate (PMMA) with 
ABS as a primary blend. They added a small amount of  
methacrylate − butadiene − styrene (MBS) with the blends. 
The specimen was produced with layer thickness 0.2 mm, 
the orientation of the first layer is 45° and the second layer 
is 135°, and the infill density of 100%. The impact strength 
of the ABS/PMMA blend found to be 14.9 kJ/m2 is lower 
than the ABS. Singh and Singh [130] prepared PolyFlex™/
ABS blend at the composition 70/30 vol%. In this research, 
the polymer blends’ mechanical properties were compared 
with the other materials. Their analysis shows that the Poly-
Flex™/ABS blend has attained exceptional standards of 
both strength and elasticity. Ahmed et al. [131] investigated 
the time-dependent mechanical properties of FDM process 
conditions using a definitive screen design of polycarbonate 
(PC)/ABS blends. Their result exhibits that parameters of 
layer thickness 0.2540 mm, an air gap of 0 mm, raster angle 
0° and the print direction at 20° are the optimum conditions 
for good properties.

3.2.2.2 Polymer metal composites  In these polymer-metal 
composites, metals in powder form are reinforced with the 
base materials and extruded in filament form. However, the 
major drawback of using metal is the viscosity effect. Still, it 
can be improved by using additives such as plasticizers and 
surfactants [132]. Aluminum and iron powders are the most 
commonly used filler material in the PMC. Magnetic iron 
and bronze fill powder reinforced with the PLA’s mechani-
cal properties were compared by Fafenrot et al. [133]. The 
specimen is printed at various compositions and tempera-
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tures. The results exhibit the mechanical strength of the 
composites is lesser than the original material. Sa’ude et al. 
[134] investigated the dynamic mechanical properties of the 
ABS/Copper composite. The filament composition was 57 
to 63% ABS and 22 to 24% of copper powder, and 15 to 
19% surfactant. The outcome of the differential scanning 
calorimetry (DSC) analysis glass transition temperature  (Tg) 
was obtained at 74% of ABS and 26% of the copper compo-
sition. The finding revealed improved  Tg, tan delta, storage 
modulus, and loss modulus. ABS-iron polymer-metal com-
posite metal flow analysis was performed by Nikzad et al. 
[135]. The thermal conductivity of the 10wt% iron infilled 
composite was found to have increased to 0.258 (W/m.K). 
Masood and Song [8] investigated the iron with nylon P301 
PMC. Tensile properties of the PMC at different composi-
tions 70% nylon, 30% iron and 60% nylon and 40% iron, and 
60% nylon and 40% iron were investigated. The 70% nylon 
and 30% iron reported giving better tensile modulus (E) of 
54.52 MPa than the other two compositions.

3.2.2.3 Fiber‑reinforced composites  The fibers were added 
with the polymers to overwhelm the inadequate mechani-
cal properties of the 3D printed products. Fibers are mainly  
classified into two types: (a) short fiber and (b) continuous 
fiber. These fibers are naturally corrosion resistive, rigid, 
have high dimensional stability, stiffness, high strength, 
and are lightweight compared with natural polymers [136]. 
These FRCs are mainly used in the aerospace and auto-
mobile sectors to reduce weight and increase the product’s 
strength. However, the main limitation of the fibers is non-
biodegradable and non-eco-friendly. Therefore, Kevlar, 
carbon, glass fibers are widely used to improve the perfor-
mance of the polymers.

3.2.2.3.1 Short fiber reinforced composites Due to the insuf-
ficient strength of the pure polymers, the short fibers are 
reinforced with the polymers to enhance the resilience of 
the FDM printed part. The fiber-reinforced composite is 
generally made by adding the fiber particles into the molten 
thermoplastic polymers [137]. When manufacturing a fiber-
reinforced filament, it is essential to monitor the orienta-
tion of the fiber, the percentage of the fiber mixture, and the 
ideal size of the fiber to avoid unwanted problems such as 
obstruction of the extruder during printing that will affect 
the mechanical properties of the final product [138]. Carbon 
fiber has good thermal conductivity, electrical properties, 
corrosion, wear, and moisture resistance; thus, many analy-
ses were performed using CF [139]. Li et al. [140] analyzed 
the flexural properties of CF/PEEK fiber-reinforced compos-
ite. The geometrical models of the specimen were designed 
by using CATIA V5. The nozzle and bed temperatures are 
400 ℃ and 160 ℃, the layer thickness of 0.1 mm raster angle 
of 45°/ − 45°, printing speed is 15 mm/s, and the air gap is 

0.18 mm are the parameters used to print the specimens, 
and the specimen printed different orientations (horizontal 
and vertical). The CF/PEEK flexural properties of the verti-
cally printed specimens were higher than the horizontally 
printed specimens; the porosity and uniform nucleation 
of the CF added PEEK was improved compared with pure 
PEEK. The microstructure, processability, and mechanical 
properties of the ABS/CF reinforced composite were exam-
ined by Tekinalp et al. [141] using the FDM printing and 
compression molding techniques. The CF was reinforced 
with the ABS at 10, 20, 30, and 40 wt%, and the filament 
was extruded at 1.75 mm diameter. The specimen is printed 
at 0.2 mm layer thickness using a 0.5 mm diameter nozzle at 
the temperature range between 220 and 235 ℃ and the bed 
temperature of 85 ℃. The author mentioned that the filament 
containing 40 wt% of CF with ABS could not be printed 
due to the nozzle clogging during the FDM printing. Apart 
from these difficulties, both FDM and CM processes are 
reported to have comparable tensile strength and modulus. 
Spoerk et al. [142] investigated the anisotropic properties 
of the short carbon fiber (SCF) filled polypropylene (PP). 
SCF was mixed with 10, 15, and 20 wt% into the PP also 
stabilizer and compatibilizer were added with the composi-
tion. Specimen printed 0.25-mm layer thickness using sin-
gle screw extruder the 1.75 mm diameter filament feed to 
the printer at 230 ℃ temperature and different orientation 
angles. This study concludes that 10 wt% of CF with PLA 
has excellent characteristics compared with the 15 and 20 
wt% of CF with PP.

3.2.2.3.2 Continuous fiber reinforced composites In 3D print-
ing technology, continuous fiber reinforcement (CFR) is a 
major challenge for researchers. The CFR composites offer 
significant mechanical properties compared to the short fib-
ers. Since the fiber is continuous, the printing adapts the 
co-extrusion method or uses dual-head printers [143]. The 
thermoplastic and CFR filaments are supplied to the noz-
zle separately, and they will be fused inside the nozzle and 
deposited over the build platform. Another method is a dual 
head method [144]; the thermoplastic and the CFR filament 
are fed separately to the printer and printed through two 
different nozzles. Fabrication of nylon thermoplastic with 
continuous carbon, glass, Kevlar fibers, and their mechani-
cal performance was analyzed by Dickson et al. [145]. The 
standard filament diameter of the nylon was 1.75 mm, and 
the Kevlar, glass, and carbon were 0.3, 0.3, and 0.35 mm, 
respectively. The specimen was printed at different sizes 
from 4 to 32 layers at 0.1 mm layer thickness and fiber lay-
down at concentric and isotropic. The author exhibits that 
the carbon fiber reinforced composite has better tensile, flex-
ural strength, and flexural modulus. Li et al. [146] examined 
the continuous carbon fiber reinforced PLA composite’s 
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thermodynamic and mechanical properties. The PLA par-
ticles partially dissolved in a magnetic stirring process for 
30 min with the methylene dichloride solution to increase 
the filament’s interfacial strength. The analysis result 
shows that modified CFR/PLA composites’ tensile strength 
improved by 13.8% and flexural strength by 164% better 
than the other composite. The storage modulus was 3.25 
GPa, and the glass transition temperature (Tg) was 66.8 ℃. 
Mechanical properties of the continuous Kevlar fiber with 
nylon thermoplastic composite was analyzed by Dong et al. 
[147]. The specimen was made of 0.1 mm layer thickness 
and infill density of 100% with different fiber orientations. It 
was reported that continuous Kevlar/nylon composites have 
an elastic modulus of 27GPa and ultimate tensile strength 
of 333 MPa. The strength of the Kevlar composite found to 
be close with some metal-polymer composites. However, 
the author reported the bonding between Kevlar and nylon 
was relatively weak.

3.2.2.4 Nanocomposites  Thermoplastic polymers used in 
FDM products have poor mechanical and thermal proper-
ties. Thus, to enhance the product’s strength, the nanomate-
rials are used in conjunction with thermoplastic polymers. 
The lack of adhesion contact between nanofillers and poly-
mer material consequences the brittleness of the composite 
material [21]. Many hydrogels and polymer matrices, ther-
moplastics, and thermosetting resins have been introduced 
with nanofillers such as carbonaceous nanofillers, nano clay, 
and metallic nanofiller to develop functional and property-
enhanced structures. In the fabrication of electrically con-
ductive nanocomposites, metallic nanowires and nanopar-
ticles, carbon nanotubes, carbon nanofibers, and graphene 
have been used owing to their excellent conductivity. These 
improved composite structures have been used in various 
applications, ranging from sensing instruments (e.g., liquid 
sensors, strain sensors) to protect electromagnetic shield-
ing in aerospace to household industries [148]. Ivanov et al. 
[149] analyzed the electrical and thermal properties of PLA/
Graphene/MWCNT composites. The composition of PLA/
Graphene and PLA/MWCNT were also studied. The mono-
fillers PLA/Graphene and PLA/MWCNT composition were 
1.5, 3, and 6 wt%. Meanwhile, PLA/Graphene/MWCNT's 
bi-filler composition varied between 3 and 6 wt%. The 
mono-fillers had 6wt% GNP and MWCNT were reported 
to have conductivity compared to the pure PLA success-
fully. The 6wt% of PLA/graphene/MWCNT composites 
reported having measured thermal conductivity of 0.4692 
(W/m.K) than the other bi-filler and mono-filler compos-
ites. Sezer and Eren [150] analyzed the MWCNT reinforced 
into ABS thermoplastic. The specimen is printed by FDM 
using the parameters of 100% infill rate, 0.2 mm layer thick-
ness, and the nozzle and the bed temperature of 245 ℃ and 
110 ℃, respectively. Their study result shows that 7wt% of 

MWCNT with the ABS has a tensile strength of 58 MPa at 
a raster angle of 0°/90°. Raster angle 45°/ − 45° resulted in 
a lower tensile strength. The 10 wt% of MWCNT achieved 
the highest electrical conductivity of 232  e−2 S/cm with the 
metal flow index (MFI) value decreased to 0.03 g/10 mm 
due to the nozzle clogging issues. The mechanical and 
thermal properties of ABS/montmorillonite nanocom-
posites were researched by Weng et  al. [151]. The results 
showed that the overall mechanical strength of the FDM 
printed parts is lower than the injection molding process. 
However, the thermal stability of the OMMT nanocompos-
ite was reported to increase. Coppola et al. [152] analyzed 
the FDM printed PLA/clay nanocomposite. Different types 
of PLA were used, PLA 4032D and PLA 2003D, with a 
layered silicate of 4 wt%. The study mainly focuses on the 
specimen printed using three different temperatures for PLA 
4032D (185–200–215 °C) and PLA 2003D (165–180–195 
°C), and the properties were analyzed. The experiment dem-
onstrates thermal stability, and the elastic modulus of PLA/
clay nanocomposite was higher than the ordinary PLA. Kim 
et  al. [153] analyzed the piezoelectric properties of poly-
vinylidene fluoride (PVDF) and Barium titanate  (BaTiO3) 
composite. N-Dimethylformamide was used as a dissolving 
agent in the fabrication of the PVDF/BaTiO3 composite. 
The finding revealed that, compared with solvent-casted 
nanocomposites, this nanocomposite has three times the 
higher piezoelectric response.

Table 2 establish the detail of various analysis carried 
out in the FDM process and the data obtained from various 
literatures [21, 89, 103, 112, 118, 131, 138–228]. It specifi-
cally identifies the materials used in the FDM process and 
the various test such as mechanical, electrical, and thermal 
investigations.

In this section, the various materials used in the FDM 
process and their findings were clearly discussed. ABS 
and the PLA are the most commonly used materials for the 
entry-level. Materials such as nylon, polycarbonate, PEAK, 
PEEK are mainly utilized for high-strength properties. 
Moreover, various composite materials were added with 
the polymers to increase the product's strength and other 
properties. In many applications, fibers and nanocomposites 
are used to increase the product’s strength. Biocompatible 
polymer blends and polymer composites are mainly used in 
the medical sectors for human tissue and organs.

4  Parameters of FDM process

The noteworthy performance of the FDM products depends 
on the proper selection of printing parameters during fabri-
cation. Due to the availability of several competing param-
eters, the influence on the accuracy of the variable and the 
material properties varies. Appropriate process parameters 
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Table 2  List of mechanical tests conducted in polymers, blends, and composite materials

Material Tensile test Compression 
test

Flexural test Impact test Thermal test Electrical test

ABS ✔ ✔ ✔ ✔ ✔ ✔
PLA ✔ ✔ ✔ ✔ ✔ ✔
High-density polyethylene (HDPE) ✔ x x x x x
Polypropylene (PP) ✔ x x x ✔ x
Nylon/Polyamide (pa) ✔ x x x ✔ ✔
Polycarbonate (PC) ✔ x ✔ x x x
Polyetherimide (PEI) ✔ x ✔ ✔ x x
PEKK x x ✔ x x x
PEEK ✔ x ✔ ✔ ✔ ✔
Polystyrene (PS) ✔ x x x x x
PET ✔ x ✔ x ✔ x
PET-G ✔ ✔ ✔ x x x
PLA/PCL ✔ x ✔ x x x
PLA/PET-G ✔ x x x ✔ x
Poly(3-hydroxybutate)/PLA ✔ x x ✔ x x
PBS/PLA ✔ x x ✔ x x
PLGA coated β-TCP x ✔ ✔ x x x
PCL/TCP x ✔ x x x x
GPET/PC ✔ x ✔ ✔ ✔ x
PLA/ceramic ✔ x ✔ x x x
PLA/β-TCP ✔ ✔ x x x x
PEI/PC x x x x ✔ x
PEI/PETG x x x x ✔ ✔
PVC/ionic liquid ✔ ✔ x x x x
Polyvinyl alcohol/β-TCP ✔ ✔ x x x x
PLA/HA ✔ x x x x x
PCL/HA ✔ x ✔ x x x
PLA/wood ✔ x ✔ x x x
PLA/coconut wood ✔ x ✔ x x x
PLA/bamboo powder ✔ x x x x x
PLA/wood flour ✔ x x x ✔ x
PLA/wood chips ✔ x x x x x
PLA/cocoa shell ✔ x x x x x
PLA/hemp ✔ x x x x x
PLA/Harakeke ✔ x x x x x
PLA/flax fiber ✔ x x x x x
PLA/continuous flax fiber ✔ x x x x x
PLA/bamboo fiber ✔ x x x x x
PLA/wood fiber ✔ x x x x x
PP/hemp fiber ✔ ✔ x x x x
PP/Harakeke fiber ✔ x x x x x
TMP/BioPE ✔ x x x x x
CMC/natural cellulose fiber ✔ x x x x x
CABS/ZnO ✔ x x x ✔ ✔
PP/Nylon 6 ✔ x x x x x
ABS/PMMA ✔ x ✔ ✔ x x
ABS/PMMA/MBS ✔ x ✔ ✔ x x
ABS/PolyFlexTM ✔ x x x x x
ABS/ZnO ✔ x x x ✔ ✔
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are attributed to the fabricated part’s efficiency and mechani-
cal characteristics [217]. The optimized process variables for 
the FDM process are shown in Fig. 10.

The process parameters affect the efficiency of the pro-
duction and the properties of the product. The essential 
parameters used in the FDM printing are infill pattern, 
infill density, raster angle, raster width, layer thickness, 

build orientation, printing speed, air gap, and operating 
temperature.

4.1  Infill pattern

The infill pattern is the structure, shape, and technique of 
the material inside of the part. Grid, honeycomb, cubic, 

Table 2  (continued)

Material Tensile test Compression 
test

Flexural test Impact test Thermal test Electrical test

ABS/TiO2 ✔ x x x x x
ABS/Jute ✔ x x x x x
ABS/TP rubber ✔ x x x x
ABS/PC ✔ x x x ✔ x
ABS-PC /graphene ✔ x x x ✔ x
ABS/iron ✔ x x x ✔ x
Nylon/iron ✔ x x x ✔ x
PLA/magnetic iron ✔ x x x x x
PLA/bronze ✔ x x x x x
PLA/copper ✔ x ✔ x x x
PLA/aluminum ✔ x ✔ x x x
ABS/copper ✔ x x x x x
ABS/copper ✔ x x x x x
PE/copper x x ✔ x x x
ABS/CF ✔ x x x x x
PLA/CF ✔ x ✔ x ✔ x
PEEK/CF ✔ x ✔ ✔ ✔ x
PEEK/GF ✔ x ✔ ✔ ✔ x
PET-G/CF ✔ x x x x x
PP/GF ✔ x x x ✔ x
PP/CF x x x x x x
Nylon/Kevlar x x ✔ x x x
Nylon/carbon x x ✔ x x x
Nylon/glass x x ✔ x x x
ABS/graphene ✔ x x x ✔ ✔
PLA/graphene ✔ x x x ✔ ✔
Polyethylene/graphene ✔ x x x ✔ x
PLA/graphene/CNT ✔ x x x ✔ ✔
PLA/CNT ✔ x ✔ x ✔ ✔
ABS/CNT ✔ x x x ✔ x
PEEK/CNT ✔ x x x x x
ABS/MWCNT ✔ x x x x ✔
PLA/MWCNT ✔ x x x x ✔
PLA/graphene/CNT x x x x ✔ x
ABS/OMMT ✔ x ✔ x x x
PLA/clay nanocomposite ✔ x x x x x
PLA/cellulose nanofibril ✔ x x x x x
PET-G/sepiolite ✔ x x x x x
PEU/nano HA ✔ x x x x x
OMMT/nano clay ✔ x x ✔ ✔ x
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rectilinear, rectangular, triangular, octet, and wiggle are the 
commonly used infill patterns shown in Fig. 11. In terms of 
the properties, i.e., the tensile and compressive properties 
of the product, they reported changes with different infill 
patterns.

4.2  Infill density

Infill density implies the total amount of material used for 
printing the specimen. The mechanical properties of the 
specimen are primarily affected by the infill density. Groza 

Fig. 10  Cause-and-effect 
diagram of FDM process 
parameters [218]

Fig. 11  a–i Various infill pat-
terns used for the FDM process 
[225]
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and Shackelford [217] denotes three types of filling styles 
in the study. A “solid normal” infill has a tough interior and 
good mechanical properties. In “spares,” the printing time 
and the material volume are also minimized by leaving gaps, 
and it utilizes a uni-directional raster. Finally, in “sparse 
double dense,” the printing time and material volume are 
reduced in “sparse double dense,” using a crosshatch raster 
pattern.

4.3  Raster angle

The raster angle is the most common printing vector for 
FDM printing optimization. The raster angle is how each 
layer is oriented while printing the desired shape. Figure 12b 
exhibits the raster angle used for printing. The generally 
used raster angle differs from 0° to 90°, and regularly used 
raster angles are (0°/90°) and (45°/ − 45°). However, it is 
possible to control this variable for each layer either at one 
angle or at a different angle. The raster angle proved to affect 
the properties, and various experiments have been carried 
out to study the impact of the raster angle. Rajpurohit et al. 
[138] and Es-Said et al. [139] analyzed the effects of ras-
ter angle on mechanical properties in both experiments. 
The raster angle of 0° was reported to have better tensile 
and impact resistance. Meanwhile, the raster angle of 30° 
presents maximum impact and tensile strength [220, 221].  
Nancharaiah et al. [222] reported the 0° angle having the 
best surface finish and the worst at 60°. The differences in 

the CAD models and other parameters have led to differ-
ences in the interpretation of various authors.

4.4  Raster width

Raster width is the size of the deposition of the material 
droplet of the product. This raster or road width is usually 
1.2 to 1.5 times the nozzle diameter. Figure 12b shows the 
raster width, which varies on the diameter of the nozzle. 
Thus, the reduced width value leads to improved strength 
and reduced build time. Sood et al. [223] and Arumaikkannu 
and Uma Maheshwaraa [224] reported the top surface finish 
and dimensional accuracy could be obtained using minimum 
raster width.

4.5  Layer thickness

The layer thickness is the breadth of material deposited by 
the nozzle on the vertical axis, as shown in Fig. 12c. The 
size of the nozzle tip usually determines or controls the layer 
thickness. The effect of layer thickness and other param-
eters of a specimen has been analyzed by Mohamed et al. 
[226], and the result displays 0.1-mm layer thickness has the 
best flexural force. Therefore, this experiment directing less 
amount of layer thickness will increase the flexural proper-
ties of the product. On the other hand, Wu et al. [96] also 
mentioned that the increase in the size of the layer thickness 
would reduce the product's strength.

Fig. 12  a Printing orientation of specimen [130], b operating parameters of raster angle, air gap, raster width, contours, and c layer thickness of 
the product [231]
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4.6  Build orientation

The build orientation is the most versatile and impressive 
pre-processing parameter to obtain the best surface proper-
ties. The machine coordination system can be modified in 
the CAD model to achieve desired objectives by the angle of 
orientation or deposition angle. It indicates the orientation of 
printing of the specimen inside the build platform in respect 
of X, Y, and Z directions. Figure 12a shows the orienta-
tion and style (flat, on-edge) and orientation angles. The X, 
Y direction printed parts do not need supporting structure, 
but the Z-direction requires support structure. Afrose [188] 
investigated and observed the fatigue life and best capacity 
to store strain energy specimens printed at 45° orientation.

4.7  Printing speed

Printing speed is the pass-through speediness of the nozzle 
on the build platform during the printing. The printing speed 
regulates the build time of the product. Also, the printing 
speed has a maximum effect on the deformation of the prod-
uct because, during the production, this fast printing could 
induce substantial residual stresses. Vinitha et al. [227] 
examined the printing speed effect of burning parts built by 
FDM. They reported that reducing the speed of the print-
ing would increase the surface finish of the product. When 
thinner layers are printed, the impact of the print speed is 
considered negligible [228].

4.8  Air gap

In the same layer, the gap between two contiguous raster's 
is denoted as the air gap. The default value of the air gap is 
usually zero, which results in the two closest beads being 
touched. The positive air gap will reduce the density of the 
part and reduce the product's build time. Hence, the denser 
structure (negative air gap) would have a longer build time, 
and the raster has good bonding strength. Also, the nega-
tive air gap was testified to significantly improve the tensile 
strength [229]. Meanwhile, with negative and positive air 
differences, the surface finish generally increases [223]. The 
air gap between the rasters is shown in Fig. 12b.

4.9  Operating temperature

The operating temperature is categorized into nozzle tem-
perature (extrusion temperature) and bed temperature (build 
platform). Before the printing process, the nozzle is required 
to reach a specific temperature to melt the filament to print 
the product, called nozzle temperature. Similarly, during the 
printing process, the building platform bed needs to be at a 
suitable temperature, termed bed temperature. Due to the 
delay in the solidification, the higher temperature produces 

smooth surfaces. Vasudevarao et al. [230] distinguished after 
the layer thickness, raster angle, the operating temperature is 
the third most significant factor affecting the product surface 
finish.

Quite a number of research have been carried out on FDM 
parameters to improve process parameters aiming to enhance 
surface finishing, dimensional precision, and the mechanical 
features of printed components. Since the process param-
eters are essential for enhancing mechanical properties, build 
time, dimensional accuracy, and surface roughness. Several 
investigators proposed that the effects of process parameters 
on FDM processed parts be analyzed with sufficient com-
putational designs and optimization techniques to reduce 
the experimental effort and feasibility. The optimal process 
parameter combination was established experimentally in 
most cases, and the best experimental result was deemed 
the optimum solution. The optimal process parameter com-
binations may vary from the experimental combinations but 
must be within the process parameter range. Researchers 
used several optimization techniques to address this flaw. It 
is a mathematical model of the connection between process 
parameters and a single part attribute. Multi-objective opti-
mization represents the connection between process param-
eters and various component attributes using mathematical 
models. This shows the FDM machine’s maximum and 
lowest levels of process parameters, or a range of process 
parameters proven to provide excellent component qualities.

Many studies have utilized the full factorial, fractional 
factorial, and face-cantered central composite designs to 
get more information from fewer trials. Alternatively, the 
experimental design established optimal values for analyzing 
component properties. In some of the researches validat-
ing the relationship between the part quality and process 
parameter by creating various mathematical models such 
as quantum-behaved particle swarm optimization (QPSO), 
differential evolution (DE), genetic algorithm (GA), non-
dominated sorting genetic algorithm II (NSGA-II) were 
used. Peng et al. [232] produced ABS components based 
on a standardized experimental design. Controllable factors 
in their case study were line width compensation, extrusion 
velocity, filling velocity, and layer thickness. Additionally, 
they inferred from the experimental findings that a thin layer 
thickness was preferred for dimensional accuracy improve-
ment. Additionally, they found the optimal combinations of 
these four process parameters for three response variables, 
including dimensional accuracy, using the response surface 
method (RSM), fuzzy inference system (FIS), artificial neu-
ral network (ANN), and genetic algorithm (GA). Several 
studies improved the features of more than two components 
concurrently to find the optimal combination(s) for multiple 
conflicting qualities. Sood et al. [233] identified the optimal 
combination of five process parameters (layer thickness, 
build orientation, raster orientation, raster width, and air 
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gap) for dimensional accuracy in three dimensions (length, 
width, and height). The authors optimized all dimensional 
accuracies using the Taguchi technique and found an opti-
mum solution that reduced three-dimensional dimensional 
accuracy. The author also used an ANN to make predic-
tions. Montero et al. [234] examined five process factors 
(raster width, air gap, filament color, extrusion tempera-
ture, and raster orientation) and used a fractional factorial 
design to conduct their experiment. The experimental find-
ings indicated that the air gap and raster orientation were 
two important tensile strength factors and that a negative 
air gap and 0° raster orientation were preferred for maximal 
tensile strength. The effect of build orientation and raster 
orientation on tensile characteristics was investigated by 
Durgun and Ertan [235]. Their testing findings indicated 
that the 0° raster and 0° build orientations were appropriate 
for optimizing tensile strength. The orientation of the build 
was shown to be more important than the orientation of the 
raster. The optimal combination of five process parameters 
(raster width, layer thickness, build orientation, raster ori-
entation, and airgap) that optimize the tensile strength of 
ABS printed components was determined by Rayegani and 
Onwubolu [229]. A mathematical model that linked process 
characteristics to tensile strength was developed using the 
group method of data handling (GMDH). To enhance tensile 
strength, a DE optimization technique was used to optimize 
each parameter. The optimization findings indicated that the 
minimum layer thickness, build orientation, raster width, and 
negative air gap increased tensile strength. Raster orientation 
was shown to be less important.

Dimensional accuracy and surface quality of the FDM 
component were investigated by Nancharaiah et al. [222]. 
The properties of the component affected due to raster angle, 
raster width, air gap, and layer thickness were analyzed, and 
the analysis was conducted adapting Taguchi's DOE method. 
The findings were evaluated statistically to assess the rel-
evant variables and their relationships. The ANOVA analysis 
reports that the part accuracy and the surface quality of the 
product were affected significantly by the raster width and 
layer thickness. Meanwhile, the air gap has more impact on 
dimensional accuracy and little influence on surface quality. 
Pavan Kumar and Regalla et al. [236] analyzed the support 
material and build time optimization on FDM adapting the 
DOE method. Based on the ANOVA result, the specimen’s 
orientation was found crucial to minimize the build time, 
and the build time is decreased as the layer thickness, ras-
ter width, contour width, and raster angle increased. Using 
Taguchi's DOE method, the effect of the process parameters 
on the PLA filament using FDM was analyzed by Alafaghani 
and Qattawi [237]. Adapting the L9 DOE method, infill pat-
tern, infill percentage, layer thickness, and extrusion tem-
perature were investigated for the specimen's dimensional 
accuracy and mechanical properties. Their result showed 

that the lower infill pattern and infill percentage of hexago-
nal infill pattern at 190 ℃ have fewer dimensional errors 
and better dimensional accuracy. The processing param-
eters of 0.3 mm layer thickness, 100% infill percentage at 
210 ℃, and triangular infill pattern reported having good 
strength and young's modulus. Also, the author exhibits 
the product's mechanical properties while printing in high 
extrusion temperature, and the rectilinear infill pattern has 
better strength and stiffness than the triangular pattern. The 
best relationship consequence and process variables are said 
could be established using the Taguchi method [238]. In 
contrast, compared with the RSM method, the number of 
experiments could also be reduced using the Taguchi method 
[239]. Table 3 exposes the different mathematical optimiza-
tion methods that have been commonly used to analyze the 
process conditions of the FDM prototyping process.

This section demonstrates the importance of the process 
parameters in the FDM process. The most studied FDM 
parameters were layer thickness, build orientation, raster 
orientation, raster width, air gap, and infill density. Accord-
ing to the previous research, the layer thickness and the build 
orientation are the most important factors on dimensional 
accuracy and surface roughness of the product. Reducing 
the layer thickness will increase the dimensional accuracy 
and surface roughness. Also, the shrinkage happens along 
the X- and Y-axes of construction platforms, whereas growth 
occurs along the Z-axis. Low print speed and extrusion tem-
perature are also important factors to increase the surface 
finish. The build orientation determined the tensile proper-
ties of the product, also the tensile and flexural strength was 
greatest at 0°. To increase the infill density and the extru-
sion temperature is recommended to increase the strength. 
Reducing the air gap of the layer would form voids in the 
products, which reduce the properties.

5  Mechanical properties of FDM parts

The mechanical properties of the FDM printed specimen 
are mainly dependent on the material and the input process 
parameters. Layer thickness, build orientation, raster angle, 
raster width, and air gap are the primary factors affecting the 
mechanical properties of the 3D printing parts [205, 247, 
248]. The build orientation significantly affects the mechani-
cal properties and the surface roughness compared with the 
raster angle [235]. Research groups used ASTM standard 
criteria in preparing the sample and performing mechanical 
experiments; e.g., ASTM D638 was adopted by nearly all 
research groups tested for tensile tests [176, 205]. Most of 
the research findings reported that the process parameters 
mainly affect the ultimate tensile strength, yield strength, 
elasticity, and elongation of the component. Also, in most 
published literature, the mechanical behavior was revealed 

1552 The International Journal of Advanced Manufacturing Technology (2022) 120:1531–1570



1 3

Ta
bl

e 
3 

 P
re

vi
ou

s a
na

ly
si

s o
f m

at
he

m
at

ic
al

 o
pt

im
iz

at
io

n 
m

et
ho

ds
 fo

r a
na

ly
zi

ng
 th

e 
pr

oc
es

s c
on

di
tio

n 
of

 th
e 

FD
M

 p
ro

ce
ss

A
ut

ho
rs

A
na

ly
ze

d 
 

m
at

er
ia

ls
M

et
ho

do
lo

gy
In

pu
t p

ro
ce

ss
 p

ar
am

et
er

s
D

et
er

m
in

at
io

n
D

isc
us

sio
n

M
oh

am
ed

 e
t a

l. 
[2

40
]

PC
-A

B
S

Re
sp

on
se

 su
rfa

ce
 m

et
ho

do
lo

gy
 

(R
SM

)
La

ye
r t

hi
ck

ne
ss

, n
um

be
r o

f c
on

to
ur

s, 
ra

ste
r a

ng
le

, b
ui

ld
 o

rie
nt

at
io

n,
 a

ir 
ga

p,
 

an
d 

ra
ste

r w
id

th

Pa
rt 

str
uc

tu
re

 a
nd

 d
yn

am
ic

 
m

ec
ha

ni
ca

l p
ro

pe
rti

es
R2  v

al
ue

s a
re

 h
ig

h 
fo

r t
he

 c
om

pl
ex

 a
nd

 d
yn

am
ic

 
m

od
ul

e 
an

d 
th

e 
op

tim
al

 p
ro

ce
ss

 p
ar

am
et

er
s f

or
 

co
nc

lu
de

d 
to

 b
e 

as
 e

ns
ue

s l
ay

er
 th

ic
kn

es
s i

s 
0.

33
02

 m
m

, a
ir 

ga
p 

va
lu

e 
is

 0
, r

as
te

r a
ng

le
 is

 0
˚, 

bu
ild

 o
rie

nt
at

io
n 

90
˚, 

ra
ste

r w
id

th
 is

 0
.4

57
2 

m
m

, 
an

d 
th

e 
nu

m
be

r o
f c

on
to

ur
s i

s 1
0

Zh
an

g 
an

d 
Pe

ng
 [2

41
]

A
B

S
Ta

gu
ch

i m
et

ho
d 

co
m

bi
ne

d 
w

ith
 

fu
zz

y
co

m
pr

eh
en

si
ve

 e
va

lu
at

io
n

W
ire

-w
id

th
 c

om
pe

ns
at

io
n,

 e
xt

ru
si

on
 

ve
lo

ci
ty

, fi
lli

ng
 v

el
oc

ity
, a

nd
 la

ye
r 

th
ic

kn
es

s

D
im

en
si

on
al

 e
rr

or
 a

nd
  

w
ar

pa
ge

 d
ef

or
m

at
io

n
Th

e 
fin

di
ng

s o
f t

hi
s p

ap
er

 d
o 

no
t e

nt
ire

ly
 re

fe
r t

o 
th

e 
re

al
 c

rit
er

ia
, b

ut
 th

e 
ap

pr
oa

ch
 in

 th
is

 p
ap

er
 

ca
n 

be
 u

se
d 

to
 d

ire
ct

 th
e 

op
tim

iz
at

io
n 

of
 p

ro
ce

ss
 

pa
ra

m
et

er
s

N
an

ch
ar

ai
ah

 [2
42

]
A

B
S

D
O

E 
an

al
yz

ed
 b

y 
S/

N
 ra

tio
 a

nd
 

A
N

O
VA

 a
na

ly
si

s
La

ye
r t

hi
ck

ne
ss

, a
ir 

ga
p,

 a
nd

 ra
ste

r 
an

gl
e

B
ui

ld
 ti

m
e

A
N

O
VA

 a
na

ly
si

s o
bs

er
ve

d 
la

ye
r t

hi
ck

ne
ss

 c
on

-
tri

bu
te

s 6
6.

57
%

 a
t 9

9%
, a

nd
 a

ir 
ga

p 
co

nt
rib

ut
es

 
30

.7
7%

 a
t 9

5%
 o

n 
bu

ild
 ti

m
e 

si
gn

ifi
ca

nt
ly

. 
Th

er
ef

or
e,

 th
e 

S/
N

 ra
tio

 o
pt

im
iz

es
 th

e 
bu

ild
 ti

m
e 

on
 la

ye
r t

hi
ck

ne
ss

 a
t l

ev
el

 3
, a

ir 
ga

p 
at

 le
ve

l 3
, 

an
d 

ra
ste

r a
ng

le
 a

t l
ev

el
 2

M
oh

am
ed

 e
t a

l. 
[2

43
]

PC
-A

B
S

Q
-o

pt
im

al
 d

es
ig

n 
re

sp
on

se
 su

rfa
ce

 
m

et
ho

do
lo

gy
La

ye
r t

hi
ck

ne
ss

, a
ir 

ga
p,

 ra
ste

r
an

gl
e,

 b
ui

ld
 o

rie
nt

at
io

n,
 ro

ad
 w

id
th

, a
nd

 
nu

m
be

r o
f c

on
to

ur
s

B
ui

ld
 ti

m
e,

 fe
ed

sto
ck

 m
at

er
ia

l 
co

ns
um

pt
io

n,
 a

nd
 d

yn
am

ic
 

fle
xu

ra
l m

od
ul

us

Th
e 

ai
r g

ap
, l

ay
er

 th
ic

kn
es

s b
ui

ld
 d

ire
ct

io
n,

 a
nd

 th
e 

nu
m

be
r o

f c
on

to
ur

s a
re

 a
ffe

ct
ed

 b
y 

bu
ild

 ti
m

e,
 

fe
ed

sto
ck

 m
at

er
ia

l c
on

su
m

pt
io

n,
 a

nd
 d

yn
am

ic
 

fle
xu

ra
l m

od
ul

us
. B

ui
ld

 ti
m

e 
an

d 
fe

ed
sto

ck
 c

on
-

su
m

pt
io

n 
w

ill
 b

e 
re

du
ce

d 
w

hi
le

 in
cr

ea
si

ng
 th

e 
ai

r 
ga

p 
an

d 
la

ye
r t

hi
ck

ne
ss

 su
bs

ta
nt

ia
lly

N
ag

en
dr

a 
an

d 
Pr

as
ad

 [2
44

]
N

yl
on

–A
ra

m
id

 
C

om
po

si
te

G
ra

y 
Ta

gu
ch

i t
ec

hn
iq

ue
La

ye
r t

hi
ck

ne
ss

, r
as

te
r a

ng
le

, e
xt

ru
si

on
 

te
m

pe
ra

tu
re

, i
nfi

ll 
de

ns
ity

, a
nd

 in
fil

l 
pa

tte
rn

 st
yl

e

O
pt

im
iz

e 
th

e 
pr

oc
es

s  
pa

ra
m

et
er

Te
ns

ile
, fl

ex
ur

al
, i

m
pa

ct
, a

nd
 c

om
pr

es
si

on
 st

re
ng

th
 

w
er

e 
an

al
yz

ed
, a

nd
 fr

om
 th

e 
S/

N
 ra

tio
 a

na
ly

si
s, 

th
e 

op
tim

iz
ed

 p
ar

am
et

er
s a

re
 la

ye
r t

hi
ck

ne
ss

 
0.

4 
m

m
, r

as
te

r a
ng

le
 9

0°
, 9

0%
 in

fil
l p

at
te

rn
, a

nd
 

th
e 

ex
tru

si
on

 te
m

pe
ra

tu
re

 o
f 3

00
 ℃

W
an

kh
ed

e 
et

 a
l. 

[2
45

]
A

B
S

Ta
gu

ch
i’s

 L
8 

or
th

og
on

al
 a

rr
ay

 (O
A

)
In

fil
l d

en
si

ty
, l

ay
er

 th
ic

kn
es

s, 
an

d 
 

su
pp

or
t s

ty
le

B
ui

ld
 ti

m
e 

an
d 

su
rfa

ce
  

ro
ug

hn
es

s
Th

e 
la

ye
r t

hi
ck

ne
ss

 is
 a

n 
eff

ec
tiv

e 
pa

ra
m

et
er

 fo
r 

bo
th

 su
rfa

ce
 fi

ni
sh

 a
nd

 th
e 

la
ye

r t
hi

ck
ne

ss
 fr

om
 

th
e 

an
al

ys
is

. T
he

 o
pt

im
iz

ed
 la

ye
r t

hi
ck

ne
ss

 fo
r 

bu
ild

 ti
m

e 
is

 0
.3

30
2 

m
m

 a
nd

 fo
r t

he
 su

rfa
ce

 fi
ni

sh
 

is
 0

.2
54

 m
m

. W
he

re
as

 th
e 

in
fil

l d
en

si
ty

 is
 lo

w
-

de
ns

ity
 sp

ar
se

 a
nd

 sm
ar

t s
up

po
rt 

sty
le

D
on

g 
et

 a
l. 

[2
46

]
A

B
S

Ta
gu

ch
i m

et
ho

d
Ex

tru
si

on
 te

m
pe

ra
tu

re
, p

rin
t s

pe
ed

, f
an

 
sp

ee
d,

 la
ye

r t
hi

ck
ne

ss
La

tti
ce

 st
ru

ct
ur

es
H

or
iz

on
ta

l a
nd

 in
cl

in
ed

 st
ru

ts
 o

f l
at

tic
e 

str
uc

tu
re

 
w

er
e 

in
ve

sti
ga

te
d 

by
 th

e 
Ta

gu
ch

i m
et

ho
d,

 a
nd

 
pa

ra
m

et
er

s w
er

e 
op

tim
iz

ed
 b

y 
S/

N
 ra

tio
 a

na
ly

si
s 

an
d 

A
N

O
VA

. T
he

 re
su

lt 
sh

ow
s t

ha
t t

he
 fa

n 
sp

ee
d 

is
 th

e 
m

os
t c

ru
ci

al
 p

ar
am

et
er

 fo
r i

nc
lin

ed
 st

ru
ts

 
an

d 
la

ye
r h

ei
gh

t f
or

 th
e 

ho
riz

on
ta

l s
tru

ts
. A

ls
o,

 
th

e 
m

ec
ha

ni
ca

l p
er

fo
rm

an
ce

 o
f t

he
 la

tti
ce

 st
ru

c-
tu

re
 c

an
 in

cr
ea

se
 u

si
ng

 th
e 

pr
op

os
ed

 o
pt

im
iz

at
io

n 
m

et
ho

d

1553The International Journal of Advanced Manufacturing Technology (2022) 120:1531–1570



1 3

Ta
bl

e 
4 

 M
ec

ha
ni

ca
l p

ro
pe

rti
es

 o
f t

he
 F

D
M

 p
ro

du
ct

s b
y 

us
in

g 
va

rio
us

 m
at

er
ia

ls
 a

nd
 p

ro
ce

ss
 p

ar
am

et
er

s

A
ut

ho
r

M
at

er
ia

l
In

fil
l

Pr
oc

es
s p

ar
am

et
er

s
U

lti
m

at
e 

te
ns

ile
 

st
re

ng
th

 (M
Pa

)
El

as
tic

 m
od

ul
us

 
(M

Pa
)

Fl
ex

ur
al

 
st

re
ng

th
 

(M
Pa

)

Fl
ex

ur
al

 
m

od
ul

us
 

(M
Pa

)

C
om

pr
es

siv
e 

st
re

ng
th

 (M
Pa

)
El

as
tic

 
m

od
ul

us
 

(M
Pa

)

El
on

ga
tio

n 
of

 
br

ea
k 

(%
)

To
ug

hn
es

s (
en

er
gy

 
ab

so
rp

tio
n 

Jm
−

3 )

Sa
m

yk
an

o 
et

 a
l. 

[1
71

]
A

B
S

-
La

ye
r t

hi
ck

ne
ss

 
0.

5 
m

m
,

R
as

te
r a

ng
le

 5
5°

,
80

%
 in

fil
l p

er
ce

nt
ag

e

31
.5

7
77

4.
50

19
.9

5
-

-
-

0.
09

4
2.

28

C
ha

có
n 

et
 a

l. 
[1

9]
PL

A
-

La
ye

r t
hi

ck
ne

ss
  (L

t) 
0.

06
, 0

.1
2,

 0
.1

8,
 

0.
24

 m
m

),
In

fil
l p

at
te

rn
 (fl

at
, 

up
rig

ht
, o

n-
ed

ge
),

Pr
in

t s
pe

ed
 (2

0,
 5

0,
 

80
 m

m
/s

)

89
.1

44
09

65
.0

18
86

-
-

-
-

Li
u 

et
 a

l. 
[2

57
]

PL
A

-
La

ye
r t

hi
ck

ne
ss

 
0.

3 
m

m
,

In
fil

l p
at

te
rn

 
lin

ea
r, 

ra
ste

r a
ng

le
 

45
°/

 −
 45

 a
nd

 0
°/

 
90

°, 
In

fil
l p

at
te

rn
 

fla
t, 

up
rig

ht
, a

nd
 

on
 e

dg
e

67
.6

90
1

10
9.

5
26

05
.9

-
-

8
-

W
oo

d
38

.7
80

8.
1

71
.0

27
04

.3
-

-
6

-
C

er
am

ic
46

.5
10

56
.3

10
0.

1
46

21
.4

-
-

7
-

C
op

pe
r

58
.3

10
16

.9
11

8.
7

38
45

.1
-

-
8

-
A

lu
m

in
um

51
.1

83
8.

4
97

.8
32

75
.8

-
-

7
-

C
ar

bo
n 

fib
er

41
.3

74
5.

7
75

.6
29

39
.2

-
-

8
-

K
es

av
ar

m
a 

et
 a

l. 
[1

98
]

PL
A

C
oc

on
ut

 w
oo

d
La

ye
r h

ei
gh

t 
0.

3 
m

m
, p

rin
tin

g 
sp

ee
d 

30
 m

m
/s

, 
ex

tru
si

on
 te

m
-

pe
ra

tu
re

 2
00

 ℃
, 

di
ffe

re
nt

 b
ui

ld
 

or
ie

nt
at

io
n 

an
d 

in
fil

l p
er

ce
nt

ag
e 

25
, 5

0,
 a

nd
 7

5%

-
-

23
.1

83
51

5.
1

-
-

-
-

To
rr

ad
o 

Pe
re

z 
et

 a
l. 

[1
54

]
A

B
S

Ti
O

2 (
5 

w
t%

)
La

ye
r t

hi
ck

ne
ss

 
0.

27
 m

m
, 1

00
%

 
in

fil
l p

er
ce

nt
-

ag
e,

 th
e 

sp
ee

d 
at

 5
5 

m
m

/s
, 2

30
 

℃
 e

xt
ru

si
on

 
te

m
pe

ra
tu

re
 a

t 
th

e 
or

ie
nt

at
io

n 
of

 
X

Y
Z 

an
d 

ZY
X

32
.2

17
08

23
.8

-
-

-
-

-
Ju

te
 fi

be
r

(5
 w

t%
)

25
.9

15
43

23
.6

-
-

-
-

-

TP
 ru

bb
er

(5
 w

t%
)

24
.0

15
80

18
.1

-
-

-
-

-

C
he

n 
et

 a
l. 

[1
07

]
PV

A
β-

TC
P

(5
, 1

0,
 2

0 
w

t%
)

Pr
in

tin
g 

te
m

pe
ra

tu
re

 
17

5 
℃

, s
pe

ed
 

20
0 

m
m

/s
, r

as
te

r 
an

gl
e 

0–
90

° a
nd

 
0.

3 
m

m
 la

ye
r 

th
ic

kn
es

s

3.
92

29
.3

6
-

-
-

-
-

-

1554 The International Journal of Advanced Manufacturing Technology (2022) 120:1531–1570



1 3

Ta
bl

e 
4 

 (c
on

tin
ue

d)

A
ut

ho
r

M
at

er
ia

l
In

fil
l

Pr
oc

es
s p

ar
am

et
er

s
U

lti
m

at
e 

te
ns

ile
 

st
re

ng
th

 (M
Pa

)
El

as
tic

 m
od

ul
us

 
(M

Pa
)

Fl
ex

ur
al

 
st

re
ng

th
 

(M
Pa

)

Fl
ex

ur
al

 
m

od
ul

us
 

(M
Pa

)

C
om

pr
es

siv
e 

st
re

ng
th

 (M
Pa

)
El

as
tic

 
m

od
ul

us
 

(M
Pa

)

El
on

ga
tio

n 
of

 
br

ea
k 

(%
)

To
ug

hn
es

s (
en

er
gy

 
ab

so
rp

tio
n 

Jm
−

3 )

C
or

ci
on

e 
et

 a
l. 

[2
58

]
PL

A
H

A
 m

ic
ro

-
sp

he
re

R
an

ge
 if

 te
m

pe
ra

tu
re

 
17

5–
20

0 
℃

, 5
0%

 
in

fil
l p

at
te

rn
, l

ay
er

 
th

ic
kn

es
s 0

.9
 m

m
 

an
d 

th
e 

sp
ee

d 
at

 
30

0 
m

m
/s

-
-

12
4.

04
-

-
-

2–
10

-

Y
u 

et
 a

l. 
[2

12
]

PE
U

N
an

o 
H

A
La

ye
r t

hi
ck

ne
ss

 o
f 

0.
3 

m
m

,7
0%

 in
fil

l 
pa

tte
rn

 p
rin

tin
g 

sp
ee

d 
2 

m
m

/s
 a

t 
16

5 
℃

65
–8

5
-

-
-

-
-

-
-

N
in

g 
et

 a
l. 

[2
59

]
A

B
S

C
FR

P
Pr

in
tin

g 
sp

ee
d 

1.
5 

m
/m

in
, t

he
 

la
ye

r t
hi

ck
ne

ss
 

of
 0

.2
 m

m
, i

nfi
ll 

pe
rc

en
ta

ge
 1

00
%

, 
bu

ild
 o

rie
nt

at
io

n 
45

° a
nd

 1
35

° a
t 

23
0 
℃

42
25

00
18

.7
5

-
-

-
4.

14
6.

3

C
am

in
er

o 
et

 a
l. 

[2
60

]
N

yl
on

C
ar

bo
n

La
ye

r t
hi

ck
ne

ss
 

0.
1 

m
m

 (f
or

 
ca

rb
on

 0
.1

25
 m

m
), 

in
fil

l P
at

te
rn

 
fla

t, 
on

 e
dg

e,
 

re
ct

an
gu

la
r i

nfi
ll 

pa
tte

rn
, 1

00
%

 
in

fil
l d

en
si

ty
, a

nd
 

ra
ste

r a
ng

le
 0

°

70
–9

0 
(k

J/m
2 )

-
-

-
-

-
-

-
K

ev
la

r
16

0–
20

0 
(k

J/m
2 )

-
-

-
-

-
-

-
gl

as
s

25
0–

30
0 

(k
J/m

2 )
-

-
-

-
-

Te
ki

na
lp

 e
t a

l. 
[2

61
]

PL
A

C
el

lu
lo

se
 

na
no

fib
ril

 
(C

N
F)

La
ye

r t
hi

ck
ne

ss
 

0.
2 

m
m

 p
rin

t 
sp

ee
d 

7.
5 

m
m

/s
, 

op
er

at
in

g 
te

m
pe

ra
-

tu
re

 1
80

 to
 2

15
 ℃

, 
an

d 
be

d 
te

m
pe

ra
-

tu
re

 o
f 9

3 
℃

-
65

70
–

17
20

-
-

-
-

St
oo

f e
t a

l. 
[2

62
]

PL
A

H
em

p
La

ye
r t

hi
ck

ne
ss

 
1 

m
m

, b
ed

 te
m

-
pe

ra
tu

re
 1

10
 ℃

, 
at

 1
0,

 2
0,

 a
nd

 3
0 

w
t%

 in
fil

ls

35
–4

0
3–

4 
(G

Pa
)

-
-

-
-

-
-

H
ar

ak
ek

e
35

–4
0

4–
5 

(G
Pa

)
-

-
-

-
-

-

1555The International Journal of Advanced Manufacturing Technology (2022) 120:1531–1570



1 3

Ta
bl

e 
4 

 (c
on

tin
ue

d)

A
ut

ho
r

M
at

er
ia

l
In

fil
l

Pr
oc

es
s p

ar
am

et
er

s
U

lti
m

at
e 

te
ns

ile
 

st
re

ng
th

 (M
Pa

)
El

as
tic

 m
od

ul
us

 
(M

Pa
)

Fl
ex

ur
al

 
st

re
ng

th
 

(M
Pa

)

Fl
ex

ur
al

 
m

od
ul

us
 

(M
Pa

)

C
om

pr
es

siv
e 

st
re

ng
th

 (M
Pa

)
El

as
tic

 
m

od
ul

us
 

(M
Pa

)

El
on

ga
tio

n 
of

 
br

ea
k 

(%
)

To
ug

hn
es

s (
en

er
gy

 
ab

so
rp

tio
n 

Jm
−

3 )

Ya
ng

 e
t a

l. 
[2

63
]

PL
A

C
N

T 
(2

, 4
, 8

 
w

t%
)

B
ui

ld
 o

rie
nt

at
io

n 
0°

, a
ir 

ga
p 

0,
 

be
d 

te
m

pe
ra

tu
re

 
20

0–
23

0 
℃

, l
ay

er
 

th
ic

kn
es

s 0
.1

, 0
.2

, 
0.

3 
m

m
, a

nd
 sp

ee
d 

at
 2

0–
60

 m
m

/s

10
5–

11
0

3.
3–

3.
8 

G
Pa

10
0–

12
0

-
-

-
-

-

C
am

ar
go

 e
t a

l. 
[1

73
]

PL
A

G
ra

ph
en

e 
(2

2–
89

 w
t%

)
In

fil
l p

at
te

rn
 

fla
t (

in
te

rn
al

 
ho

ne
yc

om
b 

fil
l 

an
d 

ex
te

rn
al

 
re

ct
ili

ne
ar

 fi
ll)

, 
la

ye
r t

hi
ck

ne
ss

 
0.

10
–0

.2
7 

m
m

, 
ra

ste
r a

ng
le

 a
t 

45
°, 

ex
tru

si
on

 
te

m
pe

ra
tu

re
 2

00
 

℃
 a

nd
 sp

ee
d 

at
 

50
 m

m
/s

ec

33
.7

90
7.

75
9

-
-

-
-

10
.4

03
-

Se
ze

r a
nd

 E
re

n 
[2

64
]

A
B

S
M

W
C

N
T

(1
–1

0 
w

t%
)

La
ye

r t
hi

ck
ne

ss
 

0.
2 

m
m

, p
rin

tin
g 

sp
ee

d 
30

 m
m

/s
ec

, 
ex

tru
si

on
 te

m
pe

ra
-

tu
re

 2
45

 ℃
, 1

00
%

 
in

fil
l p

er
ce

nt
ag

e,
 

an
d 

ra
ste

r a
ng

le
 

(0
°/

90
°)

 a
nd

 (4
5°

/-
45

°)

55
–6

0
19

00
–2

10
0

-
-

-
-

4–
5

-

X
u 

et
 a

l.
[2

65
]

PC
L

H
A

-
-

-
-

-
15

.4
3

80
.1

6
-

-

N
yb

er
g 

et
 a

l.
[2

66
]

PC
L

Tr
ic

al
ci

um
 

ph
os

ph
at

e 
(T

C
P)

 3
0 

w
t%

Th
e 

la
ye

r h
ei

gh
t o

f 
0.

64
0 

m
m

 fo
r t

he
 

fir
st 

tw
o 

la
ye

rs
 a

nd
 

ra
is

ed
 to

 4
 m

m

-
-

-
-

-
25

3
-

-

H
yd

ro
xy

ap
at

ite
 

(H
A

) 3
0 

w
t%

-
-

-
-

-
33

8
-

-

D
ec

el
lu

la
riz

ed
 

bo
ne

 m
at

rix
 

(D
C

B
) 3

0 
w

t%

-
-

-
-

-
24

1
-

-

1556 The International Journal of Advanced Manufacturing Technology (2022) 120:1531–1570



1 3

to be contingent on printing parameters [249]. The tensile 
strength of the product is mainly affected by the build ori-
entation and the poor interlayer bonding. Likewise, high 
tensile can be obtained in the printing direction on parallel 
and longitudinal [250, 251]. Anisotropic mechanical proper-
ties of the FDM printed ABS were analyzed by Ahn et al. 
[205]. Their study shows that the negative air gap increases 
the tensile and compressive strength of the FDM product 
compared to injection molding. Reese [252] investigated the 
mechanical behavior on various raster angles of PEEK mate-
rial prepared by FDM. Their result showed that maximum 
strength was observed at a 0° raster angle. Fatimatuzahraa 
et al. [253] studied the mechanical properties and the micro-
structure of the FDM printed ABS parts at different raster 
angle orientations. Their result showed that the angle at 
45°/ − 45° at crisscross cross-section structures has a higher 
strength for flexural, deflection, and impact tests. Hossain 
et al. [254] examined how to improve the ultimate tensile 
strength, young’s modulus, and tensile strain by modifying 
the raster angle, contour width, air gap, and build orienta-
tion. Three approaches have been used for this assessment: 
default, insight, and visual response. The finding revealed 
that a higher UTS could be obtained by optimizing process 
parameters using the insight revision method. Ognjan et al. 
[255] investigated the effect of raster angle variations in ten-
sile, flexural strength, and surface finish. The researcher rec-
ommends 0° raster angle delivers higher mechanical strength 
with lower surface finish. Caminero et al. [256] assessed the 

effects of orientation, layer thickness, and fiber volume con-
tent on impact properties of Kevlar, glass, and continuous 
carbon-reinforced nylon composites. Their results exhibit 
that the layer thickness has a higher impact on strength. 
Table 4 shows the properties of different polymer materials 
and composites by various process parameters.

The materials used in the FDM process have various 
ranges of strength and modulus. The wide range of materials 
has the ultimate tensile strength between 40 and 70 Mpa, and 
Young’s modulus range is between 0.5 and 2.5. Figure 13 
indicates the Ultimate Tensile Strength and Young’s modu-
lus of polymers, polymer blends, and various composite 
materials used in the FDM process.

The mechanical properties of the FDM printed polymers 
and polymer composites are demonstrated clearly in this 
section. Printing parameters played an important role in 
the mechanical properties. Reducing the layer thickness 
and infill density seen could increase the strength of the 
product. Besides, the materials like PP, PA, PE, PLA, and 
ABS are reported to have lower properties compared with 
other materials. Hence, composite materials were added 
with the base polymers to enhance their properties. Com-
pared with the other composites (Polymer blends, ceramic, 
metal), the fiber and nanocomposites are shown to have 
high strength, stiffness, surface finish, and toughness. Also, 
the research is mainly focused on the fiber (GF, CF) and 
nanocomposites (CNT, MWCNT, CNC) for the medical 
and aerospace sector.

Fig. 13  Ultimate tensile strength and Young’s modulus of polymers, polymer blends, and various composites
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6  Applications of FDM process

FDM can generate virtually any geometry that can be 
designed. This technology can print hollow interiors and 
irregular shapes with elegant geometrical forms. The essen-
tial benefits of using FDM technology in various industries 
are printing lightweight products, multi-material printing, 
short production time, reduced tool investment cost, and 
optimum materials usage. This technique is used primarily 
for prototyping and rapid manufacturing since it is inexpen-
sive compared to conventional fabrication, which requires 
expensive machines. Many potential applications for FDM 
parts include aerospace, automobile, electronics, biomedi-
cal, and construction sectors. Figure 14 shows the global use 
of additive manufacturing in various sectors.

6.1  Aerospace

Most of the components in the aerospace industry have com-
plicated geometry, and manufacturing these components has 
high costs and is time-consuming. Compared with metal, 
the polymers have lower strength and flame retardant, but 
these thermoplastic parts are used to reduce the weight of 
aircraft parts and improve fuel efficiency. In addition, the 
aeronautical industries have always been expensive as many 
iterations on the design occur for large products and limited 
production. For these reasons, FDM could be the alterna-
tive to produce parts without any tool modifications and 
low production volume [268]. Using FDM and other AM 
technologies, metallic and non-metallic components such 
as engine parts, heat exchangers, and turbine blades can be 
manufactured for aerospace applications [269, 270]. FDM 
is primarily used to produce plastics, ceramics, and fiber 
composites [271]. For rapid part production and tooling, 

Stratasys has adopted FDM processes along with several 
other aerospace industries like NASA Bell Helicopter and 
Piper Aircrafts [272]. Figure 15a shows Evektor aircraft 
components fabricated using FDM. In NASA’s Mars rover, 
nearly 70 FDM-printed thermoplastic components have been 
used and reported to be fairly robust to survive space rigors. 
Stratasys and Aurora Flight Sciences also reported signifi-
cant production time reduction in producing polycarbonate 
cabling pipes of V-22 Osprey of Bell Helicopter using FDM 
technology [273].

6.2  Electronics

3D printing technologies testified to shorten production 
times for geometrically fitting electronic prototypes [274]. 
The 3D-printed polymer composites shown could act as 
electronic instruments and can be used in various forms in 
combination with leading electrical materials. Using FDM, 
the carbon-black/PCL composites were added to electronic 
sensors to convert the piezoresistive to capacitive. Capaci-
tive sensors may be printed as part of the custom interface 
system or embedded in smart vessels [275]. FDM printed 
PLA/graphene electrodes for electrochemical sensing were 
analyzed by Manzanares Palenzuela et al. [276]. A basic 
activation process consisting of the DMF supported the 
partial dissolution of the polylactic acid insulating polymer 
shown to contribute to the rise in electroactivity. Similarly, 
PLA/graphene printed electrodes were established for elec-
troanalysis of picric and ascorbic acids with successful effi-
ciency of sensing [277]. Figure 15b shows FDM printed 
electric circuit with an LED. Electrodes fabricated by carbon 
nanotube (CNT) /zinc oxide (ZnO) and CNT/copper (Cu) 
were blended with PLA and used for the electronic tongue 
research as cyclic voltammetric sensors [278]. Dawoud et al. 

Fig. 14  Global additive manu-
facturing application of various 
sectors [267]
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[279] developed the carbon black–filled acrylonitrile buta-
diene styrene (ABS) composite strain sensor using FDM 
capable of analyzing the internal stresses.

6.3  Biomedical

At present, the biomedical sector accounts for 11% of the 
overall AM market share and is anticipated to be the driver 
for AM production and growth. Unique requirements of 
biomedical applications such as high complexity, ease of 
access, small production quantities, patient-specific needs, 
and customization have been the driving factor for the FDM 
technology. In medical applications, using magnetic reso-
nance imaging (MRI) and computed tomography (CT) tech-
nology, 3D images of organs and tissues developed with 
high resolution [280]. The obtained image data allows 3D 
printing technology to generate patient-specific tissues and 
organs with sophisticated 3D micro-architectures. Currently, 
several biocompatible natural and synthetic polymers are 
used for biomedical applications [281]. Printability, bio-
compatibility, strong mechanical properties, and structural 
properties are consideration factors for biomedical applica-
tions [282]. Teixeira et al. [283] described that the FDM 
printed PCL/TCP composite scaffold degradation rates were 
faster than the PLA in PCL scaffold. Polydopamine coat-
ing (PDA) with PLA scaffolds assists in smoothing over the 
scaffold of the type-1 collagen. The study has contributed to 
increased cell response and extracellular matrix deposition 

and enhanced PLA postinduction. Rasoulianboroujeni et al. 
[284] reported that the polylactic-co-glycolic acid (PLGA)/
TiO2 scaffolds have higher compression modules, wetta-
bility, and glass transition temperature compared with pure 
PLGA. Medicines produced from polyethylene glycol fila-
ments filled with indomethacin (IND) and Hypromellose 
succinate (HPMCAS) are less bitter and dissolve quicker 
[285]. Chai et al. [286] prepared hollow intragastric floating 
sustained-release (FSR) tablets to reduce the frequency of 
the administrating tablets. FDM printed human ribcage as 
replacement are shown in Fig. 15c.

6.4  Construction

The application in the building sector started in 2014. Cast-
ing, molding, and extrusion are the traditional methods of 
the building industry. 3D printing can be used in the con-
struction industry in areas where limitations such as geo-
metric complexities and hollow structures are required. The 
contour craft technology for automated constructions of 
buildings and structures and space applications was devel-
oped by Khoshnevis 287]. The technology can be readily 
used to construct low-income homes and build a shelter on 
the moon because of its capacity to operate in situ materi-
als. Using special bioplastic on XXL 3D printers and FDM 
technology, the European Union constructed the ‘Europe 
Building’. Also, using the 3D printer, a Chinese company 
ZhuoDa Group built a two-story villa in 3 h at which cost 

Fig. 15  a Evektor aircraft components and FDM printed duct adapter [290]. b FDM-printed electric circuit with LED [291]. c FDM-printed 
Ribcage [292]. d FDM concrete printing process and the first FDM printed house by WinSun company in 2014 [293]
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of $400 to $480 [288]. Figure 15d shows the FDM concrete 
printing process and the first FDM printed house by WinSun 
company in 2014. The house parts were initially printed in 
pieces; after that, the pieces were assembled. The cost of 200 
 m2 homes is stated to be less than $5000 [289]. Mainly, the 
FDM-constructed buildings are classified as green buildings; 
more than 30% of energy costs are saved.

6.5  Automobile and other sectors

The FDM process is also frequently used in automotive and 
other sectors for prototype development and functional pro-
totypes, architecture models, jewelry, toys, household prod-
ucts, and end-user products. High strength polymers such as 
polycarbonate, nylon, ULTEM have been used in numerous 
applications essential for automobile production. The main 
applications in the automotive sectors are for printing jigs, 
fixtures, check gauges, interior accessories, air ducts, lights, 
bezels, and full-scale panels [294]. This technology is also 
used in the jewelry industry to minimize wastage and to 
produce complex geometries. The FDM process was found 
to be a time saver and cost-effective in this sector [295]. This 
technique is also used for children’s toy fabrication and is 
also used in household product creation.

7  Technical challenges of FDM process

This review discussed the techniques used in additive manu-
facturing, the materials, properties, process parameters, and 
FDM applications. The properties of the FDM products 
shown could be improved by anticipating proper process-
ing parameters and materials. Also, different materials like 
polymer composites, metal polymers composites, ceramic 
composites, polymer blends, fiber composites, and nano-
composites used in FDM are discussed in detail. Several sig-
nificant studies are required in terms of technical advance-
ment, considering the advantages of FDM printing, such as 
design freedom, customization, and the ability to print com-
plex structures, seem required. On the other hand, the lim-
ited materials availability, accuracy and quality, anisotropic 
mechanical properties, limited application in large production, 
mass production, printing time, clogging, and void formation 
also need extensive research.

Materials and process parameters play an essential role 
in this process. Currently, low gradient thermoplastic poly-
mers and some composites are used in the FDM process. 
These delimited materials do not satisfy the range of indus-
try application criteria, so the range of materials should be 
expanded. Most of the products prepared by suing FDM 
are stated to have low mechanical strength; the main rea-
son for this delinquent is the void formation between the 
subsequent layers of the part. Thus, it results in inferior and 

anisotropic mechanical properties of the product. A proper 
selection of the parameters would minimize the problem. 
I.e., increasing the layer thickness will reduce the poros-
ity but degrade the cohesion in the composite, reducing the 
tensile strength. Alternatively, reinforcing fibers with poly-
mers helps to improve the product’s properties. However, the 
addition of fiber during feedstock preparation and part fab-
rication results in void formation, which affects mechanical 
behavior. Several investigators have overcome this problem 
by adding a thermally expandable microsphere to reduce 
the void formation and increase the strength. Another vital 
challenge is the nozzle clogging due to the fiber or particle 
reinforcement. The clogging significantly affects the quality 
and quantity of the production. Also, the filament will be 
brittle with the addition of a high amount of fillers.

Another limitation of the FDM technology is the mass 
production and larger product fabrication capability. Com-
pared with the traditional manufacturing process, the 3D 
printing process is not suitable for mass production. Still, 
currently, researchers are attempting to fabricate large prod-
uct manufacturing using FDM and other 3D printing tech-
nology. At present, 3D printing technology has advanced 
to another phase of manufacturing technique known as 4D 
printing technology. 4D printing uses shape memory poly-
mers as the printing materials. Also, 5D printing technol-
ogy is taking up the feasibility and possibility of additive 
manufacturing technology and is anticipated to capture the 
market very soon. Compared to the 3D printing process, 
the 5D printing process is highly accurate and efficiently 
minimizes material wastages.

8  Conclusion

This paper presents a detailed review of AM process and mate-
rials, properties, process parameters, and the applications of 
the FDM technique. The present review paper also discusses 
the advanced materials used in the FDM process and the vari-
ous parameter optimization to achieve maximum mechani-
cal properties and dimensional accuracy. Compared with the 
conventional machining process, FDM is cost-effective and 
user-friendly. The fiber-reinforced polymers and nanocompos-
ites are shown to have excellent characteristics than other pure 
materials. But in the filler reinforcement composites, increas-
ing the composition percentage by more than 30 wt% produces 
clogging in the nozzle. Numerous analyses show that the layer 
thickness, raster angle, infill pattern affects the printing quality. 
Various studies also show that the product’s tensile strength 
increases in 0° raster and concentric patterns. Furthermore, 
the product’s surface finish increases by reducing the layer 
thickness, decreasing the air gap, minimizing the porosity, 
and increasing the product's strength. Currently, the research 
in FDM focuses on developing new polymer composite and 
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optimizing the parameters to achieve better quality products 
for applications in various manufacturing applications. Nano-
polymer composites have gained significant attention in many 
applications, especially in medical fields for scaffolds and 
tissue engineering. However, very few researches have been 
carried out using nanopolymer composites. The nanocompos-
ites testified could reduce the issues related to bonding and 
clogging, which will feature a significant advantage. Finally, 
the present review is anticipated helpful for researchers in the 
field to understand the FDM in general and identify the gasp 
for future research in this area for betterment.
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